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Summary. — Various problems are discussed that relate to oscii'ations
in high-energy scattering. It is shown 1) that oscillations as s— co of
a scattering amplitude F(s, ) are not restricted by a polynomial bound
and analyticity in s, 2) that for sufficiently large s, the number N(s, 7)
of zeros of F(s,t) within [t| < r<{, (where {, is the nearest singunlarity)
satisfies N(s, )<< Clogs, where C is a constant.

The nature of the singularity of a scattering amplitude at infinite energy
is an important unsolved problem in the study of strong interactions of ele-
mentary particles. For some theorems and applications it is sufficient to have
bounds on the modulus of the amplitude, but in general the justification of
approximations and of simple models requires information about oscillations
as the energy tends to infinity. One would like to know whether or when
they ocecur, for what problems and approximations they can be neglected,
and what limits can be set on their relative magnitude and their frequency
per unit energy.

The purpose of this note is to discuss the present state of progress in the
study of oscillations of scattering amplitudes at high energy. This is closely
related to the distribution of zeros.

1. — If simplifying assumptions are made they lead immediately to severe
restrictions on oscillations. For example, if the branch cut in the energy z is
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neglected, then the amplitude F(z) is regular in the entire plane and bounded
by a polynomial; in this case it is a polynomial and hence it has only a finite
number of zeros and is smooth (not oscillatory) at infinity. More generally
it might be assumed that F(2) is an exponential function of w (where w = logz)
in the entire w-plane. This gives a logarithmic branch cut on the real axis
and the number of zeros N(r), where r = [¢|, satisfies

(1) N(r) < O(logr) .

This means that the number of oscillations per unit energy range decreases
like 1/r. An example of such a function is

(2)- F(2) = iz( sin log z - const) .

If we take F(2) to be polynomial-bounded only in the z-plane, ¢.e. & strip in
the w-plane, but entire for all w, the following example is allowed:

(3) F(z) = iz[ C ++sin (log?2)] .

If F(z) represents a forward scaftering amplitude this example corresponds
to an oscillating total cross-section.

2. — If no simplifying assumptions are made except those that have been
deduced from the axioms of quantum field theory there are three observations
we wish to make:

a) The uppar bounds (for example the Froissart bound), that have been
established by MArTIN (1), do not depend on any assumptions about oseil-
lations of the scattering amplitude. If sufficiently strong lower bounds could
be established, then the converse of theorems by KuHURI and KINOSHITA (?)
would lead to restrictions on the phase and hence on the allowed oscillations,
However, lower bounds have been established only for an «average » ampli-
tude (®) and even these are too weak for conclusions via the Khuri-Kinoshita
theorems.

b) The axioms of quantum field theory lead to the result that F(z) is
regular and polynomial-bounded in the upper half z-plane (for a certain range
of momentum transfer). Unless further restrictions are obtained, for example
on ImF when # is real, this result allows F(z) to have zeros on the real axis

(*) A. MarTin: CERN preprint No. 66/488/5-TH. 652 (1966).
(2) N. N. Krurt and T. KiNosuITA: Phys. Eev., 140, B 706 (1965).
(3 Y. 8. Jin and A. MARTIN: Phys. Rev., 185, B 1369 (1964).
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for any set N of measure zero. We can see this from the converse to the
following theorem due to HrILLk (%),

THEOREM. — If F(z) is bounded and holomorphic in Imz> 0, if F(2) is not
identically zero, and if

(4) lmF(x +4y) =0, for  in the set N,

y—>9
then N is of measure zero. Conversely if N is a closed set of measure zero,
then there exists an F(z) bounded and holomorphic in Imz> 0, such that F(2)
is continuous in Ime> 0, and (4) holds but F(z) = 0 for other values of 2
in Imz>0.

¢) When the set of zeros extends to infinity along the real axis there
will in g2neral be a manifold of limit points. A rather weak restriction on
them has been noted by MuEIMANN (5) from a theorem due to NEVANLINNA:

THEOREM. — Let F(z) be regular in Imz>0, and let ¢, be the manifold
of limit points of F(x) as 2 — 4 oo along the real axis and C, the manifold
as ©-—>»—oo., If F(z) oscillates for arbitrarily large # then either C; or C,
or both will be a continuum, otherwise it would be a single point. The theorem
states that if ¢, and C, have no points in common and if one does not sur-
round the other, then F(2) cannot be polynomial-bounded in Imz>0.

3. — It is evident from these theorems that one must seek additional re-
strictions on the scattering amplitude in order to obtain a significant sim-
plification at high energy. The obvious sources of such restrictions are uni-
tarity and many-variable analyticity. They have direct consequences on the
nature of singularities at thresholds along the real branch cut in energy. There
is some indication that these singularities are combinations of square root
and logarithmic (°) so it may be that the exponential function of logz con-
sidered above is not far from the physical situation (7).

It is possible to obtain a bound on the number of zeros of the amplitude
F(s, 1), for fixed s and |¢{<t,, from the known bounds on the amplitude for
large s. The upper bound (%) is s* for {,<<4m* and the lower bound for F(s, 0)
is 572 provided we are not too near to a zero (in general complex) of F(s, 0).
Because F(s, t) is analytic, for fixed s, as a funetion of ¢in |¢| <¢,, with F(s, 0) 0,

(*) A. HiLLe: Analytic Function Theory, vol. 2 (Theorem 19.2.4).

() N. N. MEIMANN: Sov. Phys. JETP, 16, 1609 (1963).

(°) R. J. Epexn, P. V. Laxpsuorr, D. I. OLive and J. C. POLKINGHORNE: The
Analytic S-Matriz (Cambridge, 1966).

() B. J. EpeN: Journ. Math. Phys., (in press) (1966).
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we can write Jensen’s theorem in the form

2n
1 F(s, ret®)
— |log =2 "
o og (s, 0) df < 4logs,

0

(5) JéN(s, 7) dr —

where r<t, and N(s,7) is the number of zeros in |{| <7 of F(s,?).
We can obtain a bound on the number of zeros inside a cirele of radius
b<r, by taking a lower bound in the above integral to give

N(s, b) logg <4logs,

(6)

_ 4logs
_N(S, b) \1@(7’/b) .

The maximum possible number of zeros for any finite r/b > 1, is therefore
increasing at most like logs. (The same applies to zeros of ImF(s, ).)

It has been shown by BEssis (%)) that the first zero cannot occur nearer
to ¢=0 than [f|~(logs)~2 Our result shows that even in this case the distance
between zeros must increase (on the average) so that no more than N ~logs zeros
occur within [t} <r<t, (with r/t, independent of s). In general, any zeros
will occur for complex values of #, when s is real, so they would lead to
minima in the differential cross-section do/dt for |¢|<<?,. In principle the zeros
t=1ty(s), k=1, 2, ..., of F(s, t) will determine the zeros of F(s, 0) but in practice
this relation may be useful only for simple models.

4. — For potential scattering it is well known (®) that a singular potential
like 1/r* can lead to oscillations in the total cross-section o(s) as s —>oco. It
appears that the amplitude of these oscillations becomes small compared with
the cross-section as § —oco. These singular potentials give complex singular-
ities in the angular-momentum plane and imply a number of subtractions in
a dispersion relation in s that tends to infinity with ¢ so there is no Man-
delstam representation (). However even in the case of a regular potential
having a Mandelstam representation and only Regge poles in Rel>—1, it
it possible that the background integral along Rel=—1} could lead to oscil-
lations in the amplitude F(s, 0) as s — oo. In general these oscillations would
be small compared with the contribution to F from a Regge pole in Rel > — L.
For F(s,t) when ¢>4m? the Regge poles themselves lead to oscillations in

(8) J. D. Bessts: CERN preprint No. TH. 653 (1966).
(®) E. VogT and G. H. WaNNIER: Phys. Rev., 95, 1190 (1954).
(19 J. Cuarrirour and R. J. EDEN: Journ. Math. Phys., 4, 359 (1963).
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the spectral functions. It has yet to be discovered when oscillations of F'(s, 0)
are either absent or unimportant as s— oo.

% % %

We are indebted to Dr. P. V. LANDSHOFF for valuable discussions. One
of us (L.L.) would like to thank the Governing Body of Clare Hall for a
Visiting Fellowship.

RIASSUNTO ()

Si studiano vari problemi relativi alle oscillazioni nello scattering di alta energia.
Si dimostra 1) che le oscillazioni, per s — oo, di un’ampiezza di secattering F(s, t) non
sono limitate da un legame polimoniale e dall’analiticitd in s, 2) che per s sufficiente-
mente grande, il numero N(s, r) degli zeri di F(s, ) entro |¢|<r <1, (dove #, & la pin
vicina singolaritd) soddisfa N(s, 7)< O'logs, dove C & una costante.

(*) Traduzione a cura della Redazione.

Ocun/LISHy AMINIMTY PACCesiHHSI NPM BLICOKHX JHEPrusix.

Pestome (*). — OOcyxmaroTcsi pasiu4Hbe HPOOGIEMBI, KOTOPHIE CBS3aHEI C OCLMII-
JIANUAMH B PACCESHUU IIPU BEICOKWX SHeprusix. IlokaspiBaercsa: 1) ¥TO mpu s— co OCLMI-
JiIAUFN aMIUIATYb! paccesuus F(s,t) He orpaHAYEHH! MHOTOMIEHHOM TpaHuLEH U aHaIu-
THYHOCTBIO 1O 8, 2) 4TO MU AOCTATOYHO Gonpmmx s, N(s, r)-unucio mynei F (s, t) BHyTpH
It] <r-<t, (rme t, Omkaiilias CHHTYNSPHOCTB) YHOBJIETBODAET HEPABEHCTBY N(s, 7)<
< Olog s, rne C xoHCTaHCA.

(*) Hepesedeno pedaryueil.
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