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AbstractmThe voltage across the cell membrane of human 
T-lymphocyte cell lines was recorded by the whole cell patch 
clamp technique. We studied how this voltage fluctuated in time 
and found that these fluctuations have fractal characteristics. We 
used the Hurst rescaled range analysis and the power spectrum of 
the increments of the voltage (sampled at 0.01-sec intervals) to 
characterize the time correlations in these voltage fluctuations. 
Although there was great variability in the shape of these fluc- 
tuations from different cells, they all could be represented by the 
same fractal form. This form displayed two different regimes. At 
short lags, the Hurst exponent H = 0.76 - 0.05 (SD) and, at 
long lags, H = 0.26 - 0.04 (SD). This finding indicated that, 
over short time intervals, the correlations were persistent 
(H > 0.5), that is, increases in the membrane voltage were more 
likely to be followed by additional increases. However, over 
long time intervals, the correlations were antipersistent 
(H < 0.5), that is, increases in the membrane voltage were more 
likely to be followed by voltage decreases. Within each time 
regime, the increments in the fluctuations had characteristics that 
were consistent with those of fractional Gaussian noise (fGn), 
and the membrane voltage as a function of time had character- 
istics that were consistent with those of fractional Brownian mo- 
tion (fBm). 
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INTRODUCTION 

The membrane potential is the electrical potential in- 
side the cell minus the electrical potential in the solution 
outside the cell. This potential is an important indicator of  
the state of a cell. To measure the changes in membrane 
potential that occur when T-lymphocytes are activated or 
otherwise changed, we first must characterize the proper- 
ties of  the resting membrane potential. 

The membrane potential of  T-lymphocytes  has been 
measured with intracellular glass micropipette electrodes 
and voltage-sensitive dyes. These methods yielded values 
of - 5 mV to - 70 mV for the resting membrane potential 
(10,11,24). These studies reported the average value of  

the membrane potential measured in each cell,  but they 
were not concerned with how the potential varied with 
time. Other studies in which the whole cell configuration 
of the patch clamp technique was used did evaluate some 
of  the properties of the temporal fluctuations in the poten- 
tial (20,21). However,  these studies did not provide in- 
formation about the quantitative properties of  these fluc- 
tuations or suggest a stochastic process that could charac- 
terize them. We report here the results of  our analysis of  
membrane potential fluctuations from whole cell patch 
recordings of T-lymphocytes  from various clones. 

The motivation for our analysis can be seen in Fig. 1. 
Graph B shows the values of  a time series of  a process 
called fractional Gaussian noise (fGn) (8,22). Graph A 
illustrates a running sum of the values of  the graph B and 
is called fractional Brownian motion (fBm) (8,22). This 
fBm has fractal characteristics; as the record is examined 
over  ever- la rger  t ime intervals ,  there are ever - la rger  
fluctuations in amplitude. This fractal property is called 
statistical self-similarity. Formally,  this means that the 
average value of  a property,  such as the amplitude, is 

direct ly proport ional  to the size of  the t ime window 
used to make the measurement (3,16). Graph C in Fig. 1 

shows the values of  the membrane potential recorded 
from a T- lymphocy te ,  and graph D shows the t ime 
series of the differences of the consecutive values of  the 

99 



100 A.M. CHURILLA et al. 

-15 - A ~  

mV 

- 2 0  - I I I I 
0 I 2 3 4 5 

s ec  

0 .15-  

mV 

-0 .15-  

I 

B 

I I I I 
2 3 4 5 

s ec  

- 5 -  

mV 

- 1 2 -  

0 

\mV 

I I I I I -o. I I I I I 
1 2 3 4 5 0 1 2 3 4 5 

s e c  s ec  

FIGURE 1. (Top): A shows the time series of the fractal process fBm, which is constructed from the running sum of the time series 
fGn, shown in B. (Bottom): Typical membrane potential recorded from a T-lymphocyte with use of the whole cell patch clamp 
technique. C shows the membrane potential as e function of time. D shows the differences between successive values of the 
membrane potential recorded every 0.01 sec. The similarity in form between the fractal simulations shown in the top graphs and 
the membrane potential shown in the bottom graphs suggested to us that it would be worthwhile to investigate in more detail 
whether the fluctuations in the membrane potential had fractal properties. 

membrane potential sampled every 0.01 sec. The apparent 
similarity between the numerical simulation of the fractal 
process in graphs A and B in Fig. 1 and the measurement 
of the membrane potential in graphs C and D in Fig. 1 
suggested to us that the stochastic processes of fGn and its 
integral, fBm, might be a way to characterize the voltage 
increments and the voltage, respectively, across the mem- 
brane of T-lymphocytes. To test this hypothesis, we used 
two fractal methods of analysis: Hurst rescaled range anal- 
ysis and power spectrum. Fractals have statistical proper- 
ties that are different from those of nonfractals (2). Be- 
cause the experimental data appear to have a fractal form, 
a fractal analysis may provide more valid quantitative 
measures of the time correlations in the membrane poten- 
tial than those given by nonfractal methods of analysis. 

In the last 25 years, nonlinear systems with fractal 
properties have generated interest in many fields of sci- 
ence. New concepts and techniques developed to study 
objects and processes with fractal properties have yielded 
new insight into how such systems work. The mathemat- 
ical properties of fractals and their applications to physical 
systems are described in References 8 and 22. Elementary 
introductions to fractals and their application to biological 

systems are given in References 3, 14, 15, and 16. First, 
we review in brief some of the most important properties 
of the fractals and their relevance to the work presented 
here. 

An essential characteristic of fractals is that if the res- 
olution is increased, ever-smaller features are revealed, 
that is, more and more new pieces are seen. These pieces 
are self-similar, which means that the statistical distribu- 
tion of the pieces at one resolution has the same shape as 
does the distribution of the pieces at other resolutions (2). 
The mathematical properties of fractals are defined 
through the use of measure theory and topology. For- 
mally, a fractal is defined as an object or process that has 
a fractal dimension (which characterizes how the number 
of resolved pieces of an object depend on the resolution) 
that is greater than the topological dimension (an integer 
dimension that depends on how the pieces are connected 
together). This technical definition and its implications are 
explained in detail in Reference 2. 

The moments of fractal processes, such as the mean 
and variance, depend on the number of pieces included at 
a given resolution. Because the number of these pieces 
depends on the resolution, the moments do not have fixed, 
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limiting values. The values determined for the moments, 
therefore, depend on the resolution used to make the mea- 
surement. For example, when the fluctuations of a time 
series are fractal, then the differences between the maxi- 
mum and minimum values of the time series increase with 
time. Therefore, the range of the time series increases with 
the length of the piece of the series examined. Therefore, 
as more data are analyzed, the value of the standard de- 
viation will increase continually and will never reach a 
finite limiting value. Nonfractal methods, such as those 
that assume that the data can be represented by processes 
that are Gaussian or asymptotically Gaussian, assume that 
these moments exist and have finite values. Therefore, 
such nonfractal methods cannot properly characterize the 
type or degree of correlations present in fractal data. We 
must use appropriate fractal methods to be able to suc- 
cessfully characterize the correlations present in a fractal 
time series. Properly characterizing these fractal proper- 
ties may lead us to a better understanding of the processes 
that produced the data. 

The fractal form of the voltage fluctuations suggests 
that, to characterize the type and degree of correlations in 
the experimental data, we should determine how the value 
of the dispersion depends on the size of the window used 
to evaluate it. This can be done in a number of ways. We 
did this by using the Hurst rescaled range analysis and the 
power spectrum analysis. 

METHODS 

Cells 

Experiments were performed on Jurkat cells, a human 
leukemic T cell line; CL1 cells, a CD4+/CD8 - anti- 
Rickettsia tsutsugamushi cell line, and Ka8, a CD4+/ 
CD8-  population cloned from CL1. The Jurkat cells were 
maintained in culture RPMI medium (GIBCO-BRL, 
Grand Island, NY) supplemented with penicillin, strepto- 
mycin, glutamine, 5 x 10 -4 M 2-mercaptoethanol and 
5% (v/v) fetal calf serum (FCS). CL1 was obtained from 
spleen cells of C3H/HeJ mice immunized with live R. 
tsutsugamushi bacteria. Ka8 was cloned by a limiting di- 
lution in the presence of antigen (French Press lysates of 
R. tsutsugamushi in RPMI medium supplemented with 
penicillin, streptomycin, glutamine, 2-mercaptoethanol, 
and 10% FCS. Both CL1 and Ka8 cells were maintained 
by passage every 7-10 days in the presence of antigen 
(French Press lysates of R. tsutsugamushi) and irradiated 
spleen cells. 

Experiments 

All data were obtained by the patch-clamp technique in 
the whole cell configuration (5,29). Micropipettes were 
pulled in multiple stages by a Flaming/Brown Model P-87 

pipette puller (Sutter Instruments, San Rafael, CA) and 
fire polished. They were made from Accu-fill 90 Micropet 
glass obtained from Clay Adams (Parsippany, N J) and 
filled through an Acrodisc 13, 0.2 Ix filter (Gelman Sci- 
ences, Ann Arbor, MI) with the following solution (in 
mM): 140 KC1, 0.1 CaC12, 1.0 MgCI> and 10 HEPES 
buffer at pH = 7.3 and 1.1 EGTA. The experiments were 
performed at room temperature (20-22~ Chemicals 
were purchased from the Sigma Chemical Co. (St. Louis, 
MO). Pipette resistances typically were 1-4 Mll.  Total 
junction potential was no more than 1-2 mV. 

In all experiments, the cells were placed in a solution 
containing the following (in mM): 145 NaC1, 4.5 KC1, 1.6 
CaC12, 1.1 MgC12, and 10 HEPES buffer, pH = 7.3. 
Additional details of the experiments were described in 
Reference 31. In the whole cell configuration, the solution 
in the patch pipette replaced the solution inside the cell. 
Therefore, some factors controlling the membrane poten- 
tial may be different from those in intact cells. We waited 
3-10 min after achieving the whole cell configuration be- 
fore taking measurements. 

Membrane potential as a function of time was measured 
with an EPC-7 patch clamp amplifier in the zero constant 
current mode, and the data were stored on a VCR using a 
Neuro-corder Model DR-384 pulse code modulator 
(Neuro Data Instruments, New York, NY). A 5-kHz, 
8-pole, low-pass, Bessel filter was connected to the input 
of the Neuro-corder. 

Voltage clamp data were collected with the Axon In- 
struments (Foster City, CA) software package pCLAMP 
5.5, running on an PC-AT computer containing a Lab- 
master board. Results were stored on the computer's hard 
disk. For each cell, a sequence of depolarizing pulses (190 
ms long, 5 sec apart) was applied from a holding potential 
of - 7 0  mV. There were 13 pulses in the sequence ( from 
- 6 0  mV to + 60 mV); each step was 10 mV more pos- 
itive than the preceding step. 

The parallel combination of cell resistance and seal 
resistance, which we called the whole cell membrane re- 
sistance, was estimated from the difference between the 
current at a holding potential of - 70 mV, just before the 
first pulse of the above-described voltage clamp protocol, 
and the current, immediately before the end of this pulse, 
when the voltage was - 6 0  mV. This jump in membrane 
potential was too small to produce an appreciable active 
current (5). The pipette and cell capacitances were par- 
tially compensated. By the end of the pulse, the capacitive 
currents were too small to be detected. 

Data Processing 

To analyze the membrane potential, the data were 
played back from the Neuro-corder through a 60 Hz low 
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pass, 8-pole Bessel filter to the 12-bit A/D converter of the 
Labmaster board in the PC-AT computer. The computer 
was running the Axon Instruments Software package, Ax- 
otape 1.2 (Axon Instruments). The records were stored on 
a hard disk. The digitizing rate was 100 points/sec. The 
resulting files were analyzed by using Asyst 4.0 software 
(Keithley Asyst, Taunton, MA) on an IBM PC-AT com- 
puter, and by using Igor Pro 2.01 software (Wavemetrics, 
Lake Oswego, OR) and programs written in QuickBASIC 
(Microsoft, Bellevue, WA) on an Apple Macintosh Ilfx 
computer. 

Rescaled Range Analysis 

Our chief method of analysis was the rescaled range 
analysis developed by Hurst (discussed in 2,8,22). Hurst 
used it to study time correlations in the annual discharge of 
the Nile River. He did this to determine the volume that 
would be needed for the reservoir to be formed by the 
Aswan High Dam (12). We believe that this is the first use 
of Hurst's technique to analyze cell membrane potentials. 
This analysis, in effect, compared the correlations in the 
time series measured at different time scales. If the data 
were fractal, then the correlations at different time scales 
would be shown to be related to each other. 

Many descriptions of this method do not make it suf- 
ficiently clear whether the input values into the rescaled 
range method should be the values of the original time 
series or the differences between successive values. As 
shown in Fig. 1, we observed that the time series of the 
voltages recorded across the cell membrane of a human 
T-lymphocytes seemed to be a random walk of the form of 
fBm and that the differences between consecutively re- 
corded voltages seemed to have the form of fGn. When 
this is the case, then the appropriate time series to use in 
the rescaled range analysis is the increments of the walk, 
which correspond here to the differences between consec- 
utively recorded voltages. Therefore, we used the differ- 
ences, x(i),between the successively measured values of 
the voltage as the input into the Hurst rescaled range 
analysis, namely, x(i)  = v(i + 1) - v(i); where v(i) is 
the voltage recorded across the cell membrane at time 
t i = idt, and the time dt between samples of the voltage 
was 0.01 s. 

There is a fractal statistical process that has been de- 
scribed in detail (8,9,19,22). In this process, a time series 
z(i) is generated by sampling z(t) every dt units of time. 
The average of the increments (z(i + 1) - z(i)) is equal 
to 0, whereas the variance of the increments (z(i + 1) - 
z(i)) 2 is proportional to (dt) 2n, here t i + 1 = idt + dt = 
ti + dt and t i = idt. The time series of the increments 
z(i + 1) - z(i) is fGn and the time series of z(i) is fBm. 
In our case,  z ( i )  cor responded  to the membrane  
voltage v(i) and the increments z(i + 1) - z(i) corre- 

sponded to the differences between the successively mea- 
sured values of the voltage x(i). 

To test the accuracy of our methods we analyzed test 
time series of fGn that we generated with known values of 
H. The test time series were generated by using the 
method described by Feder (8) and implemented in a 
BASIC program published by Peters (26). (For those in- 
terested in using this method, please note that there is a 
typographical error in Eq. 9.25, which defines this 
method, in the third printing of Feder's book, which was 
corrected in the fourth printing, and that there are also two 
obvious typographical errors in the BASIC program in 
Peter's book.) The values of H that we determined from 
the rescaled range analysis closely reflected the values of 
H used to generate the test time series. However, we also 
found, as reported previously by Schepers et al. (30) and 
Bassingthwaighte and Raymond (3), that there small (0% 
to 15%) systematic errors exist between the values of H 
determined from the rescaled range analysis and the values 
of H used to generate the fGn. The use of such test data 
with known properties helped us to verify the accuracy of 
our programs and confirmed that the appropriate time se- 
ries to use in the analysis was the increments, namely, 
fGn, rather than the time series of the fBm itself. 

The time series used in the rescaled Hurst analysis, 
x(i) was the differences of the consecutive values from 
the membrane potential. Each time series contained 
213 = 8,192 points and was divided into adjacent segments, 
each of M points. M always was an integral power of two and 
ranged between 2 and 8,192. The time between successive 
points in the time series was 0.01 sec for all experiments. 
N(M), the number of segments of length M, was 8192/M and 
was an integer, because both 8,192 and M were powers of 2. 
To perform the rescaled range analysis requires that we com- 
pute a quantity called R/S for each M. 

The mean, (x)n. M, of the n-th segment of length M was 

nM 

1 Z x(i) 
i = ( n - 1 ) M  + l 

The standard deviation Sn, M of the n-th segment of length 
M was 

Sn,M = Z (x(i) - -  ( X ) n , M )  2 
i=(n  - I ) M +  1 

For each point i in the time series we computed 

i 

Y.,M(i) = Z (x(k) - -  ( X ) n , M )  

k = ( n - l ) M + l  

for (n - 1) M + 1 <~ i <~ nM. The range R.,  M in the n-th 
segment was then computed by subtracting the least value 
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of Yn,M(i) from the greatest value of Y,,,M(i). We divided 
the range by the standard deviation to determine the res- 
caled range. We let 

(R/S),.M = (R,,M)/(S,,M) 

denote the rescaled range of the n-th segment of length M. 
An average rescaled range, denoted by (R/S) M, was then 
defined by 

N(M) 

(R/S)M = (R/S)n,M 
n=l 

For each time series of 8,192 points, (R/S) M was calcu- 
lated for each of the 13 possible values of M. 

This algorithm can be thought of as calculating the 
value of the statistic R/S for time windows of different 
durations M. Because we sampled the membrane potential 
every 0.01 sec the lag, T, in sec, is T = 0.01 M. (R/S) M 
is called R/S, a function of the lag. The logarithm of R/S 
was then plotted versus the logarithm of T. The slope of 
this plot was H, the Hurst exponent, the significance of 
which is discussed below. 

It can be shown from the definition of R/S that when M 
= 2 and the two values x(i) are not equal to each other, 
then R/S is identically equal to 1. When the two values x(i) 
are equal to each other, thenR = 0, andS  = 0 and, 
hence, R/S is indeterminate. For this latter case, we set 
R/S = 1. (In no cases in our experimental data were four 
consecutives values of x(i) equal. 

Power Spectrum 

Time series of 8,192 points of the membrane potential 
were loaded into Igor Pro 2.01 software (WaveMetrics) on 
an Apple Macintosh computer. The power spectrum 
(4,27) of the differences between successive values of the 
membrane potential sampled at 0.01 sec was then com- 
puted by using the standard subroutine for power spectrum 
density calculation provided with the Igor Pro 2.01 soft- 
ware (WaveMetrics), which took overlapping segments of 
2,048 points from the 8,192 points, windowed them, and 
averaged the squared amplitudes of their FFTs. As is cus- 
tomary, we used a window function to eliminate the effect 
of the finite number of data points in computing the power 
spectrum (4,27). For our data, we found that there was no 
significant difference between the spectrum computed 
with no window and the Hamming, Hanning, and Black- 
man-Harris window functions. A least squares fit was 
used to determine the slope on this logarithmic plot. This 
slope was subject to an approximately 10% variation as a 
result of the possible different choices of the range used in 
the fit. 

RESULTS 

T-lymphocytes tend to have very high whole cell mem- 
brane resistances. Some researchers consider values of 10 
G ~  or greater to be normal (5). In our experiments, re- 
sistances varied from 0.5-10 GI). No single parameter 
indicated cell viability. Sometimes, cells with low resis- 
tance had normal resting potential, and, sometimes, cells 
with low absolute values of resting potential had normal 
current responses to voltage pulses. There was no consis- 
tent criterion to identify which was a good, natural cell. 
Typically, the maximum transient ionic current recorded 
under voltage clamp conditions was about 0.5 hA, al- 
though in one of the cells it was 2 nA. 

For detailed analysis we picked five cells, designated 
by the letters A, B, C, D, and E. The membrane potential 
fluctuations of these cells were representative of the dif- 
ferent types of fluctuations observed. Three of the cells, 
A, B, and E were selected from the murine T cell line 
CL 1. One, C, was from the cloned leukemia line, Jurkat, 
and one, D, was from the Ka8 clone. Use of the antigen- 
specific, nontransformed murine T cell line, CLI,  and 
clone, Ka8, allowed us to probe a homogeneous popula- 
tion of "normal" cells, in addition to Jurkat. In these 
studies, Jurkat was recultured the day before to ensure that 
all cells were actively proceeding through the cell cycle. 
Likewise, CL1 and Ka8 were used early after reactivation 
by specific antigen to ensure maximum cell cycle progres- 
sion. 

The membrane potentials, recorded under zero current 
clamp, as a function of time for five different cells are 
shown in Fig. 2. Each of these graphs was a 5-sec, 500- 
point, representative interval excised from a longer record 
of 8,192 points. Although the membrane potential fluctu- 
ations for different cells differed greatly from one another 
these fluctuations appear to be self-similar in any given 
cell. That is, portions of any given record resemble the 
other portions of the record, with the exception of the 
spike in Fig. 2E. On visual inspection, these fluctuations 
appeared to be self-similar in any given cell having a form 
similar to the fractal form shown in Fig. 1A. 

Rescaled Range Analysis 

To test quantitatively whether these fluctuations of the 
membrane were fractal we used the Hurst rescaled range 
analysis. We plotted logarithm (R/S) versus logarithm (7). 
If R/S was proportional to 7 "~ then the time series had 
fractal properties. 

The plots of logarithm (R/S) versus logarithm (7) 
shown in Fig. 3 have two distinct regimes, each of which 
could be fitted separately by a straight line. This showed 
that H, the Hurst exponent, was defined within each re- 
gime. A fractal process, such as fGn, will produce a 
straight line on such a plot. Therefore, the existence of 
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FIGURE 2. Short segment of the membrane potential as a function of time recorded from five different cells illustrating a variety 
of forms. Each trace consisted of 500 points sampled at 100 points/sec. Therefore, the length of the abscissa is 5 sec for all cells. 
The maximum and minimum potential in mV between which the membrane potential fluctuated is indicated on the ordinate of 
each record. The letters A, B, C, D, and E correspond to the murine and human T-cells CL1, CL1, Jurkat, Ka8, and CL1, respectively. 
The panels in Figs. 2-4 refer to the same cells. 

regimes, each of which could be fitted by a straight line, 
indicated that the time correlations in these cells had frac- 
tal properties. The increments of the voltage fluctuations, 
therefore, are consistent with fGn and have a different 
value of H in each of the time regimes. 

When H = 0.5, the changes in the values of a time 
series are random and, therefore, uncorrelated with each 
other. When 0 < H < 0.5, increases in the values of a 
time series are likely to be followed by decreases and, 
conversely, decreases are more likely to be followed by 
increases. Such a time series is called antipersistent. When 
0.5 < H < 1.0, increases in the values of a time series are 
more likely to be followed by increases, and, conversely, 
decreases are more likely to be followed by decreases. 
Such a time series is called persistent (8,22). 

The value of H for each of the two regimes was deter- 
mined from the least squares fit of the logarithm (R/S) 

versus the logarithm (T). The results for each cell are 
shown in Fig. 3 and Table 1. For these cells, we found that 
H = 0.76 +- 0.05 (SD) for the short lags (over brief time 
intervals) and thatH = 0.26 +- 0.04 (SD) for the long lags 

(over long time intervals.) These values of H indicated 
that there are persistent (positive) correlations over brief 
time intervals, and there are antipersistent (negative) cor- 
relations over long time intervals. 

As an additional confirmation of the existence of these 
correlations, we analyzed the time series generated by 
randomizing the order of the increments of the membrane 
potential values. For example, the logarithm (R/S) versus 

logarithm (T) plot for the randomized data from cell E was 
only one straight line, rather than two regimes, and the 
slope of the fit determined that H = 0.54, indicating that 
there were no correlations. Therefore, randomizing the 
order of the data removed the short-term persistent and 
long-term antipersistent correlations present in the original 
data. The effect of the spikes in Fig. 2E also was inves- 
tigated. Spikes were identified in a record and manually 
replaced with linear interpolated segments. The Hurst co- 
efficient calculated for the records with and without spikes 
differed by 3%. Therefore, we concluded that infrequent 
spikes did not noticeably affect the calculation of the Hurst 
coefficient. 
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FIGURE 3. Rescaled range analysis of the membrane potential for the five cells. Within each of two regimes Loglo (R/S) was found 
to be proportional to Loglo (T s/1 s), where R is a measure of the voltage fluctuations within a time window T normalized by the 
standard deviation S. The constant of proportionality is called the Hurst exponent H. The linearity of these plots indicated that the 
fluctuations of the membrane potential had a fractal form with a different value of H in each regime. 

Although the form of the fluctuations of the membrane 
potential differed markedly in these five cells, the types of 
time correlations were remarkably similar in each cell. 
That is, in each cell there were persistent (positive) cor- 
relations over brief time intervals and antipersistent (neg- 
ative) correlations over long time intervals. Moreover, the 
strength of these correlations in these two regimes, as 
measured by the Hurst exponent H, was similar for all 
these cells. 

Power Spectrum 

The power spectrum, PS, of the the differences be- 
tween successive values of the membrane potential sam- 
pled at 0.01 sec is shown in Fig. 4. Moreover, correspond- 
ing to what was found from the Hurst rescaled range anal- 
ysis, there are two distinct regimes for all of the cells. In 
both regions, the power was approximately proportional to 
f - b ,  where wherefwas  frequency. A fractal process, such 
as fGn, produces such a power law relationship. There- 

TABLE 1. H, b, and 2H - 1 for each cell. 

H From the 
Rescaled Range 

Analysis 
(R/S) ~ T H 

Cell Short Lags Long Lags 

b From the 
Power Spectrum 

Analysis 
PS ~ f - b  

Low Frequency High Frequency 

b' = 2 H -  1 
Predicted for the 
Power Spectrum 

From the R/S Analysis 

Low Frequency High Frequency 

A 0.78 0.21 - 1.36 2.16 - 0.58 0.56 
B 0.79 0.23 - 0.69 1.94 - 0.54 0.58 
C 0.78 0.26 0.07 1.34 - 0.48 0.56 
D 0.80 0.30 0.35 1.56 - 0.40 0.60 
E 0.67 0.31 - 0.87 1.50 - 0.38 0.34 
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FIGURE 4. Power spectrum, PS, of the differences of the membrane potential as a function of frequency f for  the five cells. Within 
each of two regimes Loglo (PS V2/1 V 2) was found to be proportional to Loglo (f Hz/1 Hz). The constant of proportionality was -b .  
The linearity of these plots is consistent with the fact that the fluctuations of the membrane potential have a fractal form with a 
different value for b in each regime. 

fore, the existence of regimes that can be fitted by such 
power law relationships also indicated that the time cor- 
relations of the membrane potentials in these cells had 
fractal properties. 

The relationships of the logarithm (PS) versus the log- 
arithm (f) were not exactly linear, as can be seen in the 
slight curvature of the graphs in Fig. 4. Therefore, the 
values of b depend on the range of frequencies chosen to 
fit the power law relationship. For consistency, for all 
cells, we used the values of the power spectrum at fre- 
quencies less than 3 Hz and the values of the power spec- 
trum at frequencies greater than 5 Hz to define the low and 
high frequency regimes for the least squares fit to deter- 
mine the values of b. 

For a time series in which the increments are fGn there 
is a relationship between the exponent H determined from 
the rescaled range analysis of these increments and the 
exponent b determined from the power spectrum of these 
increments (9). The relationship is b = 2H - 1. In Table 
1, we list the values of b determined directly from the 
power spectrum and those determined from the values of 
H found from the rescaled range analysis. These values 
were more similar for some cells than for others and more 

similar for the low frequency regime than for the high 
frequency regime. For example, the values found for cell 
B differed by 0.15, whereas the average difference for the 
low frequency regime for all five cells was 0.5. For the 
high frequency regime, the average difference between the 
values was 1.2. 

DISCUSSION 

Although a number of studies have used different ex. 
perimental methods to measure the average electrical po- 
tential across the cell membrane of cells, such as T-lym- 
phocytes, very little is known about how this voltage fluc- 
tuates in time. Irregular fluctuations have been mentioned 
as occurring in fibroblasts but have not been analyzed in 
detail (25). 

We used the whole cell patch technique to record the 
membrane potential across T-lymphocytes as a function of 
time. As shown in Fig. 1, the fluctuations of the mem- 
brane potential appeared to have the form of a fractal 
process. We tested this hypothesis by using the Hurst res- 
caled range analysis and power spectrum to analyze the 
membrane potential as a function of time. 

In the rescaled range analysis, the range R, normalized 
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by the standard deviation S, is determined as a function of 
a time window size T, which was called the lag. We found 
that, in two different regimes, the logarithm (R/S) was 
proportional to the logarithm (T). The proportionality con- 
stant is called H, the Hurst exponent. This proportionality 
indicated that the fluctuations in membrane potential had a 
self-similar, fractal form. We also determined the power 
spectrum PS of the differences between successive values 
of the membrane sampled 0.01 sec and found that, in two 
different regimes, the logarithm (PS) was proportional to 
the logarithm (j'), where f is frequency. This form of the 
power spectrum also was consistent with a fractal form of 
the fluctuations in the membrane potential. 

The rescaled range analysis showed that H -- 0.76 -+ 
0.05 (SD) for short time lags and that H = 0.26 -+ 0.04 
(SD) for the long time lags. These values of H indicated 
that there are persistent (positive) correlations over brief 
time intervals, whereas there are antipersistent (negative) 
correlations over long time intervals. 

The interpretation would be simpler if there were only 
one regime in the rescaled range and power spectrum. 
However, we found that there were two well-defined re- 
gimes in the experimental data. Both regimes have the 
same form, namely linear plots of the logarithm (R/S) 
versus the logarithm (T) and the logarithm (PS) versus the 
logarithm q), but the slope of each of these relationships 
was different in each regime. Recently, this same type of 
behavior also was reported in two other physiological sys- 
tems. Collins and DeLuca (6) found that the small motions 
of a person standing quietly had values of H = 0.83 -+ 
0.04 over brief time intervals and H = 0.26 _+ 0.06 over 
long time intervals. Treffner (32) found that the position in 
space of the top of a vertical rod being balanced in one 
hand also had high values of H over brief time intervals 
and low values of H over long time intervals. 

It is quite interesting that the time correlations in the 
membrane fluctuations have different properties in these 
two regimes. This may mean that a single, complex, non- 
linear process is responsible for the different values of H, 
or that two different physiological processes are present, 
one producing positive and the other producing negative 
correlations. 

Each of these two regimes can be characterized by a 
stochastic process with fractal properties. Such a phenom- 
enological description of the data may provide insight into 
the nature of the mechanism that produced the data. This 
stochastic process is consistent with fGn (8,22). The run- 
ning sum of these increments is fBm (8,22). The rescaled 
range analysis of the time series of the values of fGn yields 
a straight line on a plot of the logarithm (R/S) versus the 
logarithm (T) with a slope equal to H. The power spectrum 
of the time series of the values of fGm yields a straight line 
on a plot of the logarithm (PS) versus the logarithm (f) 
with slope equal to - b .  Therefore, these scaling results 

were consistent with the assumption that the differences 
between successive values of the membrane potential have 
the form of fGn, although it does not prove that the mem- 
brane potential was produced by this process. 

When the time series is fGn, there is a relationship 
between H determined from the rescaled range analysis 
and b determined from the power spectrum. This relation- 
ship is thatb  = 2H - 1 (9). As shown in Table 1, the 
accuracy of this relationship varied from one cell to an- 
other and was more closely satisfied in the low frequency 
regime than in the high frequency regime. Schepers et al. 
(30) and Bassingthwaighte and Raymond (3) used test data 
with known values of H to evaluate the accuracy of dif- 
ferent methods in determining H. They found that there 
were systematic biases between the values of H used to 
generate the test data and the values of H determined by 
the rescaled range analysis and other methods. Our own 
results were consistent with their findings. In addition, 
they found that these biases were strongly dependent on 
the length of the time series. Their results indicated that 
the relationship b = 2H - 1 can be in error when H was 
determined by the rescaled range analysis, and b was de- 
termined by the power spectra. Moreover, they found that 
these errors were larger for smaller values of H. There- 
fore, the discrepancies in satisfying this relationship that 
we found could be partly caused by the errors in deter- 
mining H and b. They also may indicate that the fluctua- 
tions in the membrane voltage do not have exactly the 
form of fGn. 

Although the fluctuations of the membrane potential 
have very different forms in different cells, they all have 
the same common feature of a fractal form with persistent 
(positive) correlations over brief time intervals and anti- 
persistent (negative) correlations over long time intervals. 
Therefore, the fractal nature of these fluctuations and their 
time correlations may provide a way to characterize the 
membrane potential and to measure the changes that occur 
when T-lymphocytes were activated. 

These membrane fluctuations have fractal properties, 
which means that the methods used for the analysis of the 
temporal characteristics of the membrane voltage must 
take these properties into account. For example, the mo- 
ments of fractal time series, such as the mean and standard 
deviation are not defined. That is, these moments depend 
on the amount of data analyzed and do not reach finite 
limiting values as the amount of data is increased. There- 
fore, any method of analysis that assumes that the mem- 
brane potential is Gaussian or asymptotically Gaussian is 
not sufficiently general to adequately analyze the proper- 
ties of the membrane potentials of these cells. 

Models of the membrane potential used in the past 
often were based on such Gaussian or asymptotically 
Gaussian random variables. This has led to the assump- 
tion, stated explicitly or assumed implicitly, that elements 
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in a time series representing fluctuating experimentally 
determined quantities are not correlated if they are suffi- 
ciently far apart in time. 

However, if the time series is produced by a persistent 
or antipersistent process, then the elements of  the time 
series are correlated no matter how far apart in time they 
occurred. For such a process, the correlation (normalized 
by the variance) between a point at time - t in the past and 
a point + t in the future depends only on the value of  H 
and not on the magnitude of  t (eq. 9.16 in Reference 8). 
Such correlations cannot be represented by simple linear 
kinetic models that have a Lorentzian power spectrum 
(1,7). Such linear models display fractal behavior only 
when they incorporate a very large number of  individual 
components. The fractal form of the correlations is then 
represented by relationships between the large number of 
parameters of  the linear components. For example, this is 
the case when the time constants of the many Markov 
components form a geometric progression (13,23). 

The membrane potential depends on the opening and 
closing of ion channels in the cell membrane. Independent 
of  our work presented herein, two other groups have pre- 
dicted that fractal fluctuations in the membrane voltage 
may arise from either nonlinear interactions between dif- 
ferent ion channels (17,18) or the non-Markovian kinetics 
of  individual ion channels (17,18,28). 
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