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Chaotic Oscillations in Microvessel Arterial Networks 
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AbstractmA mathematical model of a multibranched microvas- 
cular network was used to study the mechanisms underlying 
irregular oscillations (vasomotion) observed in arteriolar mi- 
crovessels. The network's layout included three distinct terminal 
arteriolar branches originating from a common parent arteriole. 
The biomechanical model of the single microvessel was con- 
structed to reproduce the time pattern of the passive and active 
(myogenic) response of arterioles in the hamster cheek pouch to 
a step-wise arterial pressure change. Simulation results indicate 
that, as a consequence of the myogenic reflex, each arteriole may 
behave as an autonomous oscillator, provided its intraluminal 
pressure lies within a specific range. In the simulated network, 
the interaction among the various oscillators gave rise to a com- 
plex behavior with many different oscillatory patterns. Analysis 
of model bifurcations, performed with respect to the arterial 
pressure level, indicated that modest changes in this parameter 
caused the network to shift between periodic, quasiperiodic, and 
chaotic behavior. When arterial pressure was changed from ap- 
proximately 60-150 mm Hg, the model exhibited a classic route 
toward chaos, as in the Ruelle-Takens scenario. This work re- 
veals that the nonlinear myogenic mechanism is able to produce 
the multitude of different oscillatory patterns observed in vivo in 
microvascular beds, and that irregular microvascular fluctuations 
may be regarded as a form of deterministic chaos. 
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INTRODUCTION 

Arterial microvessels frequently exhibit a spontaneous, 
rhythmic activity, called vasomotion, that appears as an 
oscillation in vessel lumen and in blood flow. Vasomotion 
has been revealed in several microcirculatory studies both 
in isolated arterioles and in whole terminal vascular beds 
(7,19,27). It seems that this phenomenon is not restricted 
to specific peripheral vascular districts, but rather it is 
believed to be a characteristic of most microcirculation 
vessels, i .e.,  vessels with diameters ranging between 5 
and 50 txm. 

The rhythmic vasomotor activity of microvessels 
arises, of course, from their contractile capacity, but the 
genesis of vascular oscillations has different explanations. 
One reliable hypothesis imputes vasomotion to the action 
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of the local mechanisms controlling microvessel lumen. 
Stress- and metabolic-dependent mechanisms, which con- 
tribute to setting the vascular muscle tone, behave like 
nonlinear feedbacks that, under certain conditions, may 
induce the microvessel to oscillate. In particular, arterioles 
exhibit a pressure-dependent active response known as the 
myogenic reflex (3): The increase of vascular wall tension 
caused by a rise in blood pressure intensifies the smooth 
muscle activity, thereby eliciting a sustained vessel con- 
striction. The myogenic reflex operates as a local control 
mechanism that contributes to maintaining a constant 
blood flow through the peripheral circulation, despite 
large pressure variations. A mathematical analysis of mi- 
crovessel regulatory processes demonstrated that the myo- 
genic control may cause biomechanical instability and 
vessel lumen oscillations (29). 

Vasomotion is known to be affected by several physical 
factors, such as vessel size, magnitude of transmural pres- 
sure, flow velocity, etc. Under the influence of these fac- 
tors, microvessels exhibit complex behavior. Within the 
same vascular bed, one can simultaneously observe active 
vessels and apparently inert arterioles, characterized by no 
change in diameter. Moreover, owing to some trigger per- 
turbation, inert vessels may begin to oscillate, and the 
active ones may settle down. Oscillations occurring in 
different branches of the arteriolar network propagate 
along the vascular bed and mutually interplay, producing 
both simple and complex time patterns. Sometimes, vessel 
oscillations seem to be synchronized, with a well-defined 
periodic pattern and a common frequency within the range 
of 1-20 cycles min-1 (7). More often, oscillation cou- 
pling generates new subhormone and superharmonic 
rhythms or quasiperiodic oscillations. Finally, it is possi- 
ble to observe vessels presenting irregular, aperiodic lu- 
minal changes (5,7). In this case, vessel diameter exhibits 
unpredictable fluctuations with an apparent stochastic na- 
ture and no time correlation. The frequency analysis of 
such complex oscillations reveals a broad power spec- 
trum, with superimposed peaks indicating some predom- 
inant rhythms (7,19). The analysis of in vivo time series of 
such irregular diameter oscillations (16,30) suggested that 
apparently random fluctuations actually may be determin- 
istic in origin. 

37 



38 S. CAVALCANTI and M. URSINO 

The wealth of different i~inds of behavior, including the 
erratic, apparently random time fluctuations, and the sen- 
sitivity to experimental conditions reveal the typical sce- 
nario of a phenomenon that is chaotic in nature. In this 
study, we investigated this aspect of vasomotion and paid 
specific attention to the role that the myogenic control of 
microvessel lumen plays in the phenomenon. Previous 
mathematical analyses (1,13,29) provided a convincing 
theoretical framework for the possible origin of periodic 
diameter changes in muscular vessels and noted that the 
myogenic mechanism was implicated in the genesis of 
self-sustained vessel oscillations. None of these works, 
however, predicted the presence of more complex pat- 
terns, such as aperiodic or chaotic fluctuations, or exam- 
ined the role of vasomotion in the presence of multiple 
microvessel branching. To overcome these limitations, a 
novel mathematical model of a microvessel network, in- 
cluding branching and the arteriolar myogenic regulation, 
is presented herein. The model is able to reproduce vessel 
oscillations with time patterns similar to those observed 
during in vivo microvascular studies. Model simulations 
suggest that nonlinear interaction between oscillations 
arising in distinct points of the network may be the cause 
of periodic, as well as aperiodic, time evolutions. 

METHODS 

Mathematical Model of the Single Arteriole 

The biomechanical model of the pressure-dependent 
diameter changes was derived by distinguishing the pas- 
sive, viscoelastic response of the arterial wall from the 
active response caused by the myogenic reflex. In partic- 
ular, the viscoelastic properties of the arteriolar wall in a 
purely passive state were assumed not to be influenced by 
the active myogenic vasoconstriction. Under this assump- 
tion, the vessel diameter was expressed as the sum of a 
elastic deformation, d e, and a myogenic contraction, d m, 

d(p) = d e (P )  + din(P) (1) 

where p denotes the intraluminal pressure. Vessel diame- 
ter changes in response to rapid pressure elevations con- 
sisted of both static and dynamic components, which were 
modeled separately, as presented below. 

Steady-State Characteristics. Under the steady-state con- 
dition, the arteriole elastic deformation exhibited a typical 
exponential behavior: wall material appeared to be soft at 
low pressures and became more rigid as pressure increases 
(Fig. 1). To reproduce this behavior, the elastic deforma- 
tion in the passive state was assumed to depend on pres- 
sure according to the following expression: 

;le(P) = d o + g p + ~(1 - e -~p) (2) 

where the tilde (-~) denotes the steady condition and d o is 
the undeformed vessel diameter (P = 0). 
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FIGURE 1. Steady-state pressure-diameter relationships mea- 
sured by Davis and Sikes (10) in a second order arteriole of the 
hamster cheek pouch in vitro, first in a passive state (Ca 2+ free 
solution) (O) and then in active state (physiological solution) 
(x). Solid lines represent model simulations of the same re- 
sponses computed by Eqs. 1 through 3 (parameter values are 
listed in the first column of Table 1). 

When the myogenic reflex was active, the arteriolar 
deformation was appreciably different from the passive 
case (Fig. l). At low pressure elastic deformation pre- 
vailed on the myogenic contraction, and the steady-state 
pressure-diameter curve was very close to the passive one. 
As pressure increased, the vessel became stiffer, the elas- 
tic dilatation was smaller than the myogenic contraction, 
and the characteristic exhibited a segment with negative 
slope, denoting the myogenic range of the arteriole. For 
high values of pressure, the myogenic response falls, and 
the vessel deformation tends to the elastic characteristic 
again. To reproduce this behavior, the active steady-state 
contraction was modeled through an empirical expression 

a - V ' - b + c p  
Jim(p) = 1 + f l  eap + f 2  ef3p (3) 

A value was assigned to parameters of the elastic (2) and 
myogenic (3) characteristics (Table 1) in order to best fit 
the pressure-diameter data obtained in steady-state condi- 
tions in isolated arterioles of the hamster cheek pouch 
circulation (8-10). These data were obtained either after 
chemical inactivation of the myogenic response, which 
corresponded to the purely elastic state, or when the myo- 
genic reflex was active (Fig. 1). 

Dynamic Responses. The dynamic response to intralumi- 
nal pressure changes was derived by assuming that the 
inertial effect caused by the wall mass was negligible and 
by taking into consideration only the viscous force caused 
by the wall motion. The dynamics of elastic deformation, 
therefore, was described by the differential equation 

1 
d e ( t )  = ~ ((te(p) --  de), with "~e(t) = Teo e --  Ixp(t) 

(4) 
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TABLE 1. 

Elastic 

k 
R - -  d4(p ) (6) 

Ri R~, Rr,-,, Ri 

d o (l~m) 23.23 6.24 
g( l~m mm Hg -1) 2.85•  10 2 4 .02x  10 -2 
5 (l~m) 17.2 15.6 
~/(mm Hg -1) 0.12 0.19 
%0 (sec) 2 2 
i~ (sec mm Hg -1) 1.24 • 10 -2 1.24 • 10 -2 

Myogenic 

a (l~m) 23.23 21.12 
b (~m 2) 327.27 270.48 
c (p,m 2 mm Hg -1) 22.81 29.23 
f~ 0.01 0.01 

(mmHg ~) 3.24•  10 z 5.02• 10 -2 
f2 5.13•  10 2z 5.13•  10 2z 

(mm Hg -1) 0.37 0.58 
~r~o (sec) 10 4 
t d (sec) 6 3 (R,) 

3.5 (Rr,) 
4 (R/) 

The mechanical equivalent of this equation is the Kelvin- 
Voigt model (see 11), which has a nonlinear spring cou- 
pled in parallel to a nonlinear rate-sensitive dashpot. De- 
pendence of the time constant, %, on the pressure time 
derivative was included because the wall viscosity coeffi- 
cient decreased with the rate of change of the applied 
strain (4). 

A similar differential equation was used to model the 
dynamics of the myogenic constriction 

1 
din(t) • - -  ( ~ l m ( P d )  - -  din), with Pd = p ( t  -- td) 

Tmo 
(5) 

The delayed pressure, Pal, was introduced because the ac- 
tive response to a step-wise arterial pressure change 
started after a latency period, t a (10,14). This delay re- 
flected the time needed for the electrochemical transduc- 
tions and actuations. 

Parameters "reo, Ix, "rmo and t a (Table 1) were assigned 
to achieve the best fit between experimental (8,10) and 
model responses to a step-wise luminal pressure change 
(Fig. 2). 

A r t e r i o l a r  H e m o d y n a m i c s .  The pressure drop across a 
segment of arteriole mainly was a result of the energy loss 
caused by the blood viscosity, whereas the capacitive ef- 
fect as a result of vessel volume changes was negligible. 
As a consequence, the hemodynamics of an arteriolar 
branch was modeled by a lumped hydraulic resistance. 
Myogenic changes in the vessel lumen in response to 
transmural pressure alterations (Eqs. I through 5) gave 
rise to changes in the hydraulic resistance in accordance 
with the Hagen-Pouseille law 

where the parameter k is proportional to the length of the 
microvessel segment. The intraluminal pressure p was cal- 
culated by averaging the pressure pp of the inflow section, 
i .e . ,  the section in which the branching occurs, and the 
pressure Pd in the outflow section in which a new branch 
rises: 

P = Pp + 6(Pa - Pp) (7) 

The weighting factor 6 makes it possible to move the 
average value from the proximal section (6 = 0) to the 
distal one (6 = 1). 

Mathematical Model o f  the Microvessel Network 

The anatomical organization of the peripheral vascular 
bed has a complex topological design that is difficult to 
reproduce closely. To simplify the analysis, arterioles that 
branch from a common parent artery were considered as 
resistances arranged in parallel; therefore, they were 
lumped in a single equivalent resistance. Moreover, ne- 
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FIGURE 2. Time pattern of a second order arteriole diameter 
measured by Davis and Sikes (10) in the hamster cheek pouch 
in response to a step-wise intraluminal pressure change, per- 
formed in a purely elastic state (upper panel) and after phys- 
iological activation of vascular smooth muscle (lower panel). 
Bars indicate experimental standard errors. Solid lines repre- 
sent model simulations, obtained by Eqs. 4 and 5, parameter 
values are shown in the first column of Table 1. 
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glecting the anastomoses and limiting the analysis to a 
single level of branching corresponding to the terminal 
portion of the arteriolar vascular bed, the network was 
schematized as shown in Fig. 3. 

Proximal arterial circulation was simulated through a 
resistance-compliance divider. The compliance C was in- 
cluded because small arteries have a prevalent capacitive 
effect. The variations of the resistance R a caused by the 
vessel diameter changes were negligible with respect to 
those of the downstream vessels, thus, the value of this 
resistance was maintained constant. The resistance R i 
(Fig. 3) simulates the series of the first, second, and third 
order arterioles ( i .e . ,  microvessels with diameter ranging 
from 50 to 20 Ixm). These vessels exhibited an evident 
myogenic activity, and as a result, their resistance, R i, was 
regulated according to Eqs. 1 through 6. Parameter values 
of the myogenic control are those listed in the Table 1. To 
simulate the effects of the terminal arterioles, three dis- 
tinct branches were derived. The resistances R s, R m, and 
R i represent arterioles of the fourth order, i .e. ,  vessels 
with diameters ranging from 20 to 5 Ixm. Because vessels 
of this order show evident myogenic reactivity, these re- 
sistances also were regulated. The characteristics of the 
myogenic control were assumed to be equal for all the 
three resistances, with just a mild difference in the time 
delay (Table 1). Moreover, the parameter k of Eq. 6 was 
assigned a different value, to simulate an asymmetric net- 
work with vessels differing in length. In particular, R s is 
the shortest branch and R l is the longest. Each branch was 
terminated in a resistance Re, which lumps together the 
resistive effects of the precapillary and postcapillary cir- 
culation. Vessels of these orders do not exhibit myogenic 
activity, and, so, the resistance Re was kept constant. The 
postcapillary circulation was simulated by the resistance 
Rv closed on the venular pressure Pv- 

The value of resistances was assigned (Table 2) to re- 
produce the hydrostatic pressure profile in the hamster 

FIGURE 3. Electric analogous of the simulated microvascular 
network. R,  and C represent hydraulic resistance and compli- 
ance of upstream small arteries. R~ R~, R m, and R~ hydraulic 
resistances of a common parent arteriole and of three termi- 
nal arteriolar branches, respectively; Rc and R,, hydraulic re- 
sistances of the capillary and postcapillary (venular) circula- 
tion; P=, arterial pressure; P~, venous pressure. 

TABLE 2. 

R~ (dyn s cm -s) 
C (cm s dyn -1) 
R* (dyn s cm-S) 
R* (dyn s cm -~) 
R* (dyn s cm -5) 
R* (dyn s cm -s) 
R~ (dyn s cm -5) 
Rv (dyn s cm-5) 
Pv (mm Hg) 

3 x 109 
1.4 • 10 -9 
1.7 • 1010 
2.6 • 1011 
3.7 x 1011 
6.2 x 1011 
8.5 x 101~ 
1.2 x 101~ 
8 

*At 40 mm Hg. 

cheek pouch circulation (9). The venular pressure Pv was 
settled at 8 mm Hg and was the same throughout each 
simulation, whereas the arterial pressure level Pa w a s  var- 
ied within the range 60-150 mm Hg to evaluate its influ- 
ence on the system behavior. 

RESULTS 

A preliminary analysis o f  the stability of the model 
equilibrium conditions was performed to assert that the 
presence of a latency period in the myogenic response was 
necessary to induce self-sustained microvascular oscilla- 
tions. In fact, when time delays of all the controlled 
branches are null, the steady-state of the whole network 
was structurally stable with respect to each physiological 
level of the arterial pressure. By giving a value other than 
zero to the time delay of the myogenic reflex in the resis- 
tance R s only, we were able to make a preliminary exam- 
ination of the oscillatory behavior of a single arteriole, 
excluding the interaction with self-sustained oscillations 
propagating from other branches. Under this particular 
condition, the influence of the intraluminal pressure, p, 
(Eq. 7) was evaluated. The arteriole oscillates only when 
its intraluminal pressure is within a specific range. In fact, 
in the pressure-diameter characteristic there are two pres- 
sure levels, which correspond to two Hopf supercritical 
bifurcations (23), marking the boundaries between a va- 
somotion region, characterized by self-sustained vessel 
oscillations, and low pressure or high pressure regions in 
which the vessel is apparently inert (Fig. 4). When the 
intraluminal pressure is settled in these two regions, vessel 
oscillations are damped out and the diameter sets to a 
stable equilibrium condition. When the pressure is in the 
vasomotion region, the steady-condition is unstable and 
autooscillation occurs. The frequency of this oscillation is 
strongly affected by the time delay of the myogenic con- 
trol. We have chosen the value of this parameter within a 
physiological range (10,14). The frequency of the oscil- 
lation emerging from the Hopf bifurcation was equal to 9 
cpm, which is a typical low-frequency value for arterioles 
with diameter similar to that of the simulated vessel Rs (7). 

After these preliminar simulations, the myogenic time 
delay was included in all branches (Table 1) to study how 
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FIGURE 4. Stable and unstable equilibrium conditions on the 
active pressure-diameter relationship of a terminal arteriole 
(segment R s of Fig. 3). Solid bold line represents stable equi- 
librium points; dashed line represents unstable equilibrium 
points, around which self-sustained oscillations develop; cir- 
cles represent supercritical Hopf bifurcations occurring at in- 
traluminal pressure values of approximately 25 and 50 mm 
Hg. Trajectories followed by the oscillating vessel at different 
intaluminal pressure mean levels (Eq. 7) are shown. 

the arterial pressure Pa influences the network behavior. 
As long as the arterial pressure level, Pa, was kept at a 
constant value lower than 65 mm Hg, pressure and flow in 
each branch tended asymptotically to a stable equilibrium 
condition (Fig. 5). In this state, vessel deformations, flow 
distribution, and pressure profile through the network are 
determined in accordance with the steady-state character- 
istics. 

When the level of the arterial pressure overcame a 
value of approximately 63 mm Hg, the model underwent 
a supercritical Hopf bifurcation (Fig. 5). The equilibrium 
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FIGURE 5. Bifurcation diagram showing the emergence of os- 
cillations in blood flow when the arterial pressure level is in- 
creased. At arterial pressure levels below 63 mm Hg, network 
exhibits a stable equilibrium condition with no oscillations; at 
approximately 63 mm Hg, a Hopf bifurcation occurs, and a 
self-sustained oscillation appears. Flow was evaluated at the 
level of the parent arteriole (segment Rj in Fig. 3). 

condition became an unstable focus, the arteriolar 
branches R s starts to oscillate (Fig. 6), and the system 
trajectories converge on a limit cycle (Fig.7). Because the 
network is asymmetric, each branch was characterized by 
a different intraluminal pressure: R s was expected to have 
the highest intraluminal pressure, being the less resistive 
branch, whereas R t was expected to have the lowest pres- 
sure, being the longest. As long as the arterial pressure 
level Pa was within the range of 63 to 70 mm Hg, only the 
branch R s had a luminal pressure within the vasomotion 
region, whereas the luminal pressures of R m and R l were 
below their bifurcation level. In this condition, only the 
segment R, exhibited a self-sustained oscillation (Fig. 6). 
In fact, parent upstream vessel R i oscillated in phase with 
the forcing oscillation that took place in R s. The oscillation 
of the parent vessel Ri was passive because it was sus- 
tained by an oscillation propagating from a distal segment 
of the network. In contrast, the variations induced on the 
segments R m and R t are inappreciable. 

When the arterial pressure level was increased above 
approximately 70 mm Hg, the luminal pressure of the 
arteriolar branch R m went into the vasomotion region, and 
it also started to autooscillate (Fig. 8). The frequency of 
this self-sustained oscillation differed from the frequency 
of R s, because of a different time delay (Table 1). Under 
this condition, these two vessels were characterized by 
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FIGURE 6. Time pattern of inner diameters in the four myo- 
genically active segments of Fig. 3, simulated at an arterial 
pressure level of 65 mm Hg. The model exhibits periodic dy- 
namics, driven by the self-sustained oscillation occurring in 
the segment R s. 
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FIGURE 7. Examples of closed periodic trajectories, flow ver -  

s u s  inner diameter, evaluated with reference to the parent 
vessel (segment Ri in Fig. 3) at varying arterial pressure levels. 
Supercritical Hopf bifurcation is recognized by the progres- 
sive expanding of limit cycle starting from zero at approxi- 
mately 60 mm Hg. As a result of myogenic reflex (see Figs. 1 
and 4), arterial pressure increases cause the inner diameter to 
decrease, thereby maintaining constant the mean blood flow. 

different rhythms (Fig. 8). Because the two rhythms were 
incommensurate, phase locking did not occur, and the 
network behaved quasiperiodically. The critical level of 
the arterial pressure for which R m also began to oscillate 
was a Naimark-Saker bifurcation (6,28): the cycle limit 
became a saddle cycle, and the system trajectories (Fig. 
9), when the transient was extinct, moved on a two-toms 
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FIGURE 8. Time pattern of the inner diameters in the four 
myogenically active segments of Fig. 3, for a simulated arte- 
rial pressure level of 75 mm Hg. Branches R s and R m present 
self-sustained oscillations with incommensurate frequencies, 
which force the parent segment Ri to exhibit e quasiperiodic 
time pattern. 

FIGURE 9. Model trajectory in a three-dimensional substate 
space (inner diameters in branches R~, Rm, and/it],  computed 
at an arterial pressure level of 75 mm Hg. Trajectory moves on 
a two-torus. 

(23). The parent vessel R i still oscillated passively, driven 
by the downstream oscillations that added together. As is 
evident from the power spectra (Fig. 10), the parent vessel 
exhibited a two-periodic oscillation (23), reflecting the 
two rhythms of the oscillating downstream vessels. 

When the arterial pressure was increased above approx- 
imately 85 mm Hg, the resistance R t also began to au- 
tooscillate (Fig. 11). In the spectrum of the parent vessel, 
a new rhythm became evident, the frequency of which was 
incommensurate with the previous ones (Fig. 12). The 
new rhythm modified the topology of the attractor: the 
two-toms became unstable, and a three-toms occurred. 
Under this condition, because the oscillation was three 
periodic (23), the time patterns of the parent arteriole di- 
ameter and of blood flow were more complex (Fig. 11). 
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FIGURE 10. Power spectra of the inner diameter oscillations 
shown in Fig. 8. Two predominant rhythms at incommensu- 
rate frequencies appear in the spectrum of the parent vessel 
R, reflecting the self-sustained oscillations occurring in down- 
stream branches R s and R m. 
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FIGURE 11. Time pattern of the inner diameters at an arterial 
pressure level of 90 mm Hg. All three terminal branches R,, 
Rm, and R/present a self-sustained oscillation with incom- 
mensurate frequencies, thereby causing a quasiperiodic oscil- 
lation in parent vessel Ri. 

However, the limit set of the Poincar6 map (24), as well as 
of power spectra, confirmed the quasiperiodic nature of 
the attractor (23). 

In the state space, aside from the attracting three-toms, 
there also were the stable and unstable manifolds of the 
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FIGURE 12. Power spectra of inner diameter oscillations 
shown in Fig. 11. In the spectrum of the parent vessel R, three 
incommensurate rhythms appear with frequencies that char- 
acterize the self-sustained oscillations of terminal branches 
R w R,.,, and R/. 

saddle limit sets (24) springing up from the previous bi- 
furcations. In brief, the presence of saddle invariants in 
the state space is known to play a significant role in the 
genesis of chaotic dynamics (28). In fact, at an arterial 
pressure level of approximately 120 mm Hg, the stable 
and unstable manifolds of a saddle collided, a homoclinic 
bifurcation (24,28) occurred, and a strange attractor (23) 
appeared (Fig. 13). Above this pressure level, the parent 
upstream vessel R i behaved chaotically, and pressures, 
flow, and vessel diameters exhibited irregular, apparently 
random time fluctuations (Fig. 14) the power spectra of 
which shows a continuous, broadband component, similar 
to white noise, with some spikes superimposed on it at 
frequencies corresponding to the rhythms of the single 
branches (Fig. 15). 

Vessel oscillations remained chaotic as long as the ar- 
terial pressure level was lower than approximately 150 
mm Hg. Overcoming this level, the vessels began to os- 
cillate periodically again, and the network left chaos. Pe- 
riodic and chaotic windows can be observed alternatively 
for higher values of the arterial pressure or by changing 
other model parameters. 

The critical levels of the arterial pressure at which bi- 
furcations occurred with a consequent change in system 
behavior depended on the value assigned to network pa- 
rameters. When a different value is assigned to one of the 
model parameters,  the bifurcation pressure levels 
changed, and new kinds of behavior became possible. For 
example, by increasing the resistance Ri of the parent ves- 
sel, intraluminal pressure in the downstream branches was 
decreased, leaving the vasomotion region. At the same 
time, the intraluminal pressure of the parent vessel in- 
creased, entering into its vasomotion region (Fig. 16). 
Under this condition, the parent vessel forced the entire 
network and all branches to oscillate synchronously with 
the same frequency. Because the second harmonic of this 
oscillation had a frequency near the frequency of the 
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FIGURE 13. Model trajectory in a substate space (inner diam- 
eters in branches R~, Rm, and RI), computed at an arterial 
pressure level of 140 mm Hg (transient is deleted). Trajectory 
moves on a strange attractor. 
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FIGURE 14. Time pattern of the inner diameters for a simu- 
lated arterial pressure level of 140 mm Hg. The parent vessel 
R i exhibits evident chaotic dynamics with time heterogeneity 
(correlation dimension D c  = 2.85). 

branch R m, this vessel showed a double rhythm. In this 
situation, increasing the arterial pressure resulted in a new 
route toward chaos, similar to the previous one, being 
found. 
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FIGURE 15. Power spectra of the inner diameter oscillations 
shown in Fig. 14. In the spectrum of the parent vessel, R~ a 
broad noise component is superimposed on some predomi- 
nant rhythms reflecting downstream vessel oscillations. 

FIGURE 16. Time pattern of the inner diameters in the four 
myogenically active segments of Fig. 3, for a simulated arte- 
rial pressure level of 100 mm Hg, by increasing the length of 
the parent vessel, R~ The parent vessel exhibits self-sustained 
oscillations, which are transmitted to the downstream 
branches. Branches R,, and R s show a double rhythm. 

DISCUSSION 

The presence of a spontaneous rhythmic activity in mi- 
crovessels has been documented by many investigators in 
recent years and is a subject of rapidly increasing interest. 
Nevertheless, biomechanical bases of this phenomenon, 
the physiological significance, and its possible functional 
role remain insufficiently understood. To gain a deeper 
insight into these aspects of vasomotion, we developed a 
novel mathematical model of arteriolar hemodynamics, 
which explicitly incorporated microvessel branching in a 
simplified way. Passive and active mechanisms were in- 
cluded in the biomechanical model of the arteriolar defor- 
mation: the passive behavior of the arteriolar wall was 
similar to that seen in a nonconstricting state, whereas the 
active mechanism mimicked the myogenic reflex. We 
have considered only this active mechanism, neglecting 
other regulatory processes, such as the metabolic and neu- 
rogenic ones, to stress the role of the myogenic reflex in 
the genesis of complex dynamics in the microcirculation. 
Conflicting results can be found in the physiological lit- 
erature, as to the strength and the functional importance of 
the myogenic mechanism. Although some authors (10,17) 
observed that the myogenic responses was able to induce 
significant static reductions in microvessel lumen in re- 
sponse to a transmural pressure increase, others (14,21) 
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found that the myogenic response caused only modest al- 
terations in vessel lumen and resistance. An additional 
controversy concerns the role of a rate-sensitive compo- 
nent in the active response of arterioles (10,14). This 
model has been developed on the basis of the experimental 
results reported by Davis et al. (8-10) on the hamster 
cheek pouch microcirculation. We were able to reproduce 
these results satisfactorily without needing to include an 
active rate-dependent component, and, through this 
model, low-frequency self-sustained arteriolar oscillations 
were obtained. However, as demonstrated in a previous 
work (29), oscillations also may be produced by assuming 
a weaker static myogenic response but including an effec- 
tive rate-dependent component. 

Microvessel oscillations occur when the luminal pres- 
sure is within a specific range and, in particular, when the 
equilibrium point lies on the pressure-diameter character- 
istic in the region with negative slope. This result agrees 
with the analysis by Achakri et al. (1), thereby indicating 
that a necessary condition for the diameter oscillations in 
muscular arteries is the presence of a negative slope in the 
pressure-diameter relationship. Under this condition, the 
myogenic control operated as a negative feedback, which, 
in the presence of pure time delay, could induce instability 
and the occurrence of self-sustained oscillations. The am- 
plitude of vessel oscillations depended on the intraluminal 
pressure level (Fig. 4), as occurs in real systems in which 
vasomotion changes owing to pressure perturbation 
(22,26). In the model, larger oscillations develop at the 
points at which the static characteristic has the highest 
gain (Fig. 4). This result agreed with the experimental 
observation that vasomotion amplitude tended to be max- 
imal near microvascular branching, where the smooth 
muscle cells were more active and the myogenic gain was 
higher (25,19). 

On the basis of the observation that some points of the 
microcirculation exhibited a pronounced synchronous va- 
somotor activity that drove the entire vessel oscillations, 
some authors suggested that vasomotirn might be coordi- 
nated by local vascular pacemakers (7,25). Results ob- 
tained in this study suggest an alternative explanation for 
this phenomenon. According to the model, when the lu- 
minal pressure of an arteriole lies within the vasomotion 
region, the vessel oscillated with a stable and precise fre- 
quency. Moreover, this oscillation may force other inert 
branches (i.e., branches in which the lumen pressure is 
outside of the vasomotion region) to oscillate synchro- 
nously. From this point of view, vasomotion may appear 
as a forced oscillation, without the need for supposing the 
existence of local vascular pacemakers. 

Simulation results indicate that the myogenic mecha- 
nism may cause a variety of oscillatory patterns in a sim- 
ple arteriolar network, including not only periodic, but 
also quasiperiodic and chaotic, fluctuations. Each single 

myogenically, active microvessel (i.e.,  the resistances R;, 
Rs, Rm, and R l of Fig. 3) may constitute an autonomous 
oscillator and, because of the network asymmetry, such 
individual oscillators exhibit disparate characteristics, 
both as to the frequency and the amplitude of their oscil- 
lations. Asymmetry in real microvascular networks may 
be caused by a multitude of factors, such as differences in 
length, vessel lumen, or the level of the smooth muscle 
activity (8). However, the existence of some kind of 
asymmetry in the network branches, either in the geome- 
try or in the myogenic response, does not seem to be 
essential for a complex behavior. In fact, simulations per- 
formed by giving the same values to the parameters of 
segments R s, R t, and R m indicated that routes toward chaos 
can be observed even in a symmetrical network. 

In the model, different oscillators interplay through 
changes in their intravascular pressure. Mathematical 
theories of coupled nonlinear oscillators (2) suggested 
that, when the amplitude and the frequency of the oscil- 
lators were varied, several different coupling modes be- 
came evident. In this study, we have focused attention on 
the effect of changing systemic arterial pressure, and, be- 
cause this perturbation modifies luminal pressure in the 
arteriolar segments, it influences the coupling among the 
oscillators. We can roughly distinguish between three dis- 
tinct behaviors. When arterial pressure is sufficiently low, 
only one segment can actively autooscillate with its intrin- 
sic period, whereas other segments oscillate passively af- 
ter the forced changes in their intravascular pressure (Fig. 
6). When the arterial pressure is increased, other segments 
cross their bifurcation point, and start to autooscillate. As 
long as the changes in intravascular pressure are modest, 
then the coupling strength is small, and one can observe 
either periodic oscillations in the overall system, if there is 
a stable entrainment among the oscillators or quasiperiodic 
fluctuations, and if the individual oscillators maintain in- 
commensurate frequencies. Finally, when the coupling 
strength among the oscillators becomes high, for instance 
as a result of an increase in intravascular pressure, one can 
observe a global bifurcation that destroys the quasiperi- 
odic system behavior and leads to chaotic dynamics. 

In accordance with recent experimental data (22,16, 
26,27), previous results suggested that changes in arterial 
pressure and, thus, in perfusion pressure played a critical 
role in the vessel diameter oscillations. This finding has an 
important implication on the peripheral autoregulation. In 
fact, because of nonlinearities, perfusion pressure may 
significantly influence through vasomotion the effective 
hydraulic resistance and then take part in the control of 
local blood flow. 

According to the physiological literature (7), the model 
predicts that vessels of the same order, located in a con- 
tiguous area of the microcirculation, may exhibit different 
kind of behavior. For instance, as shown in Fig. 8, vessels 
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of the same order may oscillate with different frequencies 
and comparable amplitude (R s and R,~) or with the same 
frequency and a considerably different amplitude (R m and 
Rt). Moreover, the model also predicted periodic and ape- 
riodic network oscillations that may be either synchronous 
or without apparent time correlation (Fig. 14). Aperiodic 
vasomotion has been observed, among others, in the bat 
wing (20), hamster skin fold (7), rabbit tenuissimus mus- 
cle (22,19,27) and rabbit ear (15). Spontaneous blood 
flow fluctuations also have been documented in human 
skin through the Doppler laser technique (25). The power 
spectra, computed either with the fast Fourier transform 
(FFF) algorithm or with autoregressive models, some- 
times consisted of a few spikes at incommensurate fre- 
quencies typical of quasiperiodic dynamics (18); more of- 
ten, however, they exhibited a noise-like component, 
which suggests the existence of deterministic chaos 
(7,16). 

Vessel oscillation synchronization predicted by the 
model originates from the myogenic mechanism action 
and is limited to contiguous microvessels interplaying 
through their intravascular pressure changes. Extended 
synchronization over a wider microvessel area, as ob- 
served in experimental studies (25), could be induced by 
central autonomic control, an aspect that was not consid- 
ered in this study. 

For the sake of brevity, we have not included a deep 
quantitative analysis of chaotic dynamics in this study, 
however, both the sensitive dependence on the initial con- 
dition and the fractal dimension of the Poincar6 map (23) 
of the strange attractor were verified. The model achieved 
chaos by following a classic route, as in the Ruelle- 
Takens-Newhouse scenario (6): by changing the value of 
a model parameter, in our case, by increasing the arterial 
pressure level, an equilibrium condition was made to lose 
its stability and, through a supercritical Hopf bifurcation 
(24), a stable limit cycle was born, and the system oscil- 
lated periodically. An addition increase in the parameter 
value caused the system to cross a Naimark-Sacker bifur- 
cation (6): the cycle limit became unstable, a stable torus 
occurred, and the system exhibited a quasiperiodic time 
evolution. Finally, through a global bifurcation, in partic- 
ular, a homoclinic explosion (28), the torus lost its stabil- 
ity, a strange attractor appeared, and the system evolved 
chaotically. 

The hypothesis that microvessels may present some 
aspects of chaotic behavior recently was formulated by 
some authors (15,16). In particular, Griffith and Edwards 
observed that perfusion pressure in the rabbit ear alter- 
nated intervals with nearly periodic oscillations and inter- 
vals with more irregular fluctuations, and that the oscilla- 
tory pattern varied significantly in response to the same 
perturbation. The latter finding was considered an exam- 
ple of the inherent unpredictability of chaotic dynamics. 

Intaglietta and Breit (16), starting from flow velocity os- 
cillations revealed by Doppler laser measurements, recon- 
structed a strange attractor in a phase plane with the 
method of the delay map. During hypotensive hemorrhage 
the strange attractor collapsed into a single point, thereby 
demonstrating that complex basal fluctuations are shifted 
by this perturbation into a periodic rhythm. 

One recent hypothesis (12) suggested that signal vari- 
ability observed in physiological systems is evidence of a 
chaotic behavior. According to this hypothesis, the dy- 
namics of several physiological systems are governed by 
the superimposition of many simultaneously operative 
control actions, and, owing to competitive mechanisms, 
the main quantities exhibit an apparently random evolu- 
tion. The presence of more regular dynamics is a conse- 
quence of abnormal or pathological conditions, associated 
with the severe impairment of some control mechanisms. 
Following this hypothesis, the chaotic behavior in the mi- 
crovessels has been considered (16) as the result of dif- 
ferent, active mechanisms, among others, the action of the 
smooth-muscle pacemaker, the myogenic reflex, the re- 
lease of vasoactive substances, etc., which compete to 
regulate the vessel lumen. When one of these mechanisms 
became dominant, the transition from chaos to periodicity 
occurred, whereas, when no predominance was possible, 
the network behaved chaotically. The results of our work, 
however, suggest a different explanation. Indeed, in our 
model, a single control mechanism was able to produce a 
wealth of different patterns, all observed in microvascular 
beds, (ranging from periodic to quasiperiodic to chaotic, 
and the passage from one to the next was just a conse- 
quence of modest perturbations in an input quantity or in 
a parameter, not necessarily associated with a pathological 
condition or an intrinsic alteration in the microvascular 
bed. 

CONCLUSIONS 

This study notes that the nonlinearity that characterizes 
myogenic control may be the cause of the complex dy- 
namics that may be observed in microcirculation. Consid- 
ering physiological levels of the arterial pressure, a large 
variety of time patterns ranging from steady-state to irreg- 
ular, aperiodic oscillations were reproduced by means of a 
mathematical model of an arteriolar network. Despite its 
simplicity, the model permits a deeper understanding of 
various experimental observations that sometimes seem 
contradictory. In particular, sensitivity of simulation re- 
sults to the model parameter changes may be the interpre- 
tative key to explaining the different kinds of behavior 
observed in microcirculation studies. Moreover, the ap- 
parently random time fluctuations characterizing vasomo- 
tion phenomena are explained as a consequence of chaotic 
dynamics. 
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