
Discrete Comput Geom 17:217-225 (1997) Discrete & Computational Geometry 
~) 1997 Springer-Verlag New York Inc. 

Rectangling a Rectangle* 

C. Freiling, l M. Laczkovich, 2 and D. Rinne I 

J California State University, 
San Bernardino, CA 92407, USA 
cfreilin @ wiley.csusb.edu 
drinne @ wiley.csusb.edu 

2Eftv6s Lor~ind University, 
Mtlzeum krt. 6-8, Budapest, Hungary 1088 
laczk@ludens.elte.hu 

Abstract. We show that the following are equivalent: (i) A rectangle of eccentricity v 
can be tiled using rectangles of eccentricity u. (ii) There is a rational function with rational 
coefficients, Q(z), such that v = Q(u) and Q maps each of the half-planes {z I Re(z) < 
0} and {z I Re(z) > 0} into itself. (iii) There is an odd rational function with rational 
coefficients, Q(z), such that v = Q(u) and all roots of v = Q(z) have a positive real part. 

All rectangles in this article have sides parallel to the coordinate axes and all tilings are 
finite. We let R(x, y) denote a rectangle with base x and height y. 

In 1903 Dehn [1 ] proved his famous result that R(x, y) can be tiled by squares if and 
only if y/x  is a rational number. Dehn actually proved the following result. (See [4] for 
a generalization to tilings using triangles.) 

Theorem 1 (Dehn). If the rectangle R(x, y) can be tiled by the collection of rectangles 
{ R (xn, y~)}, then y / x can be written as a rational function with rational coefficients of 
the arguments Yn/Xn. 

It is easy to show that the rational function in Dehn's  theorem has some simple 
properties. For example, each term in the numerator has the same degree as well as each 
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term in the denominator. Furthermore, these degrees differ by exactly one. (See, for 
example, [2].) However, it seems that not much else is known about it. If we demand that 
all of the ratios y~/xn are equal, then by rescaling in the horizontal (or vertical) direction, 
the rectangles R(x~, Yn) can be made into squares. In this case Dehn's rational function 
reduces to a rational number and we get his result on tiling a rectangle with squares. 

In this article we characterize Dehn's rational functions for the case where the ratios 
yn/xn take on two possible values. Again, by rescaling in the horizontal (or vertical) 
direction, it can be assumed that these two ratios are reciprocals of each other and 
therefore we say that the rectangle R (x, y) is flied by similar rectangles of eccentricity u. 

The following partial result, for tiling a square, was proved by Szekeres and the second 
author [5], and later, independently, by the first and third authors [2]. Curiously, neither 
proof immediately generalizes to the tiling of a rectangle. 

Theorem 2. The following are equivalent: 

(i) A square can be tiled with similar copies o f  R ( l ,  u). 
(ii) u is algebraic and all conjugate roots o f  u have positive real part. 

(iii) There are positive rational numbers co . . . . .  Cn such that 

1 " c o u +  
1 

czu + 

1 
CnU 

The connection between continued fraction expansions and the location of roots 
comes from a theorem of Wall (see [7] or [8]). We state here the version of this result 
for polynomials with real coefficients. 

Theorem 3 (Wall). Let P(z )  = z n + an-lZ n-I + " "  + ao be a polynomial o f  degree 
one or greater with real coefficients. Let F(z )  = z n + an-aZ n-2 + " "  and G(z)  = 
al z n- I + an_3zn-3 + . . .  be the polynomials made o f  the odd and the even power  terms 
o f  P (z). Then the following are equivalent: 

(i) All roots o f  P (z) have negative real part. 
(ii) There are positive real numbers co . . . . .  cn so that 

F(z )  

G(z)  
- - c o z +  1 

CiZ + - -  

I 

CnZ 

The conversion of this theorem into a result involving roots with positive real part is 
contained in the following lemma. 
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L e m m a  4. Let Q be a nonzero rational function with real coefficients and v > O. Then 
the following are equivalent: 

(i) Q maps each o f  the half-planes {z I Re(z) < 0} and {z ] Re(z) > 0} into itself 
(ii) Q is odd and all roots o f  Q(z)  = v have positive real part. 

(iii) There are real numbers co . . . . .  cn with co > 0 and ci > O fo r  1 < i < n so that 

Q ( z ) = c o z +  1 
c i z +  - -  

1 
4 - - -  

CnZ 

Proof. The implication (ii) ~ (iii) is an easy consequence of  Wall 's theorem. Write 
Q(z)  as N ( z ) / D ( z ) ,  a ratio of two polynomials, where N is even and D is odd, or the 
other way around, and apply Wall 's theorem to the polynomial N(z )  - vD(z )  using - z  
in place of z to get roots with positive real part. Note that since multiplication of  the 
continued fraction expansion by a positive number does not change the sign of  any of  the 
coefficients, we may take v to be one. The coefficient co is zero or nonzero depending 
on whether the numerator or denominator of  Q(z) has the larger degree. 

The proof that (iii) implies (i) is quickly handled by induction on n. 
It remains to show that (i) implies (ii). Let P(z)  = Q(z)  + Q ( - z ) .  We wish to show 

that P(z)  is identically zero. To begin, note that Q(z) takes the imaginary axis into itself. 
Thus e ( i y )  = Q(iy)  + a ( - i y )  = Q(iy)  + Q(iy)  = Q ( i y )  + Q(iy)  = 0. Since the 
numerator  of P(z)  has an infinite number of  roots, the numerator is identically zero, 
and hence so is P(z) .  Finally, suppose Q(z) = v has a root with real part less than or 
equal to zero. I f  this root has real part less than zero, then (i) is violated. I f  this root is 
on the imaginary axis, then by continuity we can pick z sufficiently close to the root but 
with negative real part so that Q(z) is close enough to v so that Re(Q(z))  > 0, also 
violating (i). [] 

To see how this leads to tilings, for each u > 0, let T(u)  denote the set o f  positive 
numbers x such that R (1, x) can be tiled using similar copies of  R( I ,  u). It is immediate 
that: 

(a) If  c is a positive rational number, then cu ~ T(u).  
(b) x, y ~ T(u)  ~ x + y E T(u) .  
(c) x ~ T(u)  ~ l / x  ~ T(u) .  

By iterating these, we get that any number in the form in (iii) above also belongs to T(u) .  
If  v = Q(u) where Q is an odd rational function with rational coefficients and such that 
all roots of  Q(z) = v have a positive real part, then Lemma 4 tells us that o ~ T(u) .  
Furthermore, the process is constructive; that is, by expanding the rational function into 
a continued fraction we see exactly how to do the tiling. The tilings produced this way 
have a simple configuration which we call a "Wall pattern," illustrated by this example. 
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b 

Fig. 1. Wall pattern of degree three. 

We use u = 2 - ~/5 which has minimal polynomial Z 3 --  6Z 2 q- 12Z -- 3. Let 

6Z 2 -t- 3 1 
Q(z) = ~ = 

Z 3 "1- 12Z l z  + 1 1 

12 
~Z + ~Z 

Note that Q is odd and Q.(u) = 1. Therefore, letting c3 = , c2 = ~ ,  and Cl = ~, we 
may partition a square (since a square has ratio I) as shown in Fig. 1. 

We l e t a  = c 3 u  = ~ u , b = c 2 u a  = 2 u  2 , a n d c = c l u ( l + b )  = ~ul +~u l  3. This 

rectangle is then (a + c )  x ( 1 +b)  = (4u + �89 u 3) x ( 1 + 2u2). Since u 3 - 6u 2 + 12u - 3 = 0, 
1 3 (4u + ~u ) = (1 + 2u2), so this is indeed a square. 

The pattern visible in Fig. 1 is as follows. The lower left I x a rectangle has a ratio 
which is a rational multiple of  1/u. Adjoined to the top of  it is a rectangle whose ratio is 
a rational multiple of u. Adjoined to the side is then a rectangle whose ratio is a rational 
multiple of  1/u. Each of  these rectangles can easily be tiled using rectangles similar to 
R(1, u). Repeatedly adjoining rectangles whose ratios are alternately rational multiples 
of  u and 1/u creates the Wall pattern. 

The theorem proved below characterizes Dehn's rational functions for tiling a rectan- 
gle with similar rectangles. Again, the geometric interpretation is that when such a tiling 
is possible, one can be constructed using a Wall pattern. The shortcoming is that if the ec- 
centricity of  the tiles, u, happens to be an algebraic number, then the process is no longer 
algorithmic. In that case there may be infinitely many odd rational functions such that 
v = Q(u).  Furthermore, one choice for Q may have its continued fraction in the desired 
form while others do not. So trying to determine whether a tiling is possible may require 
a search through all possible such rational functions. In tiling a square this problem does 
not occur since in that case we can take Q (z) to be either (P  ( - z )  + P ( z ) ) / ( P  ( - z ) -  P (z)) 
or its reciprocal, where P(z )  is the minimal polynomial for u. Any other odd rational 
function with Q(u) = 1 must reduce to one of  these. 
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Perhaps the difficulty in passing from tilings of a square to tilings of a rectangle can 
be best understood as follows. If we wish to tile a square with rectangles of eccentricity 
u, and u is an algebraic number of degree n, then the complexity of the Wall pattern is 
also n. However, in tiling a rectangle, no such bound on the complexity of the "Wall 
pattern" is known. 

We also present a technique for establishing, in the algebraic case, necessary condi- 
tions for the existence of such a tiling. In the case where u is of degree two this will lead 
to a complete solution of the problem. 

A simple characterization for Dehn's rational function when more than two ratios 
y~/Xn are used is also unknown. 

Theorem 5. 

(i) 
(ii) 

(iii) 

(iv) 

V = C o U +  

C l U --~ 

For any pair of positive real numbers u and v, the following are equivalent: 

The rectangle R(I, v) can be tiled with similar copies of R(1, u). 
There is a rational function with rational coefficients, Q(z) such that v = Q(u), 
and Q maps each of the half-planes {z t Re(z) < O} and {z I Re(z) > O} into 
itself 
There is an odd rational function with rational coefficients, Q(z) such that 
v = Q (u), and all the roots of v = Q (z) have positive real part. 
There are rational numbers co . . . . .  c~ with co >_ 0 and ci > O for 1 < i < n so 
that 

1 

1 

1 

Cn U 

Proof The equivalence of parts (ii)-(iv) is obvious from the statement of Lemma 4. 
That (iv) implies (i) follows from our discussion above of the Wall pattern. It remains to 
show that (i) implies (ii). We distinguish two cases. 

Case 1: The number u is transcendental. Let Q* denote the collection of rational functions 
with rational coefficients, Q(u) the field {Q(u) I Q ~ Q*}, and V the vector space of 
R over Q(u). Let B = (1, bl, b2 . . . .  ) be a (Hamel) basis for this space. For any real 
number x, there is a function Q~ ~ Q* such that Q~(u) is the coefficient of one in 
the expansion of x over B. Since u is transcendental, the function Q~ is unique up to 
reduction to lowest terms. 

Let r be a fixed transcendental complex number with nonzero real part so that r is in 
the domain of every function in Q*. Define the "Hamei area" (or just "area") of R (x, y) to 
be A (x, y) = Re(Q~ (r). Qy (r)). Since Q~ + Or = Qx+y, the area function is additive in 
both coordinates: A(x, y )+  A(x, z) = A(x, y + z) and A(x, y) + A(z, y) = A(x + z, y). 

Suppose R(x, y) is tiled by the rectangles R(x, ,  y,). By extending each horizontal 
line segment across the entire rectangle R(x, y) we form a refinement into rectangles 
R(w,, z,). It now follows that A(x, y) = ~ A(x,, y~) since both sides are equal to 

A(w, ,  z,). It is also readily seen that A(x, y) = A(y, x). If y = ux, then Qy(r) = 

r Qx (r), and hence A (x, y) = Re(Q~ (r) .  Q,~ (r)) = Re(Q~ (r) .  Q:, (r) .  7) = a .  Re(r) 
for some a > 0. 
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We actually prove something slightly stronger than what is required. Suppose we have 
a finite collection of tiles R (Pn, q,) such that, for each n, either p~/qn = u or q~/pn = u. 
Suppose further that we make vertical and horizontal cuts in these rectangles to form 
a new collection of tiles R(x~, Yn) and that these are rearranged (without any waste) to 
tile the rectangle R(1, v). Then A(1, v) = ~ A(xn, y~) = ~ A(p~, qn), which is either 
zero or has the same sign as Re(r). On the other hand, A(1, v) = Re(Q1 (r) - Qo(r)) = 
Re(1 �9 Qv(r))  = Re(Q~(r)). It must be then that Re(r) and Re(Qv(r))  are not on 
opposite sides of the imaginary axis. Although we assumed r to be transcendental, by 
continuity this is true for all complex r in the domain of Qo. That is, Qo maps each 
of the left and .right closed half-planes into itself. It follows from the Open Mapping 
Theorem that Qv is either identically zero or maps each of the left and right open half- 
planes into itself. The proof will then be finished if we show Qv (u) = v # 0. For this it 
suffices to show that v ~ Q(u). If v ~ Q(u) let bl = v + 1 in the basis selection. Then 
v = ( -1 ) (1 )  + (1)(v + 1) so Q~(u) = - 1 ,  contradicting the fact that u and Q~(u) are 
not on opposite sides of the imaginary axis. 

Case 2: The number u is algebraic. Suppose R(1, v) = [0, 1] x [0, v] is tiled by the 
rectangles R(xj ,  yj)  ( j  = 1 . . . . .  n) such that, for each j ,  either xj /y j  = u or y j / x j  = u. 
Let z I . . . . .  Zm denote the widths of the horizontal strips (ordered top to bottom) formed 
when the horizontal line segments of the tiling are extended across the entire rectangle 
R(1, v). 

We use a technique given by Gale (see [3]) to develop a system of equations repre- 
senting such a tiling. Let A = {ai,j} be the m x n incidence matrix where ai, j ~--- 1 if 
R(xj ,  yj) meets the ith horizontal (open) strip and aid = 0 otherwise. Note that for each 
such strip there is some rectangle which meets it but does not meet any horizontal strip 
below it. Therefore, for each row of A there is a column which has a one in that row and 
no ones below that row. The matrix A therefore, has rank m. Using that the length of 
each horizontal strip is one, we immediately get that A X  = E where X is the column 
vector (xl . . . . .  x~) r and E is the column vector (1 . . . . .  1) r. We now let B represent 
the n x m matrix {bi,j} where bi,j = xi/Yi if R(xi,  Yi) meets the interior of the j th  
horizontal strip and zero otherwise. In other words, B is formed by taking the transpose 
of A and replacing the ones in each row by the ratio xi/Yi of the rectangle corresponding 
to that row. The system of equations B Z = X where Z is the column vector (z I . . . . .  z,,) 
merely states that each tile has the correct ratio. The elements of B are either zero or u or 
1/u. If  each nonzero entry were replaced by one we would just have the transpose of A. 
Since the rank of A is m, det(AA r)  :~ 0 (see, for example, [6]). Similarly, det(AB) ~ 0. 
To see this, note that B = CA r where C is a diagonal matrix with diagonal entries u 
or 1/u. Let ~ be formed in the obvious way using diagonal entries Vrff or 1/V/ft. It is 
then easy to calculate that A B  = A~/r'C~'-CA T = Av/'C(A~'-C) r and as before A~/-C is 
of rank m so det(AB) :fi 0. We can then deduce from the system of equations A X  = E 
and B Z  = X,  that Z = (AB)-~ E and that X = BZ.  

The value of v is not mentioned in these equations, but can easily be calculated to be 
the sum of the elements of Z which is the same as the sum of the elements in ( A B )  - l  
Thus v as well as all the entries in X and Z are positive numbers which are expressed as 
rational functions ofu.  In particular, v = Q(u) for some Q ~ Q*. (This fact also follows 



Rectangling a Rectangle 223 

from Theorem 2 of  [4].) We need to show that Q is odd and that the roots of  Q(z) = 1 

are all in the right half of  the complex plane�9 
To see this, we form a new matrix B'  by replacing all values of  u in the matrix B 

with a positive transcendental number u'. The determinant o f  A B'  is still nonzero and we 
therefore define Z '  = (AB')  -1 E, X '  = B'Z' ,  and let v' be the sum of  the entries in Z '  
which is also the sum of the entries in (A B ' ) - l  = Q (u'). The value of  u'  may be chosen 
so close to u that all of  the entries in Z '  and X'  are still positive�9 Then since v' is the sum 
of the entries in Z',  the vector Z '  tells us how to cut up R(1, v') into horizontal strips, 
while the equation A X '  = E tells us how to cut up each of  these strips into rectangles 
whose lengths are entries of  the matrix X', and finally the equation B'Z '  = X'  tells us 
how to combine the rectangles from different strips, using each rectangle exactly once, 
to form tiles of eccentricity u'. Note that these equations do not quite tell us how to 
tile R(1, v') with rectangles of  eccentricity u', but they do tell us how to cut tiles of  
eccentricity u' into pieces and rearrange them (without any waste) to form a tiling of  
R(1, v'). It therefore follows from the transcendental case that v' = Q'(u') for some odd 
Q'  6 Q* and that the roots of  Q'(z) = 1 are all in the right half of  the complex plane. 
However, since u' is transcendental and Q'(u') = Q(u'), we have Q'  = Q. Therefore 
Q is odd and all the roots of  Q(z) = 1 are in the right half-plane. [] 

We now present a technique which will generate necessary conditions for the exis- 
tence of  such a tiling in the algebraic case. Let u be an algebraic number with minimal 
polynomial x ~ + an_ix n-I + . .  �9 + alx  + ao. Then the companion matrix of  u is defined 

to be 

0 . . .  0 - a o  

1 0 - a l  

U =  0 i ". 

". 0 

0 . . .  0 1 - a n - j  

Let v be in the field generated by u, so that v = P(u)  for some rational polynomial P.  
Then we call V = P(U)  a companion matrix of  v with respect to u. 

The purpose of  the companion matrices is to effect multiplication of  polynomials in 
u by the numbers u and v. More precisely, i fx  is in the field generated by u, then x can 
be written in the form x = xn_lu n-I + .. �9 + XlU + xo. We associate x with the vector 
.~ = (x0, xl . . . . .  x , - l ) .  The vector (u.~T) T is the associated vector for the number ux 

and (V.~T) T is the associated vector for the number vx. 

T h e o r e m  6. I f  u is algebraic and v = P(u)  and R(I ,  v) can be tiled with similar 

copies of  R(1, u), then, for  every symmetric matrix M, if  M U  is positive semidefinite, 

then so is M V. 

Proof. Let M be a symmetric matrix with M U  positive semidefinite. Let B be a basis 
for the vector space of  R over Q(u) such that B contains the number one. Then, for any 
real number x, the coefficient of  one in the unique expansion of x using this basis is a 
rational polynomial of  u. We denote this polynomial by xn u n + . -  �9 -I- x0, and we let.~ be 
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the vector (x0 . . . . .  X n _ l ) .  We now define the "area" of a rectangle R(x, y) to be SMy T. 
As mentioned above, if y = ux, then y = (u.~T) T and if y = vx, then y = (v.~T) T. 
Therefore, if y = ux, then the "area" of R(x, y) is ~MU$ T which is nonnegative since 
M U is positive semidefinite. Since M is symmetric, the "area" of R (x, y) and R (y, x) are 
equal so any rectangle of eccentricity u has nonnegative area. Also, our "area" function 
is additive so that if a rectangle R is tiled by rectangles {Rn}, then the "area" of R is 
the sum of the "areas" of the Rn. If R (l,  v) can be tiled by rectangles of eccentricity u, 
then any rectangle R(x, y) with y = vx can be so tiled. Therefore, the "area" of any 
such rectangle must be nonnegative. Given any n-vector ~' of rational numbers there is 
always a positive number x such that .~ = s Therefore, for any such s ~MV~ T must he 
nonnegative. However, if this holds for rational vectors, it must also hold for real vectors 
and hence M V  is positive semidefinite. [] 

In the case where u has degree two, this is enough to solve the problem of tilings: 

Theorem 7. Let u be a positive algebraic number of degree two so that U 2 -~- au - c 
for some rational numbers a and c, c ~ O. Let u' be its conjugate root. Let v be in the 
field generated by u so that v = du + b for some rationals d and b. Then R(1, v) can 
be tiled by rectangles similar to R(l ,  u) if  and only if either b = 0 and d > 0 or else 
bc/a > 0 and (ad + b)/a >_ O. 

Proof Suppose first that R(I ,  v) can be so tiled. If  b = 0, then since v > 0 we have 
d > 0 and we are done. So assume b # 0. If a :~ 0 let M be the 2 x 2 diagonal 

matr i x [C /a  0 ] 0 c2/a . Let U be the companion matrix for u, that is the 2 x 2 matrix 

[ ] [ 0 c ,a] 
01 -Ca . Then MU is the 2 x 2 matrix c2/a c2 which is positive semi- 

definite. The companion matrix for v is V = dU + bI where I is the 2 x 2 identity 
[ bc/a -dc2/a  ] 

matrix. However, then M V is the 2 • 2 matrix dc2/a c 2 (ad + b)/a . If  either of the 

diagonal entries bc/a or c 2 (ad+b)/a is less than zero, then this matrix will not be positive 

semidefinite. Thereforebc/a > Oand(ad+b) /a  >_ 0. I f a  = 0 w e l e t M  = 0 c 2 

[_0] 
and the same proof shows that b > 0. Similarly letting M = 0 - c  2 proves 

that b < 0. So if a = 0, then b = 0 contradicting our assumption that b ~ 0. Now let 
v = du + b and first suppose that b = 0 and d > 0. Then v is a positive rational multiple 
o fu  and can be trivially tiled. Finally suppose that bc/a > 0 and (ad + b)/a >_ 0. Then 
using v = cou + l /clu = (coclu 2 + l ) /c lu  where co = (ad + b)/a and cl = a/bc we 
find that co > 0 and Cl > 0. By Theorem 5 we are done. [] 

The previous theorem might raise hopes that a similar theorem could be proved for 
algebraic numbers of higher degree. However, even for degree three, the conditions start 
to get complicated. 
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