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A systematic procedure is given for obtaining the asymptotic late-time behavior 
of the Becker-D6ring equations describing the time evolution of a population 
of clusters of particles. In lowest order of approximation, the distribution of the 
sizes of the largest clusters satisfies the equations of the Lifshitz-Slyozov- 
Wagner theory of coarsening. 
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1. I N T R O D U C T I O N  

The system of kinetic equations introduced by Becker and D6ring in 
1935 t4) can be used to model a variety of phenomena in the kinetics of 
phase transitions, including metastability, nucleation, and coarsening. 
These equations are applicable when the amounts of the two phases are 
very unequal, so that at each moment the minority phase consists of 
disconnected islands in a sea of the majority phase; the equations describe 
the time evolution of the distribution of the sizes of these "islands." 

The theory of coarsening (Ostwald ripening) in alloys, developed by 
Lifshitz and Slyozov (12) and by Wagner, (22) uses a similar description, but 
the evolution equations are different. It is the purpose of the present paper 
to demonstrate the connection between these two theories. We shall study 
the behavior of solutions of the BD equations at very late times, long after 
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any possible metastable state has broken down, and show by means of a 
systematic approximation procedure that in lowest approximation the 
distribution of the large clusters at these late times obeys the equations of 
the LSW theory. 

One result of this work is that the LSW theory is not restricted, as its 
original derivation might suggest, to cases where the degree of supersatura- 
tion is so small that the solute atoms do not form a significant number of 
dimers, trimers and other small clusters. On the other hand, our derivation 
does not remove the more serious restriction of the LSW theory, that the 
degree of superstaturation must be small enough to permit the neglect of 
the positional correlations of the larger clusters. Some ways of improving 
on the LSW theory so as to allow for these correlations are reviewed in 
ref. 19. 

2. THE BECKER-DORING EQUATIONS 

We begin by reviewing the derivation of the BD equations for a 
density-conserving phase transition, such as de-alloying, and some of the 
recent mathematical results about them. 

The BD equations apply to a non-uniform mixture in which the atoms 
of one component (the solute atoms) are much less numerous than those 
of the other component (the solvent atoms)~at  most 20-30% concentra- 
tion of solute. At each instant, the configuration of the solute atoms is 
described by grouping them into clusters according to some well-defined 
criterion (in the case of lattice systems, the usual criterion is to define the 
clusters as maximal connected sets, with connectedness defined in terms of 
nearest-neighbor pairs.) By the size of a cluster, denoted /, we mean the 
number of solute atoms in the cluster, and a cluster of size I will be called 
an/-cluster. A 1-cluster is usually called a monomer.  Let us define ct( t )  to 
be the concentration of/-clusters (measured in units where the volume per 
atom is 1) at time t. The clusters are assumed to be distributed uniformly 
in space, so that c t does not depend on a space variable. 

To obtain equations for the time evolution of ct Becker and Drring 
made the important assumption that only two types of process change the 
cluster size distribution. One of these processes is for a cluster of any size 
to combine with a monomer to give a single larger cluster; the other one 
is its inverse, where a cluster splits into two parts one of which is a 
monomer. The net rate at which/-clusters are being converted to (1 + 1)- 
clusters as a result of these two processes will be denoted by Jt (in units of 
clusters per unit time per unit volume). If Jt is positive, this process tends 
to decrease Cl, but it is counterbalanced by the interconversion of (1 -  1)- 
clusters and I clusters, whose net rate is . I t -~ ,  and which tends to increase 
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Ct if this rate is positive. The total rate of change of ct for any l other than 
1 is then obtained as the algebraic sum of the two net rates: 

dc____t _ 
dt -J l -1  - -  J l  (1)__. 2) ( 1 ) 

For the rate of change of the monomer concentration Cl, a different 
equation is required because the monomers participate in every process. 
The interconversion of 1- and (l + 1)-clusters uses up monomers at a rate 
Jz, except in the case l = 1 where monomers are used at a rate 2J1 because 
two monomers participate in each conversion. So the total rate of change 
of c~ is 

d c  I oo 

dt = - 2 J ~ -  Z J, (2) 
/ = 2  

To complete the system of equations we need a constitutive relation 
giving the Jz's in terms of c/'s. This takes the same form as in chemical 
kinetics. That is to say, we assume that the number of times an /-cluster 
reacts with a monomer, per unit time per unit volume, is proportional to 
the densities of/-clusters and of monomers; so this type of process con- 
tributes a term a~clcz to Jz, where the kinetic coefficient at is independent 
of time. Meanwhile, the process of breaking-up of a (l + 1)-cluster into an 
/-cluster and a monomer is spontaneous and so the number of times it 
happens per unit volume per unit time is proportional to c t+1; this type of 
process therefore contributes a term - b t +  1c~+ ! to Jl, where bt+ ~ is 
another kinetic coefficient. The complete constitutive relation is thus 

J l  = a l C l  c l  - bt+ i ct+ 1 ( / ~ )  (3) 

The system of equations (1), (2), (3) is the Becker-D6ring system, our main 
object of study in this article. 

In their original paper, Becker and D6ring did not use Eq. (2). Instead 
they made the approximation of treating Cl as a constant. Their approxima- 
tion has the disadvantage that the resulting equations do not have the 
density-conserving property to be proved in the next section. The full 
system of equations appears to be due to Bur ton .  (6) 

If the dominant mechanism for the transport of matter in the alloy is 
the diffusion of monomers, the coefficients at and b t can be estimated for 
large 1 using the following argument (see refs. 12, 16). The argument 
assumes that an/-cluster is a sphere of radius Rt, related to I by 

l=4zrR3/3 (4) 

822/89/1-2-21 
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The steady-state probability per unit time that one of the diffusing 
monomers will strike a given cluster of size 1 can be calculated by the 
standard method, which is to solve a diffusion equation for the monomer 
density, with an absorbing boundary condition (i.e., zero monomer 
density) at the surface of this sphere and with monomer density at infinity 
equal to the overall monomer density c~. The steady-state solution satis- 
fying these conditions is ( 1 - R t / r )  c~, where r is the distance from the 
centre of the sphere. From this we may calculate the rate at which 
monomers strike the sphere to be 4rrDRtc~ where D is the diffusivity of the 
monomers, and so obtain 

at = 4zcDRt= all  1/3 (5) 

where a~ =4ztD(3/41t) 1/3. Similarly, the coefficient bt is the rate at which 
monomers would leave the /-cluster if there were a sink of monomers at 
infinity and their density at the surface of the cluster were the equili- 
brium value. By the Gibbs-Thomson formula this equilibrium value is 
z~(1 + F/R't) where z~ is the density of monomers in equilibrium with a 
plane surface of the high-density phase and F is a constant proportional to 
the surface tension. The solution of the steady-state diffusion problem is 
z,(1 +F/R t )R l / r ,  and so the average rate of losing particles from an 
/-cluster is 4zrDz,(R~+ F); thus we obtain 

bt = 4nDzs(Rt + F) = al(z, + q l -  1/3) (6) 

where q = (4zr/3)1/3 zsF. 

3. EXISTENCE, UNIQUENESS, DENSITY CONSERVATION 

Since the BD equations (1), (2), (3) are infinite in number, it is not 
obvious that they have a solution at all. A theorem proved in ref. 3 
(Theorem 2.2, page 663) proves that they do have a solution, for all 
positive t, provided that 

at= 0(1) (1 ~ ~ ) 

ct(0) ~>0 
o o  

Y~ lc,(O) < ~ 
1 

(7) 

Moreover, if Y'. 12ct(O) < o(3, this solution is unique (ref. 3 Theorem 3.6, 
page 674). On the other hand if at increases more rapidly than I as 1 ~ oo, 
then there is no solution (ref. 3 Theorem 2.7, page 669)). 
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Since the BD equations were formulated for conserving dynamics, 
every step of which leaves the number of particles unchanged, we would 
expect them to imply the conservation of density. The solute density 
(overall number of solute particles per unit volume) at time t is defined as 

oo 

p(t) "= ~ lc,(t) (8) 
1----1 

where the colon indicates a definition. Using Eqs. (1) and (2) we can 
calculate the time derivative of p(t) as 

oo oo co 

ap(t) Z tar dt  dt --d-f - 2J~ E J, + E l(Jt_, - J,) 
1---2 / = 2  ! - - 2  

oo 

= '~. ( - I  + ( I +  l ) - l ) J , = O  (9) 
I - - 2  

So, if the interchange of the time differentiation with the infinite summation 
in the first line and the rearrangement of the infinite series in the second are 
justified, it follows that p(t) is independent of time and therefore stays at 
its initial value: 

p ( t ) = p  (10) 

where p means the same as p(0), i.e., the initial solute density Y',~= ~ lct(0). 
Because we are dealing with an infinite system of equations, it is not 

obvious that the rearrangements used in (9) are justified, and indeed 
similar systems of equations do exist (for example in the theory of gela- 
tion (~'~3)) for which p(t) is not constant in time but instead decreases. 
However, for the Becker-D6ring equations Ball et al. show (ref. 3 Cor. 2.6, 
p. 668) that if the conditions (7) for the existence of a solution are satisfied 
then the density conservation result (10) is indeed true. 

4. EQUILIBRIUM 

The simplest solutions of the BD equations are the equilibrium solu- 
tions, i.e., those where all the ct's are constant in time. For such a solution 
every Jt must, by (1), be equal to the next one, so that all the Jt's are 
equal; and by (2) the number they are all equal to must be zero. Hence by 
(3) we have 

atc~ct-bt+lct+l  = 0  ( l=  1, 2,...) (11) 
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The solution of this recurrence relation is 

ct=Qtc~ (12) 

where the Qt's are defined by 

Qt= ala2"''at-1 (13) 
bzb2...bt 

If the forces between the molecules are known, the equilibrium 
distribution can be expressed in terms of those forces using equilibrium 
statistical mechanics, and so the Qt's can be found using (12). In that case 
Eq. (13) gives information about the ratios a~/bt+t in terms of the known 
Qt's. The formula is 

atQt=bt+]Qt+l (14) 

Alternatively, if we have information about the ratios a t/bz+~ from another 
source such as the calculations leading to (5) and (6), then (14) gives infor- 
mation about QI: thus (5) and (6) give, for large/, 

, 

Qt "~l-1/3 I-I _l/3~const. l-1/3zZ(t-1) exp - - ~ l  2/3 (15) 
r----2 Zs dl- qr  zs 

The equilibrium states (12) form a one-parameter family labelled by 
the value of c~. The equilibrium density at a given value of c~ is given by 
(12) and (8) as 

oo 

p(c,) "= ~ lQtc~ (16) 
1----1 

For realistic Qt, in particular those given by Eq. (15), the series in (16) has 
a finite radius of convergence z~; moreover, the series converges even when 
c~ = z~, so that the corresponding density p~ is finite: 

oo 

p, "=/~(z,)= Z lQ,zt, < c~. (17) 
1 = 1  

Physically, we may interpret p~ as the saturation concentration of the 
solute~i.e., the concentration of solute at which the solution can be in 
thermodynamic equilibrium with a distinct phase containing a very high 
concentration of solute atoms. This phase, if it were present, could be 
thought of as a cluster of infinite size. 
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5. LONG-TIME LIMITING BEHAVIOR 

Having found the equilibrium solutions, we would like to know 
whether a system started with an arbitrary inital distribution of cluster con- 
centrations { cz(0)} will approach one of these equilibrium states, and if so 
which one. The first step is to find a Lyapunov function, i.e., a function of 
the ct's which can be shown to change monotonically with time (like the 
H-function for Boltzmann's kinetic equation). 

Consider the function defined by 

o o  

L "= ~ c,[log(ct/Q,) - 1 ]. (18) 
! - ' 1  

Its time rate of change is 

(c,) 
-~ -=1  ~ log by (18) 

o o  o o  

= ( - 2 J ~ - - ~  Jr)log(c~/Q1)+ ~ (Jt_~-Jt)log(ct/Q,) 
2 2 

by (2) and ( 1 ) 

= J1 log \C2 a2J + E Jt log 2 \clctQt+l 
after rearrangement 

(TD 

= ~  (atclCt--bt+lCt+l) log bl+ l cl+-----------A1 by (3) and (14) 
1 a l C l C l  

~<0 (19) 

It is not difficult to show, using the convexity of L as a function of 
z 1 cl, c2,..., that L has a lower bound (which happens to be p log z s -  ~ Qt s); 

therefore L must approach a limit as t ~ oo. Moreover, its derivative dL/dt 
will approach zero. Since all terms on the right side of the penultimate line 
in (19) are non-positive it follows that the individual terms approach zero: 

atcl c t -  bt+ l ct+ 1 --+0 as t--+ c~ (20) 

As in the discussion of (11), it follows that 

ct-Qtc~ --+0 as t--+oo (21) 
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To complete the argument we need to know how c~ behaves as t ~ oo. 
Eq. (21) tells us that if the ct(t)'s approach limits for large t, then these 
limits satisfy 

OO OO 

Z lim lr ~ lQt[ lim c,(t)] t 
1 = 1  t --~ o o  ! = 1  t - , o o  

=/~( lim cl(t)) by (16) (22) 
t ---* o o  

From the conservation of density, Eq. (9), we know that 

lim ~ l c t ( t )=p  (23) 
t - - *  o o  1 = 1  

One may ask: can the two limit operations t ~ ~ and Y'.r=~ be inter- 
changed, making the left sides of (23) and (22) equal so that we have 

p( lim c ~ ( t ) ) = p ?  (24) 
t --~ o o  

The answer to this question is given by the rigorous analysis of Ball 
et al. (ref. 3 Theorem 5.6, page 687). They prove, subject to suitable condi- 
tions on the coefficients at, bt and the initial data c~(0), that 

(i) if p ~< p,, then 

lim ct( t) = Qtz t 
t - - . b ~  

( /=  1, 2,...,) (25) 

where z is the solution of 

/~(z) = p  (26) 

with/~ the function defined in (16). In this case the convergence is strong 
in the sense that 

o o  

lim ~ 1 Ict(t) - Qtztl = O, (27) 
t ---* o o  1 - - 1  

and the answer to the question in (24) is "yes." 

(ii) if p > ps, then 

lim ct(t)=Qtzts 
t ---~ OO 

(/=1,2,. . .)  (28) 
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where z~ is the radius of convergence of the series in (16). In this case the 
convergence is weak; i.e., the individual terms of the series in (27) converge 
to zero, but their sum does not. In this case, therefore, the answer to the 
question in (24) is "no:" the left-hand side of (24) is equal to p~ whereas 
the right-hand side is equal to p. The physical interpretation of this non- 
uniform convergence is that the excess density p -  p~ is contained in a set 
of clusters which get larger and larger as time progresses. 

6. L A R G E - T I M E  A S Y M P T O T I C S  

We would like to know in more detail what happens to the excess 
density p -  p s as t ~ oo in case (ii) above. To do this, let us define a new 
time variable r ' =  et where e is a small parameter. The idea is that, by con- 
sidering the limit e ~ 0 at fixed r, we may obtain approximations which are 
good when t is of order 1/e or greater. The same idea is used in the 
asymptotic analysis of phase-field equations, t ~8. ~5) and also in the statistical 
mechanics derivations of hydrodynamic equations, tS) The germ of our 
method is contained in ref. 17, but in that paper the approximations are 
introduced on an ad hoc basis, with no small parameter e, so that there is 
no systematic way to estimate the size of the errors or to proceed to a 
better approximation. 

The BD equations (1), (2) and (3) are, because of (10), equivalent to 
the system 

act 
e -~z = J t_  t - J ~ (l>~2) (29) 

J t = a t ( c t - w t )  c t - ( b l + l c t + l - b t c t )  (30) 
oo  

Y', l c l= p = const (31 ) 
1 

where 

w l : = b t / a t  (32) 

We look for approximate solutions that are good for small e by con- 
sidering the limit e ~ 0. There are two ways to take this limit; we use one 
of them for small l and the other for large. The cut between small and large 
I will be made at a value l* chosen to make certain error terms negligible. 
For the level of approximation to which we work explicitly in this paper, 
it is sufficient for l* to satisfy the following conditions: 

l t ~ o0, e(lt) 2 exp 3q(lt)2/3 ~ ~ 0  (33) 
2zs 
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as e ~ 0. (For example, the choice 1*= log(l/e) satisfies both conditions.) 
If the calculations were carried to a higher level of approximation, a more 
restrictive pair of conditions might be necessary. 

For large/,  i.e., 1 i> I t, we make the substitution 1 = 2/e and treat 2 as 
a continuous variable, so that part of the sum in (31) can be approximated 
as an integral: 

I t  oo 

1r - ~--2 f Cl 2 d2 q- 0(~) = p (34) 
I de I t  

To get a sensible limit in (34) as e ~ 0, define ? and J by 

ct=e2?.(2, r) (35) 

Js = e2.7(2, r), (36) 

in the expectation that ~ and J are O(1). On the assumption that ~ and 
are smooth functions of 2, we may approximate the differences in (29) and 
(30) by derivatives so that these equations, together with (34), become 

a~ a~ 
- - - +  O(e) (37) 

ar 02 

j=v~+o(e) (38) 
I t  

~' lc,+ ?.2 d2 + O(e) = p (39) 
1 It 

where 

v = a t ( c l - w t )  (40) 

One can think of v as the average rate at which clusters with the given 
value of 2 (or l) increase in size. 

For diffusion-controlled kinetics, Eqs. (5) and (6) bring (32) to the 
form 

wt=zs+q1-1/3 (41) 

so that (40) becomes 

v = all  21/3u(z) -- q] (42) 
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where u(r) is defined by 

cl =zs+el/3u(r) (43) 

Turning now to the small-/ r6gime, we expect from (36) that 
Jr+ = O(e2), and from Eq. (29) that J r - 1 - - J r  = O(e); using this information 
to estimate first art+_ ~, then J : - 2  and so on we find that 

Jt= O(elt) (1<~1 +) (44) 

This implies, by (33), that Jr=o( 1 ). On solving (3) explicitly for ct in terms 
of the Jr's, we obtain 

1--1 ] 
ct=atc] I- Z Jm,,,+l 

m= 1 amQmCl 

I (  3q12/3~] = Qtzt,[ 1 + O(le 1/3) ] 1 + 0 (1-1)  el* exp 2z, / (1 ~< 1 +) (45) 

where we have used the estimate (43) of C l and bounded the series by the 
number of terms, which is 1 - 1 ,  times a bound on the largest term which 
was obtained using (44), (5) and (15). 

By virtue of (33), Eq. (45) implies 

ct= Qtzt,(1 + o(1 )) (t ~< l +) (46) 

whence (since Z ~  lQlzt~ converges, and 1* ~ oo by (33)) 

17 
Z lc, = ps + o( 1 ) (47) 

1 

where Ps is defined in (17)). The result (47) can be inserted in (39) to give 

(48) 

where g is defined in (35). 
To find out more about g, we need the PDE obtained by combining 

Eqs. (37), (38), (35), (36) and (42), namely 

O~ = -0--2 [a,  (2 ' /3u( r ) -q )  ~'] + o(1) (49) 
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with u(r) chosen so that (48) is satisfied. An explicit formula for u(r) can 
be obtained by taking the r-derivative of (48), obtaining after the use 
of (49) 

fo  f-~ [(2~/3u(r)-q) ~] 2 d2 =o(1) (50) 

(assuming that the r-derivative of the o(1) term in (48) is itself o(1)). By 
partial integration, (50) is equivalent to 

fo[ ,~l/3u(r)-q] ~ d 2 -  o(1) (51) 

i.e., to lowest order in e, 

q ~  ?d2 
u =  ~o 21/3~ d2 (52) 

Given sufficient time and patience, the method could be used to derive 
better and better approximations, by using at each stage the best available 
approximation to estimate the neglected terms and then re-solving the 
equations to obtain a better approximation. For example the next 
approximation for J~(l ~ l*), obtained by using (12) to estimate the left side 
of (29) and then solving for Jt with the help of the fact that Jr+ = O(e2), 
is 

Jl e4/3 du = mQmz 7 dr. O(~4/3) (t~/+) (53) 

with u(r) determined by solving the equations (48), (49). This could then 
be substituted into the first line of (45) to obtain a better approximation 
to ct(l ~ 1*), which then gives a better approximation to y,t+ lCl to be used 1 
in (34). The next step would be to improve the approximation for ? by 
solving (37), (38), using the improved (34) together with estimates of the 
O(e) terms obtained using the lowest-order solution. 

The system of equations (48), (49) is at the heart of the LSW theory 
of coarsening. The analysis in this section shows that these equations can 
be derived in a systematic way from the BD equations, and that they are 
not restricted to the case where the saturation concentration Ps is small 
enough to justify neglecting the contribution of dimers, trimers, etc. to the 
s u m  (8). 
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7. LARGE-TIME BEHAVIOR OF THE LSW EQUATIONS 

The LSW system (49), (52) has a self-similarity property: if ?(2, r), 
u(z) is a solution, so is ~(k2, k'c), k-U3u(z) for any constant k. This suggests 
replacing 2 by a new independent variable x proportional to 2/r, which is 
invariant under this re-scaling. A convenient choice is x = 2/a~ qr, in terms 
of which Eqs. (49) and (48) become 

O? 0 
~ =  Ox [(xl/3p(z)-  1 - x )  g'] -g" (54) 

f :  ?x dx = (p - p~)/a~ qZr2 (55) 

where p is the re-scaled version of u, defined by 

p(r) :=q-Z/3(a I z) 1/3 u(z) (56) 

Equation (55) implies, via a derivation similar to that of (52) 

I~' 8" ax (57) 
p(r) = ~y x,/38, dx 

An equivalent system of equations, using the new dependent variable 

h(x, r ) : =  r z g'(x, r )dx  (58) 

is 

Oh Oh 
~ =  -(xl/~p(~) - 1 - x) Ux + h (59) 

I :  h dx = (p - p~)/a~ q2 (60) 

implying 

h(0, r) 
p(l:) = ~=o  x~/3[ -dh(x ,  r)] (61) 

From this version it follows that h/r, is constant on the characteristic curves 
in the (x, t) plane, whose equations are 

aX= x v 3 p ( r ) -  1 - x  (62) 



318 Penrose 

Equation (59) has a family of time-independent solutions, in which p 
has a constant value, call it P0- They are 

d~ 
hocexp-  1 + ~ - - ~  ~/3po (63) 

The normalization constant is determined by (60), and ~- can then be found 
by differentiation, in accordance with (58). 

The behavior of the integral in (63) depends on the value of Po. If 
P0 < (27/4) 1/3, the denominator is positive for all positive ~; in this case h 
and ~ are positive for all positive ~, and h decays like const.x-~ for large 
x, so that the integral in (60) just diverges at infinity. If Po = (27/4)1/3, the 
denominator has a double zero at ~ = 1/2; the integral in (63) then diverges 
for x~> 1/2, so that the functions h and ? are positive for x < 1/2 and 
zero thereafter, and the integral in (60) converges. If po>  (27/4) 1/3, the 
denominator has two zeros, and the integral diverges for all x exceeding 
the smaller of these two zeros; in this case h and ~ are positive up to this 
value of x-(which is less than 1/2) and zero thereafter. 

8. D ISCUSSION OF THE LSW THEORY 

The LSW theory hinges on the asymptotic behavior ofp(r)  and ?(x, r) 
for large 3. It is argued in the theory that p(r) must approach a limit, and 
that this limit must be (27/4)1/3; indeed, if the limit were less than (27/4)1/3 
then the integral in (60) would diverge for the limiting distribution of 
cluster sizes, and if it were greater then (as noted by Velazquez (21)) a large 
family of characteristics would converge on the larger zero of the right side 
of (62), which is only compatible with the existence of a limiting cluster 
distribution h in the special (and probably inadmissible) case where h = 0 
on all these characteristics. 

The LSW theory makes two definite predictions about the results of 
possible experiments. One is that that after a long time the distribution of 
the scaled cluster size variable x, which is proportional to l/t,  becomes 
independent of time, so that the average cluster radius (proportional to the 
average cube root of 1) grows in proportion to t 1/3. The other prediction is 
that the actual distribution of scaled cluster sizes should be given by (63) 
with Po set equal to (27/4)1/3, and in particular that there will be no clusters 
at all larger than the size corresponding to x = 1/2. This maximum size 
corresponds to a radius which is (1/2 +4/27) 1/3 = 1.5 times the mean cluster 
radius. 

Experiment confirms the prediction of t 1/3 growth in many cases: see, 
for example ref. 10, 14; when it is not confirmed one may reasonably infer 
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either that the steady state has not yet been reached t24) or that that other 
mechanisms such as cluster coagulation, not allowed for in the BD picture, 
are at work.  (9) On the other hand the predicted coefficient of t 1/3 in the 
growth law for mean cluster radius does not agree well with experiment if 
the density of solute is more than about 10%; (14) the discrepancy is 
believed to be due to the approximations used in deriving (5) and (6), par- 
ticularly the approximation of neglecting the effect of nearby large clusters 
on the density of monomers near a given cluster. Some of the proposed 
ways of improving on this approximation are discussed in the excellent 
review articles ~ 19, 20). 

The other main prediction of the LSW theory concerns the distribu- 
tion of cluster sizes, in particular the prediction that there will be no 
clusters with radii larger than about 1.5 of the average radius. Measuring 
such distributions is not an easy experiment, but the actual ratio of cut-off 
to average radius tends to be larger than 1.5, (2' 1,5) and the distribution is 
generally somewhat broader than the LSW prediction. ~24"23) The same is 
true of a distribution obtained by direct integration of the BD equa- 
tions.~z ~6) The reason for the broadening may be that the asymptotic state 
predicted in the LSW theory has not yet been reached~the theory does 
predict that it will be reached very slowly (see ref. 21 and the Appendix to 
ref. 12), and that on the way to this steady state p will be less than its final 
value (27/4)1/3. 

From the rigorous mathematical point of view, very little is known 
about the asymptotic behavior of the LSW equations. It is not even clear 
whether one can prove that p(r) approaches a limit at all. For the simpler 
equation obtained by replacing x ~/3 by x in (54) and (57) it is possible ~7~ 
to invent initial data for which p(r) oscillates for ever, and the same may 
be true of the real LSW equations. If so, one would have to restrict the 
initial data in some way if one wished to ensure that the equations really 
did behave as in the LSW theory. The structure of the LSW equations is 
unusual and interesting, and they are well worth further mathematical 
study. 
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