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A Content Semantics for 
Quantified Relevant Logics. II 

Abstract. In part I, we presented an algebraic-style of semantics, which we called "content 
semantics", for quantified relevant logics based on the weak system BBQ. We showed soundness 
and completeness with respect to the unreduced semantics of BBQ. In part II, we proceed to show 
soundness and completeness for extensions of BBQ with respect to this type of semantics. We 
introduce reduced semantics which requires additional postulates for primeness and saturation. We 
then conclude by showing soundness and completeness for BI~Q and its extensions with respect to 
this reduced semantics. 

II. Unreduced content semantics for extensions of BBQ. 

We first consider the axioms, and also one rule, that would be used to 
obtain the most commonly considered extensions of BBQ. For a suitable range 
of extensions, see [4], pp. 355-359. 

Sentential axioms 
S1. (A~B)&(A- - ,C)~ .A - -*B&C.  
$2. ( A ~ C ) & ( B - - , C ) ~ . A  v B ~ C .  
$3. A--, ... B ~ . B ~  ...A. 
$4. ( A - - * B ) & ( B - , C ) ~ . A ~ C .  
$5. A v  ~ A .  
$6. A - , B ~ . B ~ C ~ . A ~ C .  
$7. A - . B ~ . C ~ A - - , . C ~ B .  
$8. A - - . . A ~ B ~ B .  
$9. A ~  --, A--. -,, A. 
SI0. ( A - - . . A ~ B ) ~ . A ~ B .  
Sl l .  A - - . . B ~  A. 
S12. ,,~ A ~ . A ~ B .  

Quantificational axioms 
Q1. (Vx)(A-*B)--*.A--*(Vx)B, where.x is not free in A. 
Q2. (Vx) (A~B)- - . . (3x )A- .B ,  where x is not free in B. 

Sentential rule 
SR1. A ~ , ( A ~ , , ,  A). 

The corresponding semantic postulates for these axioms and rule are 
presented below. To obtain content semantics for an extension of BBQ, just 
add the semantic postulates corresponding to the axioms and/or rule that are 
added to BBQ. 
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Semantic postulates for S1-12, Q1-2, SR1 
sl. (c~d)n(c=~e)  <~ c=*,(dc~e). 
s2. (c=*,e) n (d=~e) <<. (cwd):~e. 
s3. c=*,d* <<. d=~c*. 
s4. (c~d)c~(d=~e) <<. c=~e. 
s5. c u c * ~ T .  
s6. c=~d <~ (d=~e)=~(c=*,e). 
s7. c=~d <~ (e~c)=~(e=~d). 
s8. c <~ (c=~d)=~d. 
s9. c ~ c *  <<. c*. 
sl0. c=~(c=~d) <<. c ~ d .  
s l l .  c <~ d=*,c. 
s12. c* <<. c=:,d. 
ql. ~ {(Fn=~Gm) sb/k(il ..., in,j1 . . . , j , ) :beD} 

F"s (i 1 .... i,) ~ ~ { G'~sb/k (J1.. . ,  Jm) :b ~D}, 
where Fns(il . . . . .  in) is k-constant. 

q2. ~ {(F"~G")sb/k(i,  .... i,,j, .... jm):b~D} 
U {Fnsb/k(il , "", i , ) :b~D}~G'%~l . . . .  ,Jm), 

where Gms(jl,...,jm) is k-constant. 
srl. If c e T t h e n  (c=~c*)*~T. 

As should be clear, the semantic postulates sn, qm and srl correspond to 
the axioms Sn, Qm and the Rule SR1, for n = 1, ..., 12 and m = 1,2. 

Instead of proving soundness and completeness for each of these axioms 
and rule with respect to their correspondents, we can generalize the situation 
by constructing semantic postulates corresponding to arbitrary formula- 
-schemes and rules, and prove soundness and completeness at this level of 
generality. This means that a content semantics can be provided for any 
extension of BBQ. 

However, we do need to specify the conditions on formula-schemes that we 
are going to treat. If we consider the quantificational axioms and rules of BBQ 
and the above extensions, we see conditions of the form 'x k does not occur free' 
and we see a formula-scheme of the form 'AX'/Xk, where x I is free for x k in A'. 
We restrict consideration to these two expressions as they seem to cover all the 
extensions of BBQ that one is likely to meet, and any extensions of BBQ 
containing other expressions can most likely be dealt with in a similar manner 
to these. Certainly, the following procedure can deal with any formula-scheme, 
built up using the formation rules and so we can still justifiably say that all 
extensions of BBQ can be provided with a content semantics. We will need, 
however, to transform the quantificational semantic postulates for the specific 
extensions of BBQ, given above, into the forms that emerge from the general 
treatment about  to be given. 
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The construction of semantic postulates for axioms and rules is as follows: 

The procedure extends that used by Lavers in [15] for the sentential 
fragment. 

(i) For axiom-schemes and rules with no quantifiers nor expressions of either 
of the forms ' x  k is not free in A' or 'AX'/x~, where x~ is free for x k in A', 
(a) replace formula-schemes A, B, C, . . .  by c, d, e . . . .  (distinct elements of C), 
(bl replace ' ~ '  by '*' to the right of the element of C (can be a composite 

element such as (c u d)* c~ e), 
(c) replace '&' by '~ '  between (composite) elements of C, 
(d) replace ' v '  by 'w' between (composite) elements of C, 

and (e) replace '--.' by '=~' between (composite) elements of C, provided ' ~ '  
was not a main connective of the original formula-scheme. 

[Take ',--.' as defined: A.--~B = a y ( A - - * B ) & ( B - - - * A ) . ]  

(ii) For axiom-schemes and rules with at least one quantifier or expression of 
one of the forms "x k is not free in A' or 'A~l/Xk, where x~ is free for x k in A', 
(a) replace 'A', 'B', 'C' . . . .  by 'F"s(ii, . . . ,  in)', "G"s(j I . . . . .  j J ' ,  'Hls(k l  . . . .  , kt)', 

... (i.e. a function from .~-, an element s of S (same s in each case), 
a sequence of positive integers the number of which is the same as the 
number of arguments of the function from ,~'), and replace "AX'/Xk, 
where x t is free for x k in A', by "F~s(il . . . . .  i ,)l /k ", where F~s( i l ,  . . . ,  in) 
is what is used to replace A and (i I . . . . .  in)t/k is (i~ . . . . .  in) with each 
occurrence of k replaced by l, provided that no replacement step (t) or 
(g) eliminates such occurrences, 

(b) replace ' ~ '  by '*' to the right of the element of o~ (also can be 
a composite element such as ( F n w  G " ) * ~  Ht), 

(c) replace '&' by ' n '  between (composite) elements of.~-, and follow this 
by 's' and the sequence (i~ . . . . .  in,jr . . . . .  j,,), where ( i l , - . , ,  in) is the 
sequence of positive integers associated with the left conjunct and 
(ja . . . . .  j,,) is the sequence of positive integers associated with the 
right conjunct, 

(d) replace'  v '  by ' u '  between (composite) elements of ~ ,  followed by 's' 
and the sequence described in (c) for '&', 

(e) replace '---,' by '=,' between (composite) elements of .~-, followed by 's' 
and the sequence described in (c) for '&', provided '--,' was not a main 
connective of the original formula-scheme, 

(0 replace '(VXk)" by '(-'){...b/[j I . . . . .  j m ) : b e O } ' ,  where the element of 
corresponding to the scope formula-scheme of '(Vxk)' is inserted 

where the dots appear, and where j~ . . . . .  j,. are the argument places 
of the scope formula-scheme which are bound by '(Vx,)', and also 
replace '(il . . . . .  iff by ' ( ik,  . . . . .  i k . _ . , ) ' ,  where il, ..., i, is the sequence 

of positive integers, one for each argument-place of the scope 
formula-scheme and ik~ . . . . .  i k , ,_ , ,  is the same sequence but with 

ij, . . . . .  ii," removed, 
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(iii) 

or 

(iv) 

(g) replace '(]Xk)' by ,~{.. .b/{j~ . . . .  , j , , } : b e O } '  and '01 . . . . .  i,)' by 
'(i,,, . . . ,  ik~_,,)', in the same manner as for '(VXk)' in case (f). 

For formula-schemes (in rules or axioms), 
(a) replace '--.' as main connective by '~<' 
(b) if ' ~ '  is not the main connective, add ' e T  at the end of the 

formula-scheme. 

For rules, replace '..., . . . . . . . . . .  =~...' by ' I f . . .  and ... and . . . . . .  then ...', 
and, for construction using (ii), for any positive integer k in an antecedent 
which does not occur in the consequent, replace 's' by 'sb/k" and put 'for 
all b e D '  at the end of such an antecedent. 

(v) Replace expressions of the form, "x k does not occur free in A', by '.~(A) is 
k-constant', where ~(A) is the expression replacing the formula-scheme 
A. 

THEOREM 3. (SOUNDNESS) For any extension LQ of  BBQ, i f  a formula A is 
a theorem o f  LQ then A is valid in the content semantics for  LQ, obtained by 
adding the corresponding semantic postulates, constructed as above, for  each 
additional axiom and rule used to obtain LQ from BBQ. 

PROOF. It suffices to show that each additional axiom-scheme of LQ is 
valid in the BBQ content semantics with its corresponding postulate added, 
and that each additional rule of LQ preserves validity in the BBQ content 
semantics with its corresponding semantic postulate added. 

We deal firstly with the case where for the axiom-scheme or rule, 
construction step (i) is appropriate. 

Let (~(A~, ..., An) be such additional axiom-scheme of LQ. Let cd"(cl, ..., cn) 
be the corresponding semantic postulate, constructed as above. Let cg'(c I . . . . .  c,) 
be constructed from ~(A 1 . . . . .  An) by applying (i) (a), (b), (c), (d) and (e), 
including the case where '--,' is the main connective of ~(AI . . . . .  An). We first 
show that 

(*) I(Cg(A,, . . . ,  A , ) ) =  ~ ' ( I (A~)  . . . .  , I(A,)),  

for any interpretation I of the appropriate content semantics. This is the case 
because of the definition of interpretations and of the construction of cg,. 

Let ' ~ '  not be the main connective of ~(A 1 . . . .  , AJ. Then by the semantic 
postulate cC'(cl . . . . .  c~), we have cg"(l( A 1) . . . .  , I(A,)) ,  which is 
rg ' ( l (Al ) ,  . . . ,  l (An))e  T. Hence by (*), I ( ~ ( A  1 . . . .  , An))e T, as required. 

We then let '--,' be the main connective of ~(A t . . . .  , An). Here, let 
~ ( A I ,  . . . ,  A~) = qgl(Al ,  . . . ,  A k ) ~ 2 ( A k §  l . . . . .  A,), and correspondingly, 
cg"(c I . . . .  , c,) = c~'t(cl, . . . ,  Ck) <. Cg'2(Ck§ 1, '" ", Cn)" Hence, cg'~(l(A1) . . . .  , l(Ak) ) <~ 
<~ c~'2(l(Ak§ . . . .  /(A J). By p7a, ~'~(I(A1) . . . . .  I ( A k ) ) ~ ' 2 ( I ( A k + l )  , . . . ,  I (AJ )e  T 
and hence ~ ' ( I (A t ) ,  . . . ,  I ( A J ) e  T and, by (*), l(~g(Al . . . . .  A, ) )e  T, as required. 

We now consider an additional rule of LQ, ~l(Ai , . ,  . . . . .  A,.k, ) . . . .  , 
cg,(Ai,., . . . . .  A i , . k ) ~ ( A i ,  ). Let the corresponding semantic postulate be: If 



A c o n t e n t  s e m a n t i c s  . . .  247 

" " C C h n " r C L ' ' ' qC,(q, . , ,  . . . ,  ci~.~ ), . . . ,  i f . (  i.., . . . . .  i . .k)  t e ~ ( j, . . . .  , jm)" et ~ t ,  ..., ~ . , ~  

be determined as above, in which case (*) holds again. Let I ( (~l (Ai , , ,  . . . . .  Ai , .~)  ) 
T, . . . .  I (~ ' . (A~. ,  . . . . .  Ai.~ ))e T. Hence, ~'I(I(Ai1 ) ,  . . . ,  l (Ah~ ))~ T, . . . .  (~',(I(A~,) . . . .  

..., I(Ai,,,~))E T . '  As ' "  h " " ~ " ' prevaously s own, c~l( l (Ai l . l ) , . . . ,  I ( i , .~ , ) )  . . . . .  ~ . ( I (Ai . . l )  . . . .  

. . . .  l(Ai. ,~.)).  By the semantic postulate, ~ " ( I ( A ~ , )  . . . . .  I (Ai , , )  ) and, as above, 
~ ' ( I ( A ~ I )  . . . .  , I (A j , . ) )~  T and I ( ~ ( A j l  . . . . .  Aj , , ) )~  T, as required. 

We now deal with the case where, for the axiom-scheme or rule, construction 
step (ii) is appropriate. Let  C~(A]l . . . . .  A ~ " ) ( x i l , l ,  . . .  , x i t , h  , . . . .  x i , ,  . . . .  

..., x,. ,)  be an additional axiom-scheme of LQ,  where A~ is a k j-place formula, 
for each j  = 1 . . . . .  n, and x i j . l , . . . ,  xi~,, are the unsubstituted variables of AJJ or 

variables obtained from A~ by a variable substitution, all of which are free in 
~(A]' . . . . .  Ak."), for j  = 1, ..., n. Let ff"(F] . . . . .  F. k") s (ira . . . . .  il.h . . . .  , i., a . . . . .  i.j,) 
be the corresponding semantic postulate, cortstructed as above, where 
F ~ J e :  kj, for all j, s e S and i l ,  ~ . . . . .  i . .l,  e N +. Le t  c~'(F]' . . . . .  Fk. ") be construct- 
ed from ~'(A] I , ..., A. k-) by applying (ii) (a), (b), (c), (d), (e), (t) and (g), including 
the case where '--.' is the main connective of Cg(A]' . . . . .  A.k"). We show: 

�9 , ~ ,~r ,k .  F~k , i ) s~( i l .  l . i. .l.) ' ( * * )  . . . . .  . . . .  ) )  = , . a , . ,  . . . . . . . . .  

for any interpretation I. 

Much as for (*) above, this follows by the construction of cr Lemmas 3 and 
7 and the definition of the functions F A j  for compound formulae A. 
Substitution of x, for x, in A~J (say), registered in the list of variables 
(xh,  ,, . . . ,  x i , . , ) ,  takes effect in the list (it.t, ..., i..~,) through the application of 
(ii) (a). 

Let ' ~ '  not be the main connective of ~(A] 1 . . . . .  A~. ") (xh, 1 . . . . .  x(.., ). Then, 
by the above semantic postulate, ~ " ( F  A,,t , . . . ,  F A.,t ) s , ( i~A,  . . . ,  i . j . ) ,  which is 
c ~ ' ( F A , , I  , . . . ,  F A , . t ) s t ( i t A  , . . . ,  i . . J~T.  Hence, by (**), I(Cg(A] 1, . . . ,  A~. ") 
(xh,  ' . . . . .  x~. . , ))  ~ T, as required. Similarly, for the remaining case where ' ~ '  is 
the main connective of ~ ( A ]  1 . . . . .  A~,") (x , . , ,  . . . ,  x i . , , ) ,  its interpretation 1 is 
a member of T, by similar steps to that used in the non-quantificational case. 

In the case where a variable x~ (say) is stated as not occurring free in 
a formula A (say), in order to apply the corresponding semantic postulate we 
need to show that ~(A) is k-constant, where ~(A) is what replaces A in the 
construction. This is automatic by the way the variables x~ are replaced by the 
index i in the construction and by the definition of k-constancy. 

Additional rules of LQ, for which construction step (ii) is appropriate, 
preserve membership of T, for all interpretations I, in a similar manner to those 
rules, for which construction step (i) is appropriate, given (**) and the 
reasoning used above for the axiom-schemes. This is provided that there are no 
variables which can occur free in any of the premises of the rule that are not 
free in the conclusion of the rule. In such a case, for a rule A~ . . . . .  A . ~ B ,  
where x~ can occur free in each of A~I . . . . .  Aj., for {Ja . . . . .  j,,} _~ { 1 . . . .  , n} and 
x~ does not occur free in B, we show that if I ~ / x ~ ( A j , ) ~ T ,  for all 
b e D  . . . . .  I b / x i ( A j , . ) ~  T, for all b6 D, and I ( A 3 e  T (for all 
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i E {1 . . . .  , n } -  {Jl . . . .  , j,.}) then l ( B ) e  T, for any interpretat ion I. Fo r  this, we 
first show, with the same symbol ism as for (**): 

{**)' lb /xk{~(A k~, Ak. "" . . . ,  , )(xi, , . . . . .  x,.., )) = cg'(Fka',.,, . . . .  F~.. ,)  
s~/k(i,. 1 . . . . .  i,a.), for any interpretation 1, and any b e D .  

This can be shown in the same manner  as for (**), with use of  Lemma 2. Then 
the familiar procedure  for showing validity-preservation of  such a rule is 
employed,  assuming the appropr ia te  semantic postulate, constructed using (iv). 

THEOREM 4. (COMPLETENESS) For any extension LQ o f  BBQ, i f  a formula 
A is valid in the content semantics for  LQ (as described for  Theorem 3), then A is 
a theorem of  LQ. 

PROOF. We show that each addit ional  semantic postulate,  i.e. added to the 
semantics for BBQ to obtain the semantics for LQ, holds for the canonical 
model structure constructed for the logic BBQ, with the addit ion of the 
axiom-scheme or rule out of which the respective semantic postulate was 
constructed. As in the soundness proof, we deal firstly with axiom-schemes and 
rules for which construct ion step (i) is appropriate.  

Let g ( A l ,  . . . ,  A.) be such an addit ional  axiom-scheme, where we insert 
A 1, -.-, A., which are sentences of LQ'. (LQ' is LQ with the individual constants  
o f D  c added in the manner of BBQ'.) Let ~'"{e I . . . . .  c,) be the constructed semantic 
postulate, based on the axiom-scheme, ~{A'1 . . . . .  A',), where A'1 . . . . .  A'. are 
formula-schemes of  LQ. Let g ' ( c  I . . . . .  c.) be constructed, as in the soundness 
proof. By definition of IA[, for sentences A of LQ', and the construct ion of cg,, 

( + )  I~'(at . . . . .  A.)I = ~'(IAxl . . . . .  IA.I). 

Let '--+' not  be the main connective of Cg(A 1 . . . . .  A.). Then, since 
~,,Q,Cg(A x . . . . .  A.), leg(A1 . . . . .  A.)IeT~ and by (+) ,  ~'(IA11 . . . . .  IA.I)eT~. By 
construct ion of  oK,,, cg,,(lA~ [ . . . . .  [A,[) holds, where [A/I, for j = 1 . . . . .  n, are 
arbitrary elements of Co. 

Let '---,' be the main connective of q~(A 1 . . . . .  A.). We let c~,'(A 1 . . . .  , A.) = 
= cgl(A 1 . . . . .  Ak)--+cgz(Ak+t . . . .  , An). As above, ~1(A1 . . . . .  A~::>~z(Ak+ 1 . . . . .  A,~ 

T~, and, by (+ ) ,  ~'1(IA~ . . . . .  Akl)=a'cg~(lAt+ 11 . . . . .  [A.l)e T~. By p7(a), proved 
.. . ,  " A ....  IA.I), as in Theorem 2, cg' I (IA i1, IAkl) ~ ~ Z(t k + I I, IA.[). i.e. cg"(lA 11 . . . . .  

required. 
Let cgl(Ai, ' . . . . .  Ai~ ~) . . . . .  cor ,, . . . .  A i . J = . ~ ( A i  ~ . . . . .  A i,.) be an ad- 

ditional rule of LQ, with A,~,, . . . . .  A;.,~, Aj ' ,  . . . .  A j,., which are arbitrary 
sentences of LQ', inserted. The semantic postulate is as in the soundness proof. 
cg, . . . . . . .  ,,z~, are also constructed as in the soundness proof. Let cg"~Al~, ~,,I . . . .  
. . . . . . . .  cg"tlA . . . . . . . .  IA~,,~,I) . . . .  ~ , , , I ,  IA. . J )  all hold. By p7(a), ~'I(IA~,.,I, IA~,.,,I)e 
~T~, ... ,  c~';(IA~,,,l, ..., IA~,.~ I)e T~, and hence, by (+),  IC~',(A~,.,, . . . .  A~, <~1~ T~ . . . . .  
leg.(A~.,, . . . . .  Ai,,,,, ~ e T~. By definition of T v ~ t42 ,c6 1 (Ai,.~ . . . . .  A<~,) . . . .  
. . . .  I--LOg,(A~,.,, . . . .  A~,.~ ), and hence, by the rule, ~-Lo,~(Aj ,  . . . . .  A j,.). Then 
I~(A~, . . . . .  Aj,,)I e T~, ~'(IA~, . . . . .  Aj,,I)e T~ and ~"(IAj , ,  . . . .  A41), as required. 
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We now proceed with axiom-schemes and rules for which construction (ii) 
is appropriate. We use the same terminology as in the soundness proof, where 
appropriate. So, let ~(A ]1 . . . . .  Ak")(s(iI.I), ..., s(i l .~)  . . . . .  s(in,1) . . . . .  s(in.t,)) be 
an additional axiom-scheme of LQ,  where A k~ is a kfplace formula of LQ,  for 
each j = 1, ..., n, and the elements s ( i l , i )  . . . . .  s ( i , . J  of D c are inserted into the 
free argument places of ~(A kl k, . . . .  , A, ), some of which may be obtained by 
variable substitution into the Ak"s. We show: 

(+ +)  I~(a kl . . . . .  A~")(s(il.l) . . . . .  s(i~,t,))[ = ~ ' ( [ A 1 ]  k' . . . .  , [ A n ] k " ) s ( i l . l  . . . . .  in.I.). 

This follows by definition of [A] m, for m-place formulae A of LQ' ,  definition of 
IAI, for sentences A of LQ',  the operations defined on Co, and the construction 
of ~g'. Individual variable substitution is taken into account in the manner 
indicated in the soundness proof. Then, by the axiom-scheme, definition of T~ 
and (+  +), c ~ ' ( [ A 1 ] k t  . . . . .  [ A n ] k n ) S ( i l . 1  . . . . .  in,tn)~ T~. Whether ' ~ '  is the main 
connective of the axiom-scheme or not, c~"([A~]k' . . . . .  [An]k")s( i~. t  . . . . .  in. J ,  
as required. 

In the case where a variable x k (say) is stated as not occurring free in 
a formula A (say), in order to use the axiom-scheme we need to show that this 
is the case using the corresponding k-constancy condition on ~(A), where ~(A) 
is what replaces A in the construction. This follows conversely to that similar 
step in the soundness proof. 

The corresponding semantic postulates can also be shown for additional 
rules of LQ,  much in the way that they are shown for those rules for which 
construction step (i) is used. The essential differences are the use of (+  +)  
instead of ( + )  and the use of reasoning steps that occur in the above proof of 
semantic postulates for axiom-schemes. As mentioned in the soundness proof, 
we have to also consider the special case where a variable x k (say) can occur 
free in any of the premises of the rule but is not free in the conclusion. For this, 
we need: 

(+  +) '  Ic~'(zk, . . . . .  h~")(s( i l .  1) . . . . .  s(i~.t.))b/Xk[ = 

c~,([- A j . ]kl ,  . . - ,  [ A n ] k . )  sb/k( i t . l  . . . . .  in.t,) ' 

with symbolism as for ( + + ). This can be proved in the manner of ( + +). Then 
the usual procedure can be employed for proving the corresponding semantic 
postulate using the rule, except that a substitution needs to be made in the free 
x~-places in each of the premises of the rule, once established using the 
antecedents of the semantic postulate. As in the completeness argument for plla 
of Theorem 2, each of these free xk-places are substituted by an element b of Dr 
which is new to all the premises. This can be done since each of these premises 
are provable in LQ'  for all such substitutions from D~. Then we replace all these 
substituted occurrences of b by a variable z (say) which is new to the proofs of 
these premises and apply the rule to obtain the conclusion, which is then used 
to derive the consequent of the semantic postulate in the usual way. This 
completes the proof of Theorem 4. 
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We still need to compare the quantificational semantic postulates, construc- 
ted as above, against those given for the specific extensions of BBQ in the 
introduction to (ii) of this paper. Q1, with x k for x, has a constructed postulate, 
N {(F"=>Gm)b/{ l, . . . . .  lq}:beO} s(i,,  . . . .  , j ,  . . . .  q) ~ (F"=~ N {Gmb/{k, , "" ", k,}:b 

D}) s(i t . . . . .  in' Jp,' "" "' Jpm- ~)' where Fns (i 1 . . . . .  in) is k-constant. 11, ..., l~ are 
the argument places of A --, B at which x k is bound by the quantifier (VXk) and 
k~, ..., k~ are the argument places of B at which x~ is so bound. (i,. . . . . .  j,n+m_q) 

represent the free variable places in (VXk) (A-+B)  and (i I . . . .  , in, jp, . . . . .  Jpm-,) 

represent those in A-+(VXk)B.  It can be seen by definition of the respective 
functions in .~-, their combination with s and the definition of sb/k, that 
N { (Fn =~ Gm)b/{ll ' ' ' ' '  /,~}: b ~ D} s(i,l . . . .  , j . . . . .  q) = N {(F n => G '~) sb / k ( i , , . . . ,  i n, 

Jr, . . . ,  j , ) : b ~  D } and (F~=>N { Gmb/{k~ . . . . .  k,} :be  D})s(i~, . . . ,  in, jp ,, "", Jn~,-) 
= Fns(il . . . . .  in)=> N {G'%b/k(Jl . . . .  , Jm): b ~ D}. This then will yield our seman- 
tic postulate q l. There is a similar transformation for q2. The advantages in 
expression can be seen for ql and q2, but the constructed postulates are more 
systematic in that the forms F"s(i~ . . . . .  in) for some F n ~ :  TM, s ~ S ,  i l ,  . . . ,  i ~ N  + 
are maintained wherever possible. 

i l i .  Reduced content semantics for BBdQ and its extensions 

We first present the motivation for introducing reduced modelling in 
the Routley-Meyer sentential relational semantics. There, the reduced model- 
ling simplifies the semantics in that the set of regular set-ups 0 in which all 
theorems are true becomes a singleton set {T} (cf. [22], p. 299). As a result, 
some of the semantic postulates simplify and the Entailment Lemma (cf. [22], 
p. 302) simplifies. Due to this latter simplification, the Detachment Rule, A, 
A ~ B = > B ,  and the Substitution of Equivalents Rule in either the form, 
A ~ - - ~ B ~ ( A ) ~ - - , ~ ( B ) ,  or the form , A,--,B, ~ ( A ) ~ ( B ) ,  preserve truth in the 
base set-up T. This seems quite intuitive and, in fact, it seems unintuitive for 
any of these rules not to preserve truth in the base set-up, which represents the 
actual world as far as the definition of validity is concerned. 

With respect to the content semantics of I and II, these rules do preserve 
membership of the truth-filter T, as can be seen by p6(a), p7(a), (b) and (c), 
especially. However, there are other properties that are satisfied in the base 
set-up of the Routley-Meyer semantics (with the constant-domain quan- 
tificational extension) that are not satisfied in the truth-filter of the above 
content semantics. These are the primeness and saturation properties, i.e. if 
A v B is true at the base set-up Tthen either A is true or B is true at T, and if 
(3x) A is true at Tthen Ad/x is true at T for some domain object d. These two 
properties seem quite intuitive for a truth-filter Tto satisfy if such a set Tdoes 
represent the body of truths. So, we form the reduced content semantics by 
adding semantic postulates corresponding to primeness and saturation. Both 
the reduced content semantics and the reduced Routley-Meyer semantics now 
have their key properties in common. 
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On the syntactic side, the meta-rules that are added to BBQ to yield BBaQ 
(see below) produce a desirable duality between conjunction and disjunction 
and between universal and existential quantification in the context of rules (cf. 
[6], Chapter 1, for discussion). The completeness theorem, proved below, will 
be the first completeness test these meta-rules will have, since the Rout- 
ley-Meyer constant-domain quantificational semantics is incomplete, at least 
for some strong relevant logics, and Fine's stratified domain semantics has not 
as yet been given a reduced modelling. 

The system BB~Q = BBQ+ MR1 + MR2, where: 

MR1. If A=~B then C v A = ~ C v B .  
MR2. If A=~B then (3x,)A=~(3xk)B. 

MRI and MR2 both carry the proviso that R6 is not used in the derivation 
A ~ B  to generalize on any free variables in A, except to prove a theorem. 

The BBdQ model structures (BBdQ m.s.) for the reduced content semantics 
are set out exactly as for BBQ model structures, but with the two following 
additional semantic postulates: 

p6(c) I f c w d e T t h e n  c ~ T o r  d~T. 
pl l(b) If ~ [F"sb/k(it . . . . .  i ,):beD} ~ T then F"sb/k(it, ..., i,)~ T, for some 

beD.  

It remains to show soundness and completeness of BBdQ with respect to the 
BBdQ content semantics. For soundness, we first show the following lemma: 

LEMMA 8. I f  A =~B, provided R6 is not used to generalize on any free 
variable of A, except to prove a theorem, then, if l(A)E T then I(B)~ T, for any 
interpretation I of a BBaQ m.s. M. 

PROOF. Let A =~ B with the proviso and let I(A)~ T. Let Xk~ . . . . .  Xk, " be the 
variables occurring free in the derivation, A ~ B ,  but are not free in A. Then 
lblxkl...b"/Xk,,(A)eT, for all b I . . . .  ,breeD. If C is an axiom, then 
Ibl/Xk, ...b'/Xk,,(C)e T, for all b t . . . . .  b, ,eD. All the rules except R6, MRI and 
MR2 clearly preserve membership of T, for any interpretation I in M. 

R6. If R6 is used to prove a theorem, (VXk)C(say), then lb/Xk(C) = T, for 
all beD,  for all interpretations I in M, since C is a theorem. Then, by the 
soundness argument for R6, I((VXk)C ) = T, for all such I. If R6 is not used to 
prove a theorem then it is not used to generalize on any free variable of A and 
must generalize one of the variables Xkl, ... ,  Xk, ., say Xkj. Since we assume that 
lbl/xk,...b"/Xk,,(E)eT, for all b I . . . . .  b,,6D, where E:::~(Vxk)E is the ap- 
plication of R6, lbTXk. . ,  b"/Xk," (without b~/Xk, ) ((VX)E)e T, by the soundness of 
R6. Hence, by redundancy, Ib'/Xk~ . . .b"/Xk,,((Vx)E)e T, for all b I . . . . .  b,,eD. 

MRI. Let C v F be derived from C v E using MRI, where E=~F, with the 
proviso. We inductively apply Lemma 8 to E=~F, and so, if I ( E ) e T t h e n  
I (F)eT,  for any I in M. We let I(C v E)~ T. By Lemma 7, I (C)uI (E)eT .  By 
p6(c), 1(C)~ Tor l (E)e T. Hence, I(C)e Tor I(F)e T, and, by p3(a), 3(b) and 6(a), 
I(C v F)e T. 
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MR2. Let (3x~)E be derived from (3xk)C, using MR2, where C=~E as 
above. Again, by Lemma 8, if l ( C ) e T t h e n  I(E)eT, for any I in M. Let 
I((3Xk)C)eT. By Lemma 7, U {lb/xk(C):beD} e T a n d ,  by Lemmas 2 and 3, 

{F~.ts~/k(i I . . . . .  i . ) :beD}e T. By pll(b),  F~.is~/k(i~, ..., i.)e T, for some 
beD. By Lemmas 2 and 3, lb/xk(C)eT, for some beD. By Lemma 8, 
lb/xA(E)eT, for this beD. Hence, F"e.ls~/k(j~ . . . . .  j,.)eT, for this b, using 
Lemmas 2 and 3. Then, by p9a and 6a, ~ {F~jsb/k(j, . . . . .  j, .):beD} e T and 

{Ib/xk(E): beD} e T and hence l((3xk)E)e T. 
Thus, Ib'/Xk...b'/Xk,.(B)eT, for all b~ . . . . .  b.,eD, and, in particular, 

l(B)e T, as required. 

THEOREM 5. (SOUNDNESS) For all formulae A, if A is a theorem of BBdQ 
then A is valid in the BBnQ content semantics. 

PROOF. Using the proof of Theorem 1, all the axioms of BBnQ are valid 
and all rules of BBnQ preserve validity. We need check only the two meta-rules 
MR1 and MR2. Moreover, by the proof of Lemma 8, both MR1 and MR2 can 
be seen to preserve validity. 

We follow the completeness preliminaries and the completeness proof given 
for Theorem 2. We indicate changes where appropriate. As before, we 
introduce the added individual constants, a~, a2 , . . . ,  a . . . . . .  which form the 
domain D,, and extend BBdQ to BBnQ '.by modifying A6 to A6' and adding 
these constants to the syntax. The essential difference in this proof is that the 
use of the set of theorems of BBQ' in defining IAI, T, and IAI ~< IBI is replaced by 
the set T' of BBnQ ' formulae, where T' satisfies the following properties: For 
formulae A, B, C, D of BBaQ ', 

(i) if ~ asdQ, A ~ B and A e T' then B e T'. 
(ii) if AET '  and B e T '  then A & B e T ' ,  
(iii) if A e T' and A ~ B e T' then B e T', 
(iv) if A ~ B e T '  and C ~ D e T '  then B ~ C ~ . A ~ D e T ' .  
(v) if A ~ B e T '  and A ~ C e T '  then A ~ B & C e T ' ,  
(vi) if A --* ,-- B e T' then B ---, ,-- A e T', 
(vii) if (VXk)(A-- .B)eT'  then A ~ ( V X k ) B e T ' ,  where x k is not free in A, 
(viii) if A v B e T '  then A c T '  or BET'.  
(ix) if Aa/xkeT ', for all aeDc, then (Vx~)AeT' ,  
(x) if (3Xk)AeT' then A~/xkeT ', for some aeO~, 
(xi) 
(xii) 

if I--- gndQ, A then A e T', and 
A" r T', where A" = A'a',/xi,...a',/xi,, xi, . . . . .  x~, being the free in- 
dividual variables of A', and A' being our arbitrary non-theorem of 
BBdQ. So A" is A' with its free individual variables replaced by their 
canonical valuations under I c. 

T' would then have sufficient properties to substitute for the set of theorems of 
BBdQ ' and have additional properties, viz. (viii) and (x), which would enable 
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p6(c) and pll(b) to be shown. Before constructing T', we show its use in 
defining Ial, T~ and JAI ~< IBI. 

IAI = n I { C : C  is a sentence of BBdQ ' and A.--,C�9 
Zc=di{lAl:Z is a sentence of BB~Q ' and A�9  

IAI ~< IBI = aIA ~ B � 9  T'. 
Further, the definitions of IAI*, Ihl n Inl, Ial u Inl, IZl~lnl  are independent of 
the particular formula A and B chosen to represent [AI and JBI, due to 
Substitution of Equivalents in T'. The definitions of (-]{[A]"b/{jl, ...,j,,} 
(a,,, .... aJ:b�9  and U {[A]"b/{jl . . . . .  jm}(ai,, ..., ai,):b~Dc} are also in- 
dependent of the particular formula A chosen to represent [A]", due to 
property (ix) and to the following: 

If (VXk)(A.--~B)�9 T' then (VXk)A,--~(VXk)B�9 T', and 
If (VXk)(A~--~B)~ T' then (3Xk)A*-*(:IXk)B�9 T'. 

We proceed to construct T'. The procedure follows the pattern for the 
construction of prime extensions to theories, as in [22], Chapter 4, modified to 
take in the quantificational properties given for T' by (ix) and (x) above. This 
modification will be based on the one used by Gabbay in [11]. In order to 
ensure that T' is also closed under the rules of BBdQ (except R6), we need to 
employ a special notion of deducibility in the construction process, illustrated 
on pp. 337-9 of [22], this notion having the respective rules built into it. 

We introduce D-BBaQ'-theories and the notions of primeness, richness, 
saturation and regularity for them. A D-BBdQ '- theory S is a set of formulae of 
BBnQ ' satisfying the following conditions: 

(i) if ~- nn~q, A --. B and A e S then B e S, 
(ii) if A � 9  and B � 9  then A&B�9  
(iii) i r A , S  and A---,B�9 then B �9  
(iv) if A- - .B �9  and C ~ D � 9  then B ~ C ~ . A ~ D � 9  
(v) if A ~ B s S  and A ~ C � 9  then A ~ B & C � 9  
(vi) if A --. --, B �9 S then B - ,  .-- A �9 S, 
(vii) if (VXk)(A--*B)�9 then A~(Vxk)BSS ,  where x k is not free in A. 

A D-BBnQ'-theory S is prime iff, whenever A v B ES, A � 9  or B�9 
A D-BBnQ'-theory S is rich iff, whenever A~/xk�9 for all aeD~, (VXk)A�9 
A D-BIVQ'-theory S is saturated iff, whenever (3xk)AsS, A~ for some 
a �9  c. 
A D-BBdQ'-theory S is regular iff, whenever A is a theorem of BBdQ ', A �9 

We need to establish a prime, rich, saturated and regular D-BBnQ'-theory 
T' such that A"r T'. We introduce a notion of derivability based on the 
conditions (i)-(vii) satisfied by D-BBaQ'-theories. A formula B of BBaQ ' is 
D-BBaQ'-derivable from a formula A of BBdQ ', written A ~nR~Q,B, iff B is 
derivable from A by successive applications of the following rules. 

(I) A =~ B, where I--- Bn,e, A ~ B, 
(II) A, B ~  A&B, 

8 - ' S t ud i a  Logtca  
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(III) 
(IV) 
(V) 
(VI) 
(VII) 
(Vm) 
OX) 
(X) 

A, A---,B=:,B, 
A - , B ,  C-~ D =, B--. C --.. A --. D, 
A ~ B ,  A ~ C ~ A - - - , B & C ,  
A--* ~ B = ~ B ~  ,,,A, 
(Vxk)(A---,B)=~A--,(Vxk)B, where x~ is not free in A, 
C v A=:,C v B, where A=~ B, 
(Vx~)A =,(Vx~)B, where A =:-B, 
(qxk)A =~OXk)B, where A =~B. 

A set Tof  formulae of BBnQ ' is D-BBdQ'-derivable from a set S of formulae of 
BI~Q', written S=,BB, o,T, iff, for some At . . . . .  A m e s  and some B~, ..., B , s  T, 
A I & . . .  &A.,=~an~e,Bt v ... v B.. A pair of sets of formulae (S, T)  of BB~Q ' is 
D-BBaQ'-maximal iff 

(1) T is not D-BB~Q'-derivable 
(2) S w T =  set of all formulae 

from (I)), 
(3) if (VXk)A ~ T then A~ T, 

from S, 
of BBaQ ' (and S c~ T-- O, since this follows 

for some a eD o and 
(4) if (3xk)AeS  then Aa/xkeS, for some a~D c. 

LEMMA 9. I f  (S, 7") is D-BBaQ-maximal then S is a prime, rich and 
saturated D-BBdQ'-theory. 

PROOF. The proof follows the method used on p.307 of 1-22]. 

LEMMA 10. (EXTENSION) I f  the set U, which is the singleton, {A"}, is not 
D-BBnQ'-derivable from the set T of  all theorems of  BBaQ then there is 
a D-BBnQ'-maximal pair (T' ,  U') such that T ~  T' and U c U'. 

PROOF. We enumerate all the formulae of BBdQ':At ,A2 . . . .  , A.,  ... We 
then define sets T~ and U i of formulae of BBdQ ' as follows: 

(i) T O = T and U a = U(=  {A"}). 
(ii) Ti+ 1 = T~ and Ui+I = U , u { A , + t } ,  if T~u {A,+~}=:-Bn~Q,U , and Ai+~ is 

not of the form (Vxk)A, for any k. 
(iii) T~+I = T~ and U,+I = U , u  {(Vxk)A,A~ if T,u and 

Ai+ ~ = (Vx~)A, for some k, a being the first new individual constant not 
occurring in {T i, U i, Ai+l}. 

(iv) T~+t = T~w{A,+~} and U,+t = U, if T~w {A,+t} #,BB~o,U, and Ai+l is 
not of the form (~txk)A, for any k. 

(v) T~+t = T~ u {(3xk)A, A~ and U;+I = U,, if T~ u {A~+,} #.nn~o,U, and 
A,+ ~ = OXk)A, for some k. a is again.the first new individual constant not 
occurring in {T i, U~, Ai+l}. 

There are always constants not occurring in {T~, U~, A~+,}, since T has no 
constants, U has finitely many and each of T~ and U~ includes only finitely 
many more than T~_t and U~_I, respectively. 

We let T ' = ~ T  i and U ' = ~ U , .  Then clearly T_~T', U c U '  and 
i i 

conditions (2), (3) and (4) of D-BtVQ'-maximality for (T ' ,  U')  all hold. We 
establish condition (1). We prove this by induction on i. Uo is not 
D-BIVQ'-derivable from T o, by assumption. We prove the induction step by 
contraposition. So, we let Ui+t be D-BBdQ'-derivable from T~+,. 
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Let Tik..J{ai+l}==~BBdQ, Ui. So, by (ii) and (iii) above, T / + I = T  i and 
Ui+ 1 = Ui w {Ai+ 1} or Ui+ 1 = Ui w {(VXk) A, Aa/xk}, according as Ai+ 1 is not 
or is of the form (Vxk)A , for some k. So, Ti~BadQ, Uiu{Ai+l}  or 
T i =~ BBdQ, Ui u {(VXk) A, Aa/xk}, accordingly. 

We show that if T~=~Bs~Q,U i u {(Vxk)A, A~/xk} then T~=~s~o,U ~ u {(VXk)A }. 
Let B1, ..., B m s T~ and C 1 . . . . .  C n ~ U i such that B~ &...  & B m 
=~sB~q, C1 v . . .  v C n v (Vx~) A v A~/xk. Since a is new to B l . . . . .  Bin, 
C~, . . . ,  C~, (Vxk )A ,  we can replace a in the derivation by an individual 
variable x~ which is new to the derivation and obtain B x & . . . & B m  
=~sB~Q, CI v ...  v Cn v (VXk)A v A~'/Xk. By rule (IX), (Vx l ) (B  1 &. . .&Bm)=~ 
=:.Ba~r v ...  v C~ v (Vxk)A  v A~'/Xk), and hence, since x I is not free in 
B~ . . . .  , B m, C~ . . . . .  Cn and (Vx~)A, B~&.. .&Bm=~s8~r v ... v C , v ( V x k ) A  
v ('r Since I-- s~r  B l &. . .&Bin =~s~r v ... 
. . .  v C~ v (Vxk )A  and hence T/=~Bs~Q,U~ {Ai+~}, which now holds whether 
A~+x has the form (VXk)A,  for some k, or not. 

Combining T~ w {A~+ ~} =~ss~,U~ and T~=~as~r U~ ~ {A,+ ~}, we can derive 
T~ =~s~,U~, as is required, in the manner of [-22], Chapter 4, using rule (VIII). 

Let T/w {Ai+~}~.~s~q,U~. So, by (iv) and (v) above, Ui+t = U i and T~+~ 
= T ~  {A~+~} or T~+~ = T ~  {(~xk)A, Aa/Xk}, according as Ai+~ is not or is of 
the form (3x~)A, for some k. Since T~+~=~a~q, Ui+~, T ~  {Ai+~}=~a~q, Ui or 
T~w {~x~)A,A~ =~ ~ e ,  Ui. Since T ~  {A,+,} g/*.~r T~w {(-'Jx~) A,A"/Xk} 
=~a~,,o, Ur Let B~ . . . . .  B,,eT~ and C ~ , . . . , C , ~ U ~  such that B ~ & . . . & B m  
&(3xk)A&A'~/x~=~ng,~q,Ct v ...  v C,,. Since a is new to B~ . . . . .  Bm, C~ . . . . .  C, 
and (3Xk)A, we can replace a in the derivation by an individual varia- 
ble x~ which is new to the derivation and obtain B~&.. .  
. . . & B m & ( 3 x k ) A & A " / x ~ = ~ q , C ~  v . . . v C  .. By rule (X), (3x~)(B~&. . .  
. . . & B , , & ( ] x ~ ) A & A ~ " / x ~ ) ~ , o , ( ] x ~ ) ( C ~ v . . . v C , ) ,  and, since x~ is not 
free in B~, ..., Bin, CI, ..., C, and ~x~)A, B ~ & . . . & B m & ~ x ~ A & O x t ) ( A ~ ' / x ~ ) ~  
=~sa~,C~ v ... vC~. Since k- 'Ba"Q,(3Xk) A - * ( = I X t ) ( A X ' / x k ) ,  B ~ & . . . & B , , , &  
& (]XR) A ~aa,~q,C~ v ...  v C,, and hence T~ w {Ai+ ~} =~a~q, Ui, contradicting 

Then T~w{Ai+~}=~S~Q,U i and, as already proved, T~=~a~Q,U~. This 
establishes the induction step, since then T~ ~aa~o,U~ implies T~+ ~ ~aa~p, Ui+ ~. 
Then T' ~ aa~Q,U', since if T'::> aa~o,U' then D t & . . . & Dm=~ aa~q,E ~ v ... v E~, 
for some {D~ . . . . .  Din} ~_ T' and {Et . . . . .  E,} _ U', and hence T~=~aadq, U~, for 
some i such that {D, . . . . .  Din} -~ T~ and {E 1 . . . . .  E,} ~ U~. Thus, condition (1) 
of D-BB~Q'-maximalit~ , is established for (T' ,  U')  and the lemma is proved. 

LEPTA I1. {A"} is not D-BB~Q'-derivable from the set o f  theorems of  BBaQ. 

PROOF. Let T=~as~o,{A"}, where Tis the set of theorems of BI~Q. Replace 
each individual constant occurring in this derivation by a distinct individual 
variable new to the proof. Thus, we obtain T=~aa~q,{A'X~,/x~,... x,,/xi,}, where 
x~, ...x~. are the original free variables of A' and x~, . . . . .  x~, are the substituted 
variables new to the derivation. Given that all formulae in the derivation are of 
BB~Q, each of the rules (I)-(X) preserve theoremhood in Bt~Q since they each 
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constitute derived rules of BBdQ or derived meta-rules of BB~Q. Hence 
A'X,l/Xi... x~,/x~ is a theorem of BBdQ, and by R6 and A6, A' is also a theorem, 
contradicting our assumption. 

LEMMA 12. The set T' of formulae of BBUQ ', constructed by Lemma 10, 
satisfies the properties (i)-(xii). 

PROOF. By Lemmas l l  and 10, (T' ,  U') is D-BBdQ'-maximal, T~_ T' and 
U _ U', where T and U are as given. By Lemma 9, T '  is a prime, rich and 
saturated D-BBdQ'-theory, and thus T' satisfies properties (i)4x). Since T' and 
U are disjoint, A"~ T', which yields property (xii). For the remaining property 
(xi), we need to show that T' contains all theorems of BB~Q '. Let A(a~, . . . . .  aJ  be 
such a theorem. Replace all individual constants in the proof of A(a~, . . . . .  ai, ) by 
variables new to the proof, obtaining A(xj, . . . .  , xj,), a theorem of BB~Q. By R6, 
(Vx~, ..... xj~)A(xj, ..... xj.)~ T and, since T_q T', (Vx~, . . . . .  x~)A(xj, ..... xj.)~ T'. 
By A6' and property (i), A(ai, . . . . .  ai,)eT', as required. 

THEOREM 6 (COMPLETENESS). For all formulae A, if A is valid in the BBaQ 
content semantics then A is a theorem of BBaQ. 

PROOF. Using the above preliminaries and our arbitrary non-theorem A' 
of BBaQ, we proceed to check out the canonical BBdQ model structure M c with 
canonical interpretation I c. These are set up exactly as for Theorem 2 with T', 
constructed above, used in lieu of the set of theorems of BI3aQ '. The closure 
conditions follow, as shown for Theorem 2. The (old) semantic postulates 
pl(a)-p7(c) all hold as a result of properties (ii)-(vi) and (xi) of T'. This also 
applies to postulates, pS(a), 9(a) and 10. Property (ix) is also needed for p8(b), 
9(b) and I l(a), in lieu of R6. Postulate p6(c) requires property (viii) and pl l(b) 
requires (x). Thus Mc is a BBaQ model structure. I c again satisfies: 
lc(A'(xi,  . . . .  , x J )  = [A'(ai, . . . . .  at,,) [. T o  s h o w  t h a t  Ic(A'(xi,  . . . . .  -~i.)) ~ We, w e  

need to show that IA"]r T~, i.e. A"r  T'. But this is property (xii) of T'. 
Hence, A' is not valid in Me and A' is invalid in the BBaQ content semantics, 

as required. 

IV. Reduced content semantics for extensions of BBdQ. 
Generally, the results of II for unreduced content semantics for extensions 

of BBQ also apply here for reduced content semantics for extensions of BBUQ. 
The general soundness proof follows as in II, as here we just have the two 
additional semantic postulates p6(c) and pll(b). The general completeness 
proof also follows as in II, except that we use appropriate properties of T', 
which is constructed in the same manner as in III, but is an extension of/~Q 
instead of BBdQ, with the additional rules o f /~Q being preserved in T'. 

However, in the special case where there is a variable x k (say) which can 
occur free in any of the premises of a rule but is not free in the conclusion of the 
rule, it is easier to restate the rule by generalizing with respect to x k each 
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premise in which it can occur free and then construct the semantic postulate for 
this restated rule. This avoids the problem of T' not preserving R6 and the 
restated rule is deductively equivalent in ~Q anyway. 
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