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There have been many attempts (!) to understand the gravitational interaction
in terms of quantum field theory in flat Minkowskian space-time in analogy to the
electromagnetic interaction. Since in the case of the electromagnetic interaction there
is excellent agreement between the quantized theory and experiment (%), we also believe
that the gravitational interaction can be and should be understood by means of quantum
field theory. This is the starting point of our discussions.

The motion of the perihelion of a planet is described in Einstein’s theory of gravi-
tation by the Hamiltonian
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if we choose harmonic co-ordinates (*) and expand the Hamiltonian up to the order ¢ 2.
The extension of eq. (1) to the two-body problem is given by (%)
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from which we can obtain the Einstein-Infeld-Hoffmann equation. In this letter we
want to discuss the question whether or not Hamiltonians (1) and (2) are the same in
quantum theory.

() See, e.g., X, N, Gurra: Proc. Phys. Soc., A 65, 608 (1952); W. E. THIRRING: 4nn. of Phys., 16, 96
(1961); R. P. FEYNMAN: dcta Phys. Polon., 24, 697 (1963); B. S. DEWITT: Phys. Rev., 162, 1195,
1239 (1967).

(®) See, e.g., 3. J. BRODSKY and 5. D. DRELL: dnn. Rev. Nuecl. Sci. (to be published).

(*} V. Yock: The Theory of Space-Time and Gravilation, 2nd Revised Edition (New York, 1964).

(*) Nee, e.g., L. D. LANDAU and E. M. Lir3uITZ: The Classical Theory of Fields, Revised Second Edition
(New York, 1962).
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Here we want to point out that there seems to exist (¥) an erroneous belief that
only three diagrams contribute to the classical process. Although in egs. (1) and (2) the
terms linear in k eorrespond to a tree diagram (the Born term), the quadratic term in %
corresponds to fourth-order diagrams each of which contains a closed loop; the latter
is a «radiative correction» term. Since the quantum theory of gravitation is un-
renormalizable by standard criteria, almost nothing is known about how to extract
finite and. physically meaningful radiative corrections from the results in higher orders (5).
We will extract a meaningful term as a fourth-order potential.

On the other hand there seems to exist an argument that the quantum theory
should coincide with the ¢-number theory in the classical limit because both are invariant
with respect to the general co-ordinate transformation. As has been pointed out by
Fock (3), however, the invariance with respect to general co-ordinate transformations
is not a strong constraint. If we choose harmonic co-ordinates, there remains only
Lorentz invariance. We can indeed prove that the equation of motion derived from
eq. (2) is Lorentz covariant up to the approximation considered above irrespective of
the numerical factor of the last term of eq. (2). It will be shown further that in the case
of the massless Yang-Mills field which possesses a non-Abelian invariant group like the
gravitational field the quantum theory does not coincide with the e-number theory in
the classical limit.

For a long time it was believed that the experimental value and the theoretical value
resulting from Einstein’s theory for the motion of the perihelion of Mercury were in
excellent agreement. However, DICKE and GOLDENBERG (?) have claimed that there
is a diserepancy between the values due fo the solar oblateness. Therefore we want
to discuss also the question whether or not we can explain the Dicke-Goldenberg experi-
ment in the quantum theory.

Let us calculate explicitly the fourth-order potential from quantum theory in order
to answer the questions mentioned above in the following steps: i) we construct the
Lagrangian; ii) we calculate the fourth-order S-matrix by the covariant formalism ()
in the momentum representation; iii) we integrate over the energy variable of a elosed
loop by means of the contour method; iv) we expand the result in terms of the inverse
of the two masses m, and m,; v) by Fourier transformation we obtain the r-representa-
tion; vi) we finally extract the potentials of the form k2m?3/c2+?. From the resulting
potential we must subtract the second Born term using an expansion up o the order o2

First of all we must choose the type of field by which we represent the matter.
We calculate the potential in the cases of the scalar field and the Dirac field.

We begin with constructing the Lagrangian. Since the explicit form of the Lagran-
gian in the case of the scalar particle is well known (%) and is too lengthy to be written
down here, we do not write it explicitly, but only comment that it can be obtained by
two different approaches. One is to start from the general co-ordinate—transformation—
invariant Lagrangian density

1

@) L= 16k

— 1
vVgR— 5'\/9 (aﬂ‘pav’?gm + mip?),

) Sec, e.g., E. CORINALDESI: Proc. Phys. Soc., A 69, 189 (1956). Iis calculations are incorrect.
Ve obtain using his linear theory # = k*mgxjctr' (3m,+ 4m,) instead of his ey. (28), x = Lenaxjerrt
-(4my + 5m,;). There are many other papers which state the belief mentioned in the text.

(®) See, e.g., B. S. DEWITE: Phys. Rev., 162, 1239 (1967), especially p. 1246.

(/) R. H. Dickg and H. M. GOLDENBERG: Phys. Rev. Lelt., 18, 313 (1967).

(®) Even if we use «a new improved energy-momentum tensor » the final results do not charge. Sec
C. (. CALLAN jr., 8. ConeMaN and R. Jacgiw: MIT preprint CTP No. 113.
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and expand it in powers of the gravitational constant by substituting

(4) Guw = Opy + xhy, (expansion F),
or
(5) VGG = Oy + shy, (expansion G),

where h,, is the field of the graviton and 32ax?=1Fk ().

The other way (1%) is to start from Minkowskian space and to construct the Lagran-
gian by means of gauge invariance. This invariance is necessary for the theory to be
compatible with Lorentz invariance (11). If we take into account self-interactions the
invariant group is uniquely enlarged from the Abelian gauge group into a non-Abelian
group.

Although the two approaches are equivalent, the latter seems to be more close to
the method in the case of electromagnetic interaction. The explicit form of the inter-
action Lagrangian density in the case of the Dirac field is given by the latter approach
as follows:

(6) L= g Py {W«Vu av)) P — Ay, W[((Vlal» + m]l/)} -
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where ((7961)):%(;)931—‘6_1319—1— yﬁg-ifen) and 1 is an arbitrary constant. This
Lagrangian corresponds to the expansion F in the former approach and is given uniquely
except for the A dependence.

Using these Lagrangians and the well-known propagators we can calculate the
S-matrix. Some of the fourth-order Feynman diagrams are given in Fig. 1. Here
only a), b), ¢) and d) contribute to the potential considered (12). There are no ultraviolet
or infra-red divergences in the quantities which we want to calculate. This is to be
expected; the former should not exist if the theory works, since the fourth-order diagrams
are the lowest-order ones which contribute to the potential of the type »2, and the
latter also should not exist in the order ¢ 2 since the form of radiation of gravitational
waves contains a factor ¢=5.

BN

Fig. 1. — Some of the fourth-order diagrams. The wavy line represents the graviton and the solid
line matter.

(*) The normalization constant of thc propagator of the graviton is different from the case of
16axs= /.

() See, e.g., W. W¥s9: Helr. Phys. dete, 38, 469 (1965); 8. N. Grera: Phys. Rer.. 96, 1683 (1954).
(*'y 5. WEINBERG: I’hys. Rev., 138, B 988 (1963).

(") The diagram which contains a loop of fictitious quanta introduced by FEyNMAN does not contribute
to the potential considered here.
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After lengthy calenlations we obtain the spin-averaged results given in Table I.
We summarize the final results for the fourth-order potential by
1 &2
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for both the scalar field and the Dirac field.

TasLe I. — The contributions from graphs to the poteniial. Each value represents the
numerical factor of the potential of the form m, my(m; + my)k*/c2r®:. We enumerate in
column a’ the value to which we subtract the second-Born term from the contribution
from graph «a).

o’ b e d Total
F 3 2 —4 1 1
scalar 2 z
¢ 3 2 1 —2 1
F 2 3242 —3-—21 1
Dirac it i L 1 z
G i+ 1 342 +3—21 —2 ¥

Before discussing the results, we make a few comments. The total results do not
depend on the expansion F or G ag should be the case and they do not depend on the
constant 4 in the case of the Dirac field. It is worth mentioning that the terms quadratic
in % and trilinear in m are given exaetly by eq. (7); terms sueh as k2m?2/c272 x f{k/pr) do
not appear, where f is an arbitrary fuuction and not a constant.

We can see from eq. (7) that the resulting potential is the same as the last term of
eq. (2). Thus we can extract a finite and physically meaningful radiative correction in
spite of the unrenormalizability of the theory; the last term of eq. (2) can be understood as
a radiative correction in our approach. This term coineides with the ¢-number theory,
while it cannot explain the Dicke-Goldenberg experiment. Even if we take into account
the effects of other interactions such as the strong interaction, the situation is still the
gsame because of the gravitational Ward identity for the two-graviton vertex. On the
other hand the scalar-tensor theory (13) cannot be consistently quantized at least in
the perturbation approach (4). Therefore if the Dicke-Goldenberg experiment and
its interpretation are correct, we cannot explain the experiment on our fundamental
assumption that quantum theory is able to describe correctly elassical processes in the
classieal limit. This is a very serious problem.

Similarly we can calculate the fourth-order potential in the cases of the electro-
magnetic field and the massless Yang-Mills field. The Hamiltonian obtained is the
same as Darwin’s formula () in the case of the electromagnetic field, while in the massless
Yang-Mills field it differs from the corresponding « classical » one. In general, in the
case of fields introduced artificially, the fourth-order potential obtained in the quantum
theory differs from the « classical » one. Thus the correspondence principle does not hold
in general in the quantum field theory. It is remarkable that it holds both in the case
of the electromagnetic field and the gravitational field which really exist in nature.
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