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Fourth.Order Gravitational Potential Based on Quantum Field Theory. 
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T h e r e  h a v e  been  m a n y  a t t e m p t s  (1) to  u n d e r s t a n d  t h e  g r a v i t a t i o n a l  i n t e r a c t i o n  
in t e r m s  of q u a n t u m  field t h e o r y  in f iat  Mi nkowsk i an  space - t ime  in  ana logy  to t h e  
e l ec t romagne t i c  i n t e r a c t i o n .  Since in t h e  case of t h e  e l ec t romagne t i c  i n t e r a c t i o n  t h e r e  
is exce l len t  a g r e e m e n t  b e t w e e n  t h e  q u a n t i z e d  t h e o r y  a n d  e x p e r i m e n t  (2), we also be l ieve  
t h a t  t he  g r a v i t a t i o n a l  i n t e r a c t i o n  can  be  a n d  shou ld  be  u n d e r s t o o d  b y  m e a n s  of q u a n t u m  
field t heo ry .  Th i s  is t he  s t a r t i n g  p o i n t  of our  discussions.  

T h e  m o t i o n  of t h e  pe r ihe l ion  of a ptane~ is desc r ibed  in E i n s t e i n ' s  t h e o r y  of gravi -  
t a t i o n  b y  t he  H a m i l t o n i a n  

p2 p4 k m  M 3k M p  ~ k 2 M 2 
(1) H - -  + - -  , 

2~rb 8c 2 nv 3 r 2c 2 m r  2c 2 r 2 

if  we choose h a r n m n i c  co -o rd ina t e s  (a) a n d  e x p a n d  t he  H a m i l t o n i a n  up  to t he  o rde r  c-L 
The  ex t ens ion  of eq. (1) to  t h e  t w o - b o d y  p r o b l e m  is g iven  b y  (4) 

7 PI"P2 ( P l r ) ( p 2 r ) ]  k 2 m l m z ( m l ~  mz) 

f r o m  w h i c h  we can  o b t a i n  t h e  E i n s t e i n - I n f e l d - H o f f m a n n  equa t ion .  I n  th i s  l e t t e r  we 
w a n t  to  discuss t h e  ques t ion  w h e t h e r  or n o t  H a m i l t o n i a n s  (1) a n d  (2) are  t h e  same in  
q u a n t u m  theo ry .  

(~) ace. e.g., ,~. N. GUPTA: Proc. Phys. Soc., A65, 608 (1952); %'. E. TIiIRRING: Ann. o] Phys., 16, 96 
(1961); IL P. FEYN.~[AS: Acta Phys. Polos,, 24, 697 (1963); B. S. I)EWITT: Phys. Rev., 162, 1195, 
1239 (1967). 
(2) See, e.g., S. J. BRODSKY and S. D. DRELL: Ann. Rev. Nucl. Scl. (to be published). 
(3) V. FOCK: The Theory o] Space-Time a~.d Gravitation, 2nd Revised Edition (New York, 1964). 
(~) See, e.g., L. D. LANDAU and E. M. LIF.q~[TZ: The Classical Theory of Fields, Revised Second Edition 
(New York, 1962). 
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Here we want  to point  out that  there seems to exist (5) an erroneous belief that  
only three diagrams contribute to the classical process. Although in eqs. (1) and (2) the 
terms linear in k correspond to a tree diagram (the Born term), the quadratic term in k 
corresponds to fourth-order diagrams each of which contains a closed loop; the latter 
is a (( radiative correction ~ term. Since the quantum theory of gravitation is un- 
renormalizable by standard criteria, almost nothing is known about how to extract 
finite an4 physically meaningful radiative corrections from the results in higher orders (s). 
We will extract a meaningful term as a fourth-order potential. 

On the other hand there seems to exist an argument that  the quantum theory 
should coincide with the c-number theory in the classical limit because both are invariant  
with respect to the general co-ordinate transformation. As has been pointed out by 
FocK (3), however, the invarianee with respect to general co-ordinate transformations 
is not a strong constraint. If we choose harmonic co-ordinates, there remains only 
Lorentz invariance. We can indeed prove that  the equation of motion derived from 
eq. (2) is Lorentz covariant up to the approximation considered above irrespective o/ 
the numerical/actor o/the last term o] eq. (2). I t  will be shown further that  in the case 
of the massless Yang-Mills field which possesses a non-Abelian invariant  group like the 
gravitat ional field the quantum theory does not coincide with the c-number theory in 
the classical limit. 

For a long time it was believed that  the experimental value and the theoretical value 
resulting from Einstein's theory for the motion of the perihelion of Mercury were in 
excellent agreement. However, DICKE and GOLDENBERG (7) have claimed that  there 
is a discrepancy between the values due to the solar oblateness. Therefore we want 
to discuss also the question whether or not we can explain the Dicke-Goldenberg experi- 
ment  in the quantum theory. 

Let us calculate explicitly the fourth-order potential from quantum theory in order 
to answer the questions mentioned above in the following steps: i) we construct the 
Lagrangian;  ii) we calculate the fourth-order S-matrix by the covariant formalism (~) 
in the momentum representation; iii) we integrate over the energy variable of a closed 
loop by means of the contom" method; iv) we expand the result in terms of the inverse 
of the two masses m~ and m2; v) by Fourier transformation we obtain the r-representa- 
t ion;  vi) we finally extract the potentials of the form k~mS/c~r ~. From the resulting 
potential  we must  subtract  the second Born term using an expansion up to the order c -~. 

Firs t  of M1 we must choose the type of field by which we represent the matter.  
We calculate the potential in the cases of the scalar field and the Dirae field. 

We begin ~-ith constructing the Lagrangian. Since the explicit form of the Lagran- 
gian in the case of the scalar particle is well known (~.s) and is too lengthy to be writ ten 
down here, we do not  write it  explicitly, but  only comment that  it  can be obtained by 
two different approaches. One is to start from the general co-ordinate-transformation- 
invar iant  Lagrangian density 

(a) 
1 1 

~ f -  16~k ~ /yR-  ~ ~ /~ (~ .~g .~  + m ~ ) ,  

(~) Sec,  e.g., E. CORINALDESI: Proc. Pt~ys. See., A 6 9 ,  189 (1956).  I I i s  c a l c u l a t i o n s  a re  i nco r r ec t .  
W e  o b t a i n  u s i n g  h i s  l i n e a r  t h e o r y  ~ ~ kBm~x/c~r ' (3m2 § 4 m l )  i n s t e a d  of  h i s  eq-  (28), ~ ],~m,.x/c2r ~ 
"(4m2 + 5ml ) .  T h e r e  a r e  m a n y  o t h e r  p a p e r s  w h i c h  s t a t e  t h e  be l i e f  m e n t i o n e d  in  t h e  t e x t .  
(~) See,  e.g., B. S. D E W I T T :  Phys .  Rev.,  162,  1239 (1967),  e s p e c i a l l y  p. 12~6- 
(~) t~. H .  DICKE a n d  H .  M. GOLDENBERG: Phys.  Rev. Left. ,  18, 313 (1967).  
(~) E v e n  i f  we  u s e  ~, a n e w  i m p r o v e d  e n e r g y - n l o m c n t u m  t e n s o r  ~, t h e  f ina l  r e s u l t s  do n o t  c h a r g e .  See 
C. (9. CALLA~r j r . ,  S. ('(m~:M.~N a n d  R .  JACKIW: M I T  p r e p r i n t  C T P  No .  113. 
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a n d  e x p a n d  i t  in  powers  of t h e  g r a v i t a t i o n a l  c o n s t a n t  b y  s u b s t i t u t i n g  

(4) g#v = ~g~ + uhg~ (expans ion  iF) ,  

or 

(5) ~/ggg~ = 6 ~  + ~ h ~  (expans ion  G) , 

w h e r e  h~v is t h e  field of t he  g r a v i t o n  a n d  32z~ 2 = k (% 
The  o t h e r  way  (~o) is to  s t a r t  f rom Mi nkow s k i an  space a n d  to c o n s t r u c t  t h e  L a g r a n -  

g ian  b y  m e a n s  of gauge  i n v a r i a n c e .  Th i s  i n v a r i a n c e  is necessa ry  for  t h e  t h e o r y  to  be  
c o m p a t i b l e  w i t h  L o r e n t z  i n v a r i a n e e  (n).  I f  we t a k e  i n to  a c c o u n t  se l f - in t e rac t ions  t he  
i n v a r i a n t  g roup  is uniquely en l a rged  f rom t h e  Abe l i an  gauge  g roup  i n to  a n o n - A b e l i a n  
group.  

A l t h o u g h  t h e  two a p p r o a c h e s  are  equ i va l en t ,  t h e  l a t t e r  seems to be  more  close to 
t h e  m e t h o d  in  t h e  case of e l e c t r om agne t i c  i n t e r a c t i o n .  The  expl ic i t  f o r m  of t h e  in te r -  
ac t ion  L a g r a n g i a n  d e n s i t y  in  t h e  case of t h e  D i r ac  field is g iven  b y  t h e  l a t t e r  a p p r o a c h  
as follows : 

1 ] 
3 2  _ ' 

where  ,,,,----((Yqa~))=�88 a n d  2 is an  a r b i t r a r y  c o n s t a n t .  This  
L a g r a n g i a n  co r r e sponds  to t h e  expans ion  F in t h e  f o r m e r  a p p r o a c h  a n d  is g iven  uniquely 
excep t  for  t he  ~ dependence .  

Us ing  the se  L a g r a n g i a n s  a n d  t he  we l l -known p r o p a g a t o r s  we can ca lcu la te  t h e  
S - m a t r i x .  Some of t h e  f o u r t h - o r d e r  F e y n m a n  d i ag rams  are  g iven  in  Fig.  1. Here  
on ly  a), b), c) a n d  d) c o n t r i b u t e  to  t h e  p o t e n t i a l  cons ide red  (~2). The re  are  no u l t r av io l e t  
or i n f r a - r e d  d ive rgences  in  t h e  q u a n t i t i e s  wh ich  we w a n t  to  ca lcula te .  This  is to  be  
e x p e c t e d ;  t he  f o r m e r  shou ld  no t  ex is t  if  t h e  t h e o r y  works ,  s ince t h e  f o u r t h - o r d e r  d i ag rams  
are  t he  lowes t -o rde r  ones  wh ich  c o n t r i b u t e  to  t h e  p o t e n t i a l  of t h e  t y p e  r -2, a n d  t h e  
l a t t e r  also shou ld  n o t  ex i s t  in  t h e  o rde r  e -2 s ince t h e  fo rm of r a d i a t i o n  of g r a v i t a t i o n a l  
waves  c o n t a i n s  a f ac to r  e -~. 

a) b) c) ct) e) t-) g) 

Fig. I. Some of the fourth-order diagrams. The wavy line represents the graviton and the solid 
line matter. 

('~) The normalization constant of tile propagator of the graviton is different from the case of 
16,~• = k. 
(,o) See, e.g., W. "WYSU: Heir. Ph~is. Acta, 38, 469 (1965); S. N. (~UPTA: Ph!;s. Re~,.. 96, 1683 (1954). 
('~) S. WEIh'BER(~: Phys. Ray., 138, B 988 (1965). 
(") The diagram which contains a loop of fictitious quanta introduced by FEYNMAN dOCS not contribute 
to the potential considered here. 
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After lengthy calculations we obtain the spin-averaged results given in Table I. 
Wc summarize the final results for the fourth-order potential  by 

1 k ~ 
(7) V = -- - -  m l m 2 ( m  I + m ~ ) ,  

2 c2r  2 

for both the scalar field and the Dirac field. 

TABLE I.  - The contributions from graphs to the potential. Each value represents the 
numerical factor o] the potential o] the ]arm mime(m1+ m2)k~/e~r 2. We enumerate in 
column a'  the value to which we subtract the second-Born term from the contribution 
from graph a). 

a '  b c d Total 

F ~ 2 - - 4  l ! 
scalar 2 

G ~ 2 --1 --2 �89 

F �88 ~ i +  ;t - - { - - 2 ; t  1 x 
Dirac 

G � 8 8  A 4a+ ~ + { - - 2 A  --2 �89 

Before discussing the results, we make a few comments. The total  results do not 
depend on the expansion F or G as should be the case and they do not depend on the 
constant 2 in the case of the Dirac field. I t  is worth mentioning that  the terms quadratic 
in k and tri]inear in r~ are given exactly by eq. (7); terms such as k2mZ/cZr~ • do 
not appear, where f is an arbi t rary function and not a constant. 

We can see from eq. (7) that  the resulting potential  is the same as the last term of 
eq. (2), Thus we can extract a ]inite and physically meaningf,ul radiative correction in 
spite of the unrenormalizability of the theory; the last term of eq. (2) can be understood as 
a radiative correction in our approach. This term coincides with the cmumber theory, 
while it cannot explain the Dicke-Goldenberg experiment. Even if we take into account 
the effects of other interactions such as the strong interaction, the situation is still the 
same because of the gravitational Ward identi ty for the two-graviton vertex. On the 
other hand the scalar-tensor theory (~s) cannot be consistently quantized at least in 
the perturbation approach (14), Therefore if the Dicke-Goldenberg experiment and 
its interpretat ion are correct, we cannot explain the experiment on our fundamental 
assumption that  quantum theory is able to describe correctly classical processes in the 
classical limit. This ia ~ very serious problem. 

Similarly we can calculate the fourth-order potential  in the cases of the elec~ro- 
magnetic field and the massless Yang-Mills field. The tIamiltonian obtained is the 
same as Darwin's formula (4) in the case of the electromagnetic field, while in the massless 
Yang-Mills field it differs from the corresponding (, classical ~) one. In general, in the 
case of fields introduced artificially, the fourth-order potential obtained in the quantum 
theory differs from the (, classical * one. Thus the correspondence principle does not hold 
in general in the quantum field theory. I t  is remarkable that  it holds both in the case 
of the electromagnetic field and the gravitational field which really exist in nature. 

* * *  

The author wishes to thank Profs. K. KAWARABAYASHI, S. MACHIDA and K. NI- 
SH]JIMA for discussions. 

(ta) ( , .  B~.~NS a n d  R .  H .  D I c K E :  Phys. Rec., | Z d .  9 2 5  (1961) .  
( " )  Y. IWA.nAKI: Ph~ls. Rcv. D, 2, ~255 (19710: Progr. Theor. Phys., 44, la76 (1970). 


