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SLx Factors Which Affect the Condition Number of 
Matrices Associated with Kriging 1 

George J. Davis 2 and Max D. Morris 3 

Determining kriging weights to estimate some variable of  interest at a given point in the field 
involves solving a system of  linear equations. The matrix o f  this linear system is subject to numerical 
instability, and this instability is measured by the matrix condition number. Six parameters in the 
kriging process have been identified which directly affect this condition number. Analysis o f  a series 
o f  648 experiments gives some insight on these parameters, and how the condition number relates 
to kriging variance. 

KEY WORDS: stability, conditioning, robustness. 

INTRODUCTION 

Many papers have been published that give advice to scientists involved with 
kriging. The advice ranges from sampling adequately (Webster and Oliver, 
1992), to selecting a data network (Morris, 1991; Yfantis, Flatman, and Behar, 
1987), to new applications of kriging (Oliver and others, 1992). 

The condition number of the kriging matrix also has been a popular topic. 
Diamond and Armstrong (1984) discuss condition numbers in a geostatistical 
context, and show examples of ill-conditioning using close data points. Posa 
(1989) considers the effect of selecting one variogram model over another on 
the condition number. Included are some experiments with various data densities 
and ranges. O'Dowd (1991) considers the condition number of kriging systems 
with various nugget and sill values for a fixed data configuration. Finally, Aba- 
bou, Bagtzoglou, and Wood (1994) discuss the condition number of covariance 
matrices for five different covariance models. 

This paper is an attempt to study systematically the condition number as a 
function of all of the parameters in the kriging exercise. Specifically, we discuss 
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the effect of the (i) data network, (ii) variogram model, (iii) nugget effect, 
(iv) range, (v) selecting kriging weights using the covariance matrix or semi- 
variogram matrix, and (vi) sill value. A series of 648 experiments were per- 
formed to examine the change in the condition number as each of these six 
parameters are changed. 

In the next section, we present an overview of the kriging problem, and 
examine the six factors. We then present a general discussion of mathematical 
conditioning and numerical stability. Relevant quantities are defined and de- 
scribed in the context of geostatistics. In the next section, we take a detailed 
look at the results of the experiments. This leads to the final section of conclu- 
sions. 

OVERVIEW OF THE KRIGING PROBLEM 

Kriging is an important technique for estimating spatially distributed data. 
Kriging was used first almost 40 years ago (Cressie, 1990) and is applied to 
mining (Krige, 1951; Journel and Huijbregts, 1978), meteorology (Cressie, 
1990), estimating the risk of childhood cancer (Oliver and others, 1992), and 
many other fields. Given a set of sample points within some closed region, and 
measurements of some variable of interest at these points, kriging is used to 
predict the variable of interest at any other point in the region. Kriging can take 
many forms, and in this paper we consider the theory and application of ordinary 
kriging. The method proceeds through well-defined stages, each of which re- 
quires care and some amount of judgment. The quality of the final predicted 
values depends on these judgments. 

First, a network of sample points must be determined. Several authors have 
considered the effects of different data networks (Morris, 1991; Yfantis, Flat- 
man, and Behar, 1987) and the importance of sampling adequately (Webster 
and Oliver, 1992). It is critical that enough points are selected to estimate the 
sample semivariogram meaningfully: 

(h )  - 1 ~ (Z(Xi)  _ Z (x  i '}- h))  2 
2m(h) i 

Here, h is the distance between two sample points, rn (h) is the number of pairs 
of points separated by distance, h, and z is the variable of interest, regarded as 
a realization from a stationary stochastic process. The sample semivariogram is 
used to model the semivariogram 

"y(h) = � 8 9  - z ( x  + h)) 2 

where E is the expected value. 
Having a plot of observed values of "~ (h), these points are fit to one of the 
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permissible models for the variogram. There are many possible selections, and 
among the more popular are spherical, exponential, and Gaussian models. 

Typically these functions are scaled to have limiting values of 1 as h gets 
large, and in this example 1 is termed the "si l l"  value. Sill values may not 
always be 1. Scaling of the data (and consequently of the variogram functions) 
can result in arbitrary values for sill. This, in turn, can lead to potentially 
dangerous numerical instability in the resulting kriging matrix. This instability 
is manifested by a kriging matrix with a large condition number, which is caused 
in this example by the interaction of large and small numbers. 

The three variograms also have a parameter a, termed the range of influ- 
ence. Usually selected as a percentage of the largest possible h value in the 
sample, a indicates when the variogram has effectively reached its sill. In the 
exponential and Gaussian model, a is by convention the distance at which the 
variogram value is approximately 95 % of the sill value. Precisely determining 
this range of influence parameter from data can be difficult, but small changes 
in a will not dramatically influence the goodness-of-fit. 

For the range of values of h, these variogram curves have similar shape, 
and it may not be obvious which curve best fits the observed values. Posa (1989) 
has said, "In many geostatistical case studies, no physical reason exists to prefer 
one variogram model to another which fits the experimental variogram equally 
well. Besides, in many situations, small changes in the parameters of the selected 
variogram model produce an equally acceptable fit to a given experimental 
variogram." However, it has been noted previously (Diamond and Armstrong, 
1984; Abalou, Bagtzoglou, and Wood, 1994), that the numerical consequences 
of these selections can be severe. 

By observing the plots of values, the underlying variogram function may 
not appear to pass through the origin, but tends toward the positive y-axis. This 
can be incorporated into the model through the "nugget effect." If the point of 
intersection with the y-axis appears to be at Co, then the standard variogram 
functions can be formulated as: 

spherical: 
i /3h 1/ /3/f .:lco + c 

-y (h) = 2a 2 

Co + Cl if h > 

for h :~ 0 3,(0) = 0 

exponential: ~(h) = Co + ci(1 - e -3h/a) 

Gaussian: 3,(h) = Co + c1(1 - e -3h2/a2) 

In these formulae, Cl is selected so that (Co + cl) is the sill value. For reasons 
that we discuss later, we rescale the data so that the sill value is 1. 
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Given any point x, the variable of interest z ( x )  is predicted as a linear 
combination of the values of z in the network: 

(X) -~" ~ W iz (Xi) 
i 

The w i are termed the kriging weights, and are the solution of  the linear 
system 

Here, F is the semivariogram matrix defined by I" o = 3'(Ixi - x~ I), 1 is the 
column vector of all ones, r is defined by r i = ~ ( I x  - x i l ) ,  and w is the 
(unknown) vector of  weights. The additional unknown h, a Lagrange parameter, 
is present to ensure that the sum of the weights is one, and the estimation is 
unbiased. Alternatively, we could solve 

for the same weights w, with C representing the covariance matrix C o = 

cov (x,., xj), si = c o v  (x, xi). 
The mathematical values of the w i are identical in each of the two formu- 

lations, but the numerical behavior of the systems can differ. The subject of this 
paper is to study the numerical stability of these two linear systems. 

CONDITIONING AND STABILITY 

Errors in the numerical solution of a problem can arise from many sources, 
including measurement errors and errors from floating point arithmetic. Two 
major concepts related to detecting and assessing error are conditioning of a 
problem and stability of an algorithm. These concepts are often used inter- 
changeably and erroneously. Conditioning describes the sensitivity of a problem 
to changes in its data, and stability describes the sensitivity of an algorithm to 
changes in its parameters. In the literature, the words may be interchanged, but 
one concept refers to the properties of a problem and the other to those of an 
algorithm. This is an important distinction. 

Consider an extreme example. Suppose we wish to solve the 2 x 2 linear 
system 

x + y = 2  

x + y = l  
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Clearly no solution exists, and this conclusion is independent of any algorithm 
we may wish to employ. This is as ill-conditioned as a problem can get; no 
solution at all. Any small change in the coefficients of x and y causes a radical 
change in the nature of the solution. 

Now consider the problem: 

x + (1 + c)y = 2 

x + y = l  

where e is some small nonzero number. This problem is ill-conditioned, as a 
small change in the coefficients of x and y (for example, changing e) will cause 
a large change in the solution vector (1 - (1/eL (l/e)) r. Again, this is inde- 
pendent of the actual algorithm we may wish to use to compute the answer. An 
unstable algorithm may make the computed solution even worse. 

As a contrast, consider the well-conditioned problem: 

x + y = 4  

7y = 21 

Small changes in the coefficients of x and y do not cause large relative changes 
in the solution. But think about the effect of using a poor algorithm to solve 
this system. Using 7-digit decimal arithmetic (roughly equivalent to single pre- 
cision FORTRAN), compute the multiplicative inverse of 7, and multiply it on 
both sides of the second equation. The solution would be computed as 
y = (0.1428571) * 21 = 2.9999991, not the 3 we would expect. Then x would 
be computed as x = 4 - y = 1.0000009. The error in the solution is the result 
of the selection of an inferior algorithm. The problem is well-conditioned, and 
the x and y can be computed exactly in 7-digit arithmetic by first dividing 7 into 
21! 

Note that there is no precise dividing line between well-conditioned and 
ill-conditioned, or stable and unstable. These are judgments which depend on 
the precision of the data, the precision of the arithmetic used to solve the prob- 
lem, and the desired accuracy of the answer. The inexact answer as given might 
be acceptable in one application, and unsatisfactory in another. 

Fortunately for the general linear systems problem Ax = b, much is known 
about conditioning and stability. A quantity termed the condition number of A 
defines the mathematical sensitivity of the problem. The condition number is 
defined as 

Ill a tl II h-'ll ifA nonsingular 1 
(A) = co ifA singular . ) '  

where II ~ II is any matrix norm 
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The main theorem on conditioning is as follows. Let Ax = b and (A + 
e F ) i  = (b + ef). Here, F and f have roughly the same magnitudes as A and 
b, respectively. Thus, the second system can be thought of as a perturbation of 
the first one, and, for any given vector norm I1"11, we are interested in the relative 
error IIx - ~l[/l lx II. 

Theorem: 

Ilxll _< ~(h)~ + IlbllJ 

Proof (Golub and VanLoan, 1989). Generally, this theorem says that the 
relative change in the solution of a linear system is bounded by the condition 
number times the relative error in the matrix and its right-hand side. Again, this 
is completely independent of the algorithm used to solve the linear system. This 
theorem describes an upper bound on the change in the answer when errors are 
made in the problem. 

Unstable algorithms also can contribute to the error in the solution. It is 
well known, for example, that Gaussian elimination without pivoting is an un- 
stable algorithm. Examples of well-conditioned systems exist for which this 
algorithm produces unacceptable answers, whereas other algorithms with pi- 
voting do not. In all of the work that follows, we use Gaussian elimination with 
partial pivoting. Although it is not as stable as Gaussian elimination with com- 
plete pivoting, it may be the algorithm of selection in applied numerical analysis. 

If there is an overall message about stability and conditioning it would be 
that ill-conditioned systems are difficult to solve accurately no matter what al- 
gorithm is employed, and unstable algorithms should be avoided at all times. 

Let us now bring this general discussion to typical kriging problems in 
geostatistics. Frequently, field measurements are imprecise, and are known to 
only one or two digits of accuracy. Entries in the kriging matrix system are 
functions of those measurements. The potential exists for condition numbers on 
the order of 1000 to 10000 to magnify error to the point that the computed 
solution could be completely meaningless. Numerical analysts may be trained 
to think of condition numbers of 106 or 107 as high (when using single precision 
FORTRAN), yet kriging condition numbers less than that could be troublesome. 

The condition number can be sensitive to scaling. In particular, consider 
the effect of the sill value in the following example. Select a three-point data 
network over the unit square as indicated next. Suppose the experimental var- 

~ , I )  

0"[ 1 " 
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iogram is determined to have sill value 1, nugget value 0.30, and an exponential 
shape. That is, 7(h) = 0.30 + 0.70(1 - e - 3 h / a ) .  If a = 1, the condition 
number of the resulting kriging matrix is about 3.1 clearly well conditioned. If 
the sill value is rescaled to 1000, the variogram becomes 7(h) = 300 + 700(1 
--  e--3h/a) ,  and the condition number jumps to 1.26 x 106. The high condition 
number was caused by the artificial scaling, which then poses a significant 
numerical threat. To avoid this difficulty, we always take the sill value to be 1. 

If the scaling has been done properly, what can be done about high con- 
dition numbers? Nothing, once the matrix system has been formulated. How- 
ever. several selections besides the sill must be made before the system is 
finalized, and these selections can affect drastically the condition number of the 
resulting matrix. It is these selections which we now investigate. 

FACTORS WHICH AFFECT CONDITIONING 

We have identified six factors which affect the condition number of the 
kriging system. They are: (i) data network/data spacing, (ii) selection of the 
variogram model, (iii) nugget effect, (iv) selection of a range of influence pa- 
rameter a, (v) selection of solving the matrix system using I" or C, and as 
previously mentioned, and the (vi) sill value. 

We have performed 648 numerical experiments in an attempt to discover 
how these factors affect the condition number of the kriging matrix. We started 
with a unit square as our sampling region, and considered three different data 
networks at four different densities. We selected data points as vertices of tri- 
angles, squares, and hexagons, with approximately 16, 25, 36, and 100 data 
points in the region. Because of border effects, we could not select exactly the 
same number of points for each configuration. Three different variogram models 
were used: spherical, exponential, and Gaussian, with three different nugget 
effects: 0, 0.15, and 0.3. Three different ranges of influence a were used, 
expressed as 0.5, 0.75, or 1.0 times the maximum distance between two points 
on the network. We also considered a wider range of nugget effects and ranges 
of influence for square networks. The trends observed were merely extensions 
of the trends reported in what follows. No new insight was gained from the 
extended situations. The condition numbers of the kriging matrices based on F 
and C, referred to as Kr and Ko respectively, were recorded. As sill values 
were 1. 

The data from the experiments then were examined by holding five of the 
factors constant, and considering the effect of differing the sixth. In this way 
some insight can be gained on the effect of each individual factor on the con- 
dition number of the kriging matrix. 

One of the few trends that was "absolute" across all the experiments was 
that increasing the number of data points n in the unit square will result in a 
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higher condition number in Kr and K c. To see why, consider a three-point data 
network and, assuming no nugget, 

= 

I 0 3'(1xl - x21) ~/([xl - x31) 1-1 

v ( I x 2  - x l l )  0 "r(Ix2 - x31) 

3'(Ix3 - xll) ~([x3 - x2l) 0 

1 1 1 

Now, if we define Ix1 - x21 = = e, and Ix1 - x31 - v, consider the effect of 
letting Xl approach x2, or e ~ 0. Then, 

K r  = 
~(~)  0 "y(Ix2 - x31) 

~ ( v )  "~(Ix3 - x : l )  0 

1 1 1 

0 0 3,(v) 

3,(v) 3,(v) 0 

1 1 1 

which is exactly singular. Therefore, although it is important to sample ade- 
quately from a statistical viewpoint, too fine a data network can have a negative 
numerical impact. 

In a regular data network, it is of far less consequence exactly how the 
points are selected. In all of our experiments the condition numbers from square, 
triangular, and hexagonal networks were close, approximately within a factor 
of two. These minor variations probably were caused more by the border effects 
of different values of n than by any fundamental mathematical structure. Here 
is a typical example selected from a square grid with an exponential variogram 
and nugget value 0.30, and range of influence a equal to one half the maximum 
point separation. Figure 1 shows both the effect of increasing n and the relatively 
little difference in the three data networks. The solid line represents square 
networks with n = 16, 25, 36, and 100; the dashed line triangular networks 
with n = 17, 27, 39, and 105; and the dash-dot line hexagonal networks with 
n = 18, 28, 36, and 112. Results for K r and for other kriging parameter values 
are similar. 
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Figure 1. Effect of increasing n and changing data network. 

It usually is believed that both the spherical exponential variograms have 
"reasonable" numerical behavior, and Gaussian variograms can experience 
problems. Generally, it is true in our experiments that the exponential variogram 
produced condition numbers less than (and close to) those of the spherical, 
which, in turn, were less than those of Gaussian. In fact, for matrix Ko the 
exponential was marginally better than spherical every time, and the gap closed 
for larger nugget values. However, there are several situations in which the 
Gaussian variogram actually produced the best conditioned matrix hr .  Figure 2 
shows the condition numbers of K r for the spherical (solid), exponential (dashed), 
and Gaussian (dash-dot) variograms over square grids of various sizes with 
nugget value 0.30, and a set to the maximum point separation. The graph shows 
Gaussian with the highest condition number for small n, and lowest condition 
number for large n. Note also how the condition number for the spherical 
variogram is close to (and marginally worse than) that of the exponential. 

There are times, of course, where the Gaussian variogram produces badly 
conditioned matrices. This happens for large values of n with no nugget effect. 
The matrices produced in some of these situations were numerically singular, 
the only time such high condition numbers were experienced. 

Increasing the nugget value had a beneficial effect on the condition number 
in all situations. Thus, leaving all other factors constant, an increased nugget 
value resulted in a smaller condition number. In the limiting situation of a pure 
nugget effect, Kv would be all ones except for the main diagonal of zero, and 
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Figure 2. Effect of different variogram models. 

the condition number of  such a Kr is (n - I). The corresponding K c has an 
(n - 1) • (n - 1) identity matrix as a principal submatrix, and its condition 

number is (1 + ~/4n - 3)/2, as confirmed by O'Dowd (1991). 
The effect of the range of influence parameter a, is more difficult to un- 

derstand from a matrix point of  view. In one sense, decreasing a tends to have 
the same effect as increasing the nugget value. Consider a spherical variogram 
model, and think about the effect of decreasing a towards zero. This would 
make the variogram kriging matrix approach the pure nugget situation of an all- 
zero diagonal and all-one off-diagonal. Such matrices are well conditioned, as 
noted. Allowing off-diagonal elements to take on other values (as they do with 
increasing a) increases the chances for linear dependency, tending to raise the 
condition number. 

This was observed in our experiments. For the kriging matrix K o  increas- 
ing a while keeping all other parameters constant, increased the condition num- 
ber every time. In Kr, however, that was not universally the situation. Figure 
3 shows the condition number of  K r plotted against a values of 1/2, 3/4, and 
1 times the maximum interpoint distance, on square grids using the spherical 
variogram model and nugget value 0.30. Three different values o f n  are plotted. 
The bottom line (dashed) represents n = 16, and shows the condition number 
strictly increasing with increasing a. It is difficult to see in the plot itself, but 
the condition numbers are 30.5, 30.78, and 30.82. The middle line (solid) 
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Figure 3. Effect of increasing range a. 

represents n = 25, and shows the condition number first increasing from 48 to 
51 and then decreasing to 50. The top line (dash-dot) represents n = 36 and 
shows the condition number to be decreasing from 78 to 77 to 73. Although 
generally it is tree that increasing a will decrease the condition number, this 
example shows that a variety of behaviors is possible. 

It was shown earlier that the kriging systems with K r and K c are mathe- 
matically equivalent. However, the condition numbers of the two matrices can 
differ. In our experiments, it was true that the condition number of Kc was less 
than that of Kr for all situations using the spherical or exponential model. The 
difference was not dramatic, and was approximately within a factor of ten each 
time. For some reasonably well-conditioned Gaussian variogram situations, in- 
teresting effects were observed. 

Figure 4 is a plot of condition number of Kr (solid line) and Kc (dashed 
line) for various values of n on square grids, using the Gaussian variogram 
model, nugget value 0.15 and a the maximum interpoint distance. We see that 
for n = 16, the condition number of Kr is larger than that of  Kc (69 vs. 61), 
whereas for n = 100 the roles have reversed (342-363). The superiority of Kr 
is the exception, although this situation shows that this is not an ironclad rule. 

Although the condition number is a valuable index of the numerical diffi- 
cult), of a problem, the goal of kriging is essentially statistical, that is the 
prediction of z, especially at sites not sampled. The uncertainty of s is ex- 
pressed in terms of the predictive variance or "kriging variance": 
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Figure 4. Condition number of two kriging matrices. 

n n n 

var(s - z(x))  = 2 ~ wiT(xi  - x) - ~] ~] w i w j T ( x  i - xj)  
i = 1  i = l j = l  

= 2 w r r - w r F w  

= w r(2r  - Fw) 

For most used covariance functions, this quantity typically is relatively small 
for x near one or more sites in the sampling network, and larger for more remote 
X. 

One natural summary measure of the quality of kriging precision available 
in a given situation is the kriging variance averaged over the geographic region 
of interest 12: 

I var(~(x) - z(x))  d12 

Solving for the kriging weights using the semivariogram matrix, we numerically 
estimated the given integral as the average kriging variance for 1000 randomly 
selected sites. The same 1000 sites were used for each calculation, and we let 
the other kriging parameters differ as before for a total of 324 examples. The 
randomly selected sites are shown in Figure 5. 

Figure 6 shows the relationship between the condition number of the kriging 
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matrix and the estimated average kriging variance for the examples. Points are 
coded by the four nominal values of n considered. This particular variable gives 
a clearer separation of the points into groups than any of the other parameters 
considered. Especially for a given value of n, it is clear that larger condition 
numbers are associated with smaller average kriging variances, and vice versa. 
This is not particularly surprising because the types of factors which lead to 
larger condition numbers (e.g., little or no nugget, relatively large values for 
the influence parameter, etc.) generally are those which characterize a sample 
which is "informative" for spatial prediction purposes. However, the figure 
shows how "t ight" this relationship is for the range of conditions studied here. 
For a given value of n, changes in the other five factors which lead to a mean- 
ingful increase (decrease) in the condition number will be associated with a 
decrease (increase) in the average kriging variance. Separation, by nominal 
sample sizes, of the four groups plotted shows that a given level of statistical 
precision is associated with larger condition numbers as the sample size in- 
creases. 

CONCLUSIONS 

Our experiments have shown that all regular data networks of a given 
density produce linear systems with comparable condition numbers. Thus, we 
see no significant advantage to any for the square, triangular, or hexagonal 
networks. An adequate sampling density is necessary for statistical purposes, 
but increasing density is associated clearly with increasing condition numbers. 
In the absence of a nugget effect, clusters of close data elements can present 
serious numerical problems. 

The semivariogram model, nugget, and influence parameter generally are 
estimated, formally or otherwise, using the sample semivariogram. This process 
should be as objective as possible, even though the data do not always provide 
a firm basis for each decision, as noted earlier. Because of the statistical reli- 
ability of kriging is at least to some extent reliant on these decisions and esti- 
mates, we cannot urge users to "b ias"  these selections in such a way as  to 
reduce the condition number. However, users should be aware of effects these 
selections have on the numerical conditioning of the kriging system. 

Relatively high (low) condition numbers generally are associated with rel- 
atively low (high) average kriging variances, especially so once the value of n 
has been fixed. For many applications, this apparent conflict is not serious; 
condition numbers remain in the acceptable range for situations in which spatial 
predictions are precise enough for the problem at hand. However, for situations 
which usually seem desirable from a statistical point of view, for example, large 
n, small nugget, and slowly decaying correlations, numerical conditioning of 
kriging can become a serious problem. This suggests that statisticians interested 
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in working with prediction problems characterized by these apparently favorable 
conditions might reasonably consider whether slightly less statistically efficient 
techniques with better numerical properties might be preferred. 

Perhaps the best advice we can give is to be mindful of the condition 
number when building and solving kriging systems. Software exists to calculate 
quickly the condition number of the matrices involved. These should be con- 
sidered along with the statistical properties associated with a network and 
semivariogram when evaluating the practical value of kriging in application. 
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