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Spatial Declustering Weights ~ 

G. Bourgault z 

Because of  autocorrelation and spatial clustering, all data within a given dataset have not the same 
statistical weight for estimation of  global statistics such mean, variance, or quantiles o f  the popu- 
lation distribution. A measure of  redundancy (or nonredundancy) of  any given regionalized random 
variable Z(u~) within any given set (of size N) of  random variables is proposed. It is defined as 
the ratio of  the determinant of  the N x N correlation matrix to the determinant of  the (N - 1) • 
(N - 1) correlation matrix excluding random variable Z(u~). This ratio measures the increase in 
redundancy when adding the random variable Z(u~) to the (N - 1) remainder. It can be used as 
declustering weight for any outcome (datum) z(u~). When the redundancy matrix is a kriging 
covariance matrix, the proposed ratio is the c~:ossvalidation simple kriging variance. The covariance 
of  the uniform scores of  the clustered data is proposed as a redundancy measure robust with respect 
to data clustering. 
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INTRODUCTION 

Because of autocorrelation and spatial clustering which create redundancy, all 
data from any given dataset have not the same statistical weight for the esti- 
mation of global statistics such mean, variance, or quantiles of the population 
distribution. Spatial clustering may occur when the distance between two data 
locations is smaller than the larger correlation range characterizing the sample 
dataset spatial continuity. In such a situation, the data values at these two lo- 
cations are partially redundant, the degree of redundancy being function of the 
spatial continuity. Within the framework of the spatial random functions (Math- 
eron, 1971), any data value is considered as an outcome of a regionalized 
random variable (one at each data location) and the spatial continuity is syn- 
onymous of correlation between the regionalized random variables. This frame- 
work is adopted through the paper. Moreover, it is assumed that stationarity of 
order 2, univariate stationarity and ergodicity are fulfilled. 

A redundancy (or nonredundancy) measure should be attached to any given 
regionalized random variable Z(u,~), and therefore to its outcome z(u~) (datum 
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at location us). This is particularly important in the mineral industry where areas 
of high values tend to be oversampled for evident economic reasons. The data 
need to be declustered (weighted) statistically before being used to evaluate any 
global statistics representative of the whole area (not limited to areas of high 
values). 

An important feature of any declustering procedure is that it should account 
for the specific spatial continuity of the dataset. In the absence of spatial con- 
tinuity (white noise) there is no redundancy in the data regardless of the sampling 
geometry. Without spatial continuity, the data need not be declustered even if 
the sampling geometry shows clusters. This ideal situation of spatial indepen- 
dence, the cornerstone of classical statistics, is rarely if ever encountered in the 
earth sciences. Traditional declustering techniques such as polygons of influ- 
ence, cell declustering (Journel, 1983; Isaaks and Srivastava, 1989, chapt. 10; 
Deutsch, 1989) and the entropy-based method (Schofield, 1992) do not account 
for a specific spatial continuity measure. Deutsch (1989) and Isaaks and Sri- 
vastava (1989, p. 510) also proposed a global kriging of the field average value, 
each datum kriging weight then being used as declustering weight. This ap- 
proach has computational limitations and can not be applied to large datasets. 
In addition, a somewhat arbitrary kriging grid must be defined calling for a 
delineation of the limits of the field under study. Such a definition of limits is 
required by the polygonal approach. In order to overcome the computational 
limitations of global kriging, Crozel and David (1983) have proposed approxi- 
mating the global kriging weights by summing the weights from local kriging 
systems. Then, these approximate global kriging weights are used as decluster- 
ing weights (see Deutsch, 1989). Note that kriging weights can be negative so 
they cannot be used as declustering weights because they may yield a nonmon- 
otonic cumulative density function for the declustered data. An algorithm, sim- 
ilar to kriging, but which provides only positive weights and does not call for 
prior grid definition nor for global neighborhood is proposed. 

The degree of nonredundancy attached to datum ce, dnr(u~), is defined as 
the ratio of the determinant of the N • N data location-to-data location redun- 
dancy (e.g., covariance or correlation) matrix to the determinant of the (N - 
1) • (N - 1) redundancy matrix excluding data location us. The determinant 
reduces to a single number the redundancy information stored in the redundancy 
matrix. Being a ratio of determinants, dnr(u~) measures the relative change in 
redundancy matrix when adding the random variable Z(u~) to the subset of the 
N - 1 random variables (all other data locations). Thus, it can be used as 
declustering weight for z(u~), outcome of Z(u~). The redundancy matrix can be 
built from any positive-definite data location-to-data location similarity measure. 
If the data location-to-data location redundancy matrix is taken to be the co- 
variance matrix, then it is shown that the proposed measure, dnr(u~), is equiv- 
alent to the crossvalidation kriging variance at location u s. Being a kriging 
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variance, this nonredundancy measure depends on both the sampling geometry 
and the spatial continuity measure retained. This declustering alternative is il- 
lustrated using the GSLIB dataset c luster . ra t  and is compared to the cell de- 
cluslering technique proposed by Journel (1983) and Deutsch (1989). 

DETERMINANTS: REVIEW 

Only symmetric and (semi)positive-definite matrices are considered here- 
after. The determinant of CN, with dimensions N • N, is denoted IcNI. c~ 
models the redundancy between the N variables describing a given stochastic 
system (or dataset). In this paper, the N variables should be understood as 
regionalized random variables, one at each data location. The following are 
relevant properties of determinants of such matrices, which are given in any 
linear algebra textbook (e.g., Strang, 1988): 

(1) IC~l >- 0, for (semi)positive definiteness. 

(2) IcNI -- 0, if a line (column) of CN can be deduced from a linear 
combination of the others lines (columns). Thus, one of the N variables 
is in perfect linear relationship with some of the others (complete re- 
dundancy). 

(3) IC~t -< 02N, where O2 is the maximum diagonal value OfCN. I fCN is 
modeled from a stationary covariance function, o 2 is the stationary 
variance, the same for each variable. Equality is obtained for the sit- 
uation of a diagonal matrix with o'2 as entry, in which instance there 
is no redundancy. For a standardized redundancy matrix, 02 = 1, hence 

lUl l -<  1. 
(4) 

where 0 is a vector of N zeros and c a redundancy (e.g, covariance or 
correlation) vector. 

(5) IC~'l  -- 1/ICNI 
(6) The determinant of a product of matrices is the product of their deter- 

minants. 

(NON)REDUNDANCY MEASURE 

Consider a random function Z(u) sampled at N locations u~, the data values 
being z(u~), c~ = 1 . . . . .  N. The random function is second-order stationary 
with unit variance, 02 = 1, and correlogram p(h). The correlation matrix, CN 
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= Lo(h~, ~)]N • N, models the data location-to-data location redundancy. The de- 
gree of nonredundancy of random variable at location ua is defined as: 

1 c" 

IcNI ca cN_, 
dnr(ua) -ICN_,I -- IcN-,I (1) 

where CN is the data location-to-data location correlation matrix, CN-t  is the 
data location-to-data location correlation matrix excluding the random variable 
Z(u~) at location ua, and % is the correlation vector between random variable 
Z(ua) and the (N - 1) remainder random variables. The degree of nonredun- 
dancy, as defined in (1), measures the relative change (increase) in redundancy 
when adding the random variable Z(ua) to the (N - 1) other random variables. 

As long as the redundancy matrix is modeled by a positive definite function, 
it can be seen as a matrix of scalar products. Then, the projection theorem can 
be applied and the minimum squared distance of any vector c~ to the subspace 
spanned by the (N - 1) others vectors can be computed as in Equation (1) 
(Luenberger, 1969, p. 57). As shown by Journel (1977), when the matrix of 
scalar products is a covariance matrix, this minimum squared distance is the 
simple kriging variance. A demonstration can be given as follows: 

Let A and B be: 

A = CN = B = --1 
ca CN-I CN-I  

and their product: 

I '1 
1 c~ 

B ' A =  
(C~Li " %) IN-a 

A is the redundancy matrix (e.g., correlation) and B is a matrix needed for the 
sole sake of the demonstration. Using the determinant properties given in the 
previous section: 

1 
IBI = I c ~ L , I -  

ICN-,I 

l B .  AI = IB[ .  

Now consider another matrix: 

M =  I 1 
(-C:~LI �9 %) 

IAI 
IAI - IcN-,I - d~r(u~) 

~ 1 I N -  I 
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such that IM[ = 1, hence: 

because: 

[ B - A - M  I = ] B - A  I 

then, 

Thus, 

I ' -' "ca) c" 1 (1 - c a �9 CN_ 1 
B . A . M =  

0 I N -  I 

IB'AI = I B ' A ' M I  = 1 - c ' ~ . C ~ L ,  .ca 

dnr(u~)_ __IAI _ IB �9 A] = 1 - c'= �9 C ~ - t  �9 ca  = ~ K ( u ~ )  (2) 
I C N - , I  

which is known to be the simple kriging variance when estimating the value at 
location u~ from a linear combination of the (N - 1) other data. The degree of 
nonredundancy is thus the crossvalidation kriging variance. The definition (1) 
is more general than the kriging variance definition (2) in that any similarity 
(redundancy) measure verifying the axioms of the scalar product can be used. 
Journel (1988) has proposed many such alternative spatial continuity measures, 
some of them being more robust with respect to outliers and data clustering than 
the traditional covariance (variogram) estimator. 

In the particular situation of no spatial correlation, CN resumes to the 
identity matrix, c,~ = 0, thus dnr(u~) = 1 for any data location us. If the 
random variable Z(u~) is perfectly redundant with some others, then IAI -- ICNI 

= 0 and its degree of nonredundancy is zero. 

SPATIAL DECLUSTERING 

As mentioned in the introduction, spatial declustering weights must account 
for specific spatial continuity observed in the sample dataset. Determination of 
the degree of nonredundancy (1) calls for a correlation function, p(h), robust 
with respect to data clustering. Spatial continuity is modeled usually from the 
sample variogram (see for example Isaaks and Srivastava, 1989, chap. 7). One 
should use a declustered variogram estimator when handling spatially clustered 
datasets. The problem is that variograms are computed from data and declus- 
tering data require variogram. There seems to be a circular problem. To over- 
come this problem, it is suggested to use a spatial continuity measure robust 
against data clustering or to apply a data transform that reduces the impact of 
clustering on the variogram computation, or a combination of both. Examples 
of variogram estimators robust with respect to outliers and data clustering are 
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proposed in David (1977), Cressie and Hawkins (1980), Alfaro (1984), Arm- 
strong (1984), Cressie (1984), Dowd (1984), Omre (1984), Isaaks and Srivas- 
tava (1988), and Journel (1988). The measure proposed here is based on the 
correlogram of the uniform scores of the clustered data values. The uniform 
transform rescales the data values in the interval [0, l] which reduces the large 
fluctuations seen in many traditional sample variograms. The correlogram (var- 
iogram) of the uniform scores then is rescaled to have a unit variance (sill). 
Because the uniform transform is a rank-preserving transform, it preserves the 
major features of the original spatial continuity. 

An important implementation aspect relates to the size of the search window 
centered at location u~,, when computing the correlation matrices CN and CN- 1. 
In other words, how large should N be? Ideally, N should be the total number 
of available data. However, when that number is too large (e.g., N > 100), 
the computation of [C N_ ~1 and ICN[ may be affected by numerical instability. 
Using a moving data neighborhood as in ordinary kriging, N is limited to the 
n(u~) data occurring within a window centered on u= with (directional) radii 
equal to the larger (directional) correlation lengths of the correlation model used. 
Indeed, the random variable (and its outcome) at data location u~ has zero 
redundancy (correlation) with any random variable (or data location) outside 
this correlation window. If no other data occur within the correlation window, 
n(u~) = 0, then datum ot receives a full degree of nonredundancy (declustering 
weight equal to 1). 

THE GSLIB DATASET 

Figure 1A presents the exhaustive (reference) image (50 x 50 grid) from 
which the GSLIB sample data set cluster .rat  was taken. Figure 1B shows the 
exhaustive (reference) omnidirectional experimental variogram. The exhaustive 
histogram is shown on Figure 1C. Figure 2A shows the location map for the 
data of the clustered sample data set (taken from Fig. 1A). Figure 2B shows 
the corresponding omdirectional sample variogram and Figure 2C presents the 
sample histogram. Note the impact on global statistics (histogram and vario- 
gram) of preferential sampling in the high-grade zones. The clustered data are 
the result of a two-step sampling (Deutsch and Journel, 1992, p. 34): a first set 
of 97 data is taken on a pseudoregular 5 x 5 grid, then a second set of 43 data 
was taken in areas detected as high-valued by the first stage of sampling. Figure 
3A compares the exhaustive (reference) variogram, the traditional sample var- 
iogram of the clustered data and the sample variogram of the uniform scores of 
the same clustered data, all variograms (samples and exhaustive) are standard- 
ized to a unit variance (sill). The sample uniform score variogram reflects the 
underlying spatial continuity seen on the exhaustive experimental variogram, 
whereas the traditional sample variogram does not reveal any structure. The 
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Figure 1. Reference map, exhaustive var- 
iogram and exhaustive histogram of GSLIB 
dataset. 
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Figure 2. Location map, sample variogram 
histogram for 140 spatially clustered data. 
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Figure 3. A, Comparison of exhaustive (reference) 
variogram (continuous line), sample variogram com- 
puted on original 140 data values (long dashed line) and 
sample variogram computed on uniform scores of 140 
data values (short dashed). All variograms are stan- 
dardized to unit sill. B, Modeling sample uniform scores 
variogram using spherical scheme with range of 10 units 
and zero nugget effect. 
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experimental variogram computed in using the uniform scores appears robust 
with respect to the data clustering. A standardized spherical variogram with 
range 10 units and zero nugget effect was used to model the spatial continuity 
from that sample uniform score variogram (Figure 3B). Figure 4 compares the 
declustered histogram obtained with the proposed approach and that obtained 
with program Deelus of GSLIB (Deutsch and Journel, 1992, p. 207). The 
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Figure 4. A, Declustered sample histogram obtained using 
proposed approach and local correlation window. B, Declus- 
tered sample histogram obtained using cell declustering tech- 
nique. 

program Declus applies the cell declustering technique initially proposed by 
Joumel (1983). When compared to the reference statistics of Figure 1C, both 
techniques produce good results, with the proposed approach providing slightly 
more accurate mean and standard deviation. This is confirmed by the quantile- 
quantile plots of Figures 5, the proposed approach provides more accurate es- 
timates of the higher reference quantiles (the most important in many applica- 
tions). The search window used to compute matrix Cn~u~) contains an average 
of 17 data values. To appreciate the sensitivity of the proposed approach to the 
size of the search neighborhood, that is against the number of data n(u~) retained 
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Figure 5. Quantile-Quantile plots comparing 
exhaustive (reference) distribution and sample 
distribution A, corrected with proposed degree 
of nonredundancy; B, corrected with cell de- 
clustering approach; and C, without correc- 
tion. 
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Bourgault 

to build the correlation matrices C,(,.) and C,(u~)_ t, the degrees of nonredun- 
dancy, dnr(u~), were computed anew considering now a global neighborhood 
n(u~) = N = 140. Figure 6 presents the cross plot between the degrees of 
nonredundancy computed using a moving correlation window vs. using a global 
neighborhood. For all practical purposes, the values are identical. 

The sum of the 140 degrees of nonredundancy corresponding to the 140 
clustered data is equal to 57.8, this suggests that the 140 clustered data provide 
the same information about global statistics as 58 nonredundant data, that is 58 
data with interdistances larger than 10 units (correlation range). 

CONCLUSIONS 

The proposed declustering weight is defined as the ratio of determinants of 
correlation matrices, one including and the other excluding the regionalized 
random variable at the considered data location. This weight measures the in- 
crease in global redundancy when adding the regionalized random variable in- 
volved to the other regionalized random variables at data locations which occur 
within a correlation window centered at the location being declustered. When 
the redundancy matrices are covariance matrices, these declustering weights are 
equivalent to crossvalidation simple kriging variances. Similarly to the kriging 
variance, the proposed declustering technique accounts for both the sampling 
geometry and the spatial continuity of the dataset. The experimental covariance 
(or variogram) of the uniform scores of the original values, rescaled to a unit 
sill, is shown to be a correlation measure robust with respect to data clustering. 
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For lhe GSLIB dataset cluster.dat, the results of the proposed approach seem 
slightly better than those obtained with the traditional cell declustering tech- 
nique. Both approaches should be compared on more case studies before drawing 
general conclusions. A definite advantage of the proposed approach over the 
cell declustering technique, is that it does not call for knowing a pr ior i  if clusters 
are in high values or low values areas. Another advantage is that the declustering 
weights all lie in the [0, 1] interval which makes them easy to interpret, 0 for 
complete redundancy and 1 for complete nonredundancy. The main limitation 
of the proposed approach is related to the need for a prior variogram estimator 
robust with respect to data clustering. In some situations, the variogram might 
be difficult to estimate. However, many robust measures of spatial continuity 
have been proposed in the geostatistical literature. Using those measures in 
combination with a rank preserving transform may be helpful in the character- 
ization of the spatial continuity of clustered spatial datasets. One has to specially 
take care of the relative proportion of the nugget effect when modeling the spatial 
continuity. Indeed, being similar to a kriging variance, the proposed degree of 
nonredundancy is sensitive to that parameter. 
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