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Discrete Modeling for Natural Objects 1 

J. L. Mallet  2 

This paper presents a discrete technique specially designed for modeling the geometry and the 
properties of  natural objects as those encountered in biology and geology. Contrary to classical 
Computer-Aided Design methods based on continuous (polynomial) functions, the proposed ap- 
proach is based on a discretization of  the objects close to the finite-element techniques used for 
solving differential equations. Each object is modeled as a set of  interconnected nodes holding the 
geometry and the physical properties of  the objects and the Discrete Smooth Interpolation method 
is used for fitting the geometry and the properties to complex data. Data are turned into linear 
constraints and some constraints related to typical information encountered in geology are pre- 
sented. 
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INTRODUCTION 

In this introduction, we would like to emphasize the need for a new breed of 
Computer-Aided Design (CAD) specially dedicated to the modeling of natural 
objects such as those encountered in biology and geology. In a nutshell, we 
could say that a user of a classical CAD software is creating nice curves, 
surfaces, and volumes without any constraint whereas a user of a CAD software 
dedicated to the modeling of natural objects has to respect constraints induced 
by the observed data. All of these classical CAD software are based parametric 
methods such as those introduced by Bezier (1974) in the early 1970s. 

The goal of the mathematicians who designed these methods (Bezier, 1974; 
de Boor, 1978; Farin, 1988 . . . .  ) was simply to propose tools for modeling 
interactively nice curves and surfaces and not to respect complex data as those 
that we can encounter in geology. For example, if we consider the geological 
horizon (=  surface) represented in Figure 1, we can say that the data available 
are complex for the following reasons: 
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Figure I.  Example of complex data to take into account when modeling geological 
horizon. 

�9 The data are heterogeneous because it is necessary to account simulta- 
neously for: 

-the locations of the intersections of  the well curves with the surface to 
be modeled, 

-the slope of the tangent plane to the surface when this slope has been 
measured at the intersections of the wells with the surface, 

-seismic data corresponding to cross sections of the surface; 

-structural information consisting of 3D fault throw vectors; 

-mechanical information specifying that the surface should respect a 
given differential equation; and 

-physical properties (seismic velocities, reflectivities . . . .  ) attached to 
the surface and observed directly or indirectly at some locations. 

�9 The data are more or less reliable; for example, well data are more reliable 
than seismic data which in turn are more reliable than structural data. 

�9 The data are distributed irregularly and generally are clustered strongly on 
lines and surfaces. In practice, this clustering generates numerical instabilities 
in most of the numerical methods used for interpolating the data. 

Another major drawback with classical CAD methods is that they have 
been designed for modeling the geometry of objects and not to take care of the 
physical properties attached to these objects. In geology, there is a need for 
modeling simultaneously the geometry and the properties and there are many 
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situations where the geometry and the properties are linked: for example, 
the seismic velocity in a layer depends on the position relative to the hanging 
and foot walls of the layer whose geometry depends in turn on the seismic 
velocity. 

Mathematical methods used in classical CAD have not been designed for 
addressing such complex data and it is too optimistic to think that these methods 
could be adapted in order to account simultaneously for all of  the data available 
while respecting their complexity (Mallet, 1992a). In fact, these methods have 
been designed initially for the needs of the car industry (Bezier, 1974) and it is 
necessary to look for a specific class of mathematical modeling methods spe- 
cially designed for the needs of the geosciences. 

The success of polynomial models used in classical CAD (Mortenson, 
1985) comes from the fact that polynomials generate aesthetic curves and sur- 
faces and this is of paramount importance in the car industry (Bezier, 1974). 
However, in the geosciences, our primary concern is more to respect the con- 
straints induced by the data than to produce nice-looking objects. It generally 
is admitted that discretized problems are simpler to solve than problems based 
on continuous representations and this is why, in this paper, we propose to 
abandon the polynomial models used in classical CAD in favor of a discrete 
approach close to the "finite elements" technique used for solving differential 
equations. 

Despite the fact that they are less well known than parametric methods, 
discrete modeling methods have been presented in various particular forms and 
implementations for about 70 years. Examples include: Whittaker (1923), Hor- 
ton (1923), Bergthorsson and Doos (1995), Weaver (1964), Arthur (1965), 
Harder and Desmarais (1972), Briggs (1974), Akima (1978), Sibson (1981), 
Mallet (1992b), and Overveld (1995). The goal of this paper is to propose a 
generic formulation of discrete modeling which generalizes most of these meth- 
ods. 

The approach presented in this paper was designed specially for modeling 
natural objects and is potentially able to account for any series of (linear) con- 
straints corresponding to the influence of the data on the model. Each of these 
constraints can be weighted by a "certainty factor" used for specifying its 
importance relative to the other constraints. This is particularly interesting in 
the geosciences where, because of sampling errors, it may happen that some 
constraints become contradictory; for example, if the projection of two seismic 
cross sections in the (x, y) horizontal plane are crossing at some point P(x, y), 
it is almost sure that these two seismic cross sections do not actually cross 
in the (x, y, z) 3D-space (see Fig. 1) and it is important to be able to weight 
each of them with a given certainty factor proportional to the quality of the 
data. 
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D I S C R E T E  M O D E L I N G  

In this section, a general formulation of  the notion of  a discrete model  is 
presented which can be used for approximating complex objects such as those 
encountered, for example,  in the geosciences. 

Discrete Topological Model g(f~, N)  

As shown in Figures 2 and 3, the main idea in a discrete model is that the 
topology of  any object  can be approximated by a graph g([2, N) where: 

�9 f~ is the set of  all the nodes of  the graph, each o f  these nodes being 
identified with its rank order: 

[2 = { 1 , 2  . . . . .  ~ . . . . .  M} 

�9 N is an application from [2 into a subset of  [2 such that 

{3 ~ N(o0} ~ {3 can be reached in at most s(c0 steps from o~} 

�9 where s(c0 > 0 is a given function of  the node ~.  In practice, in order 
to minimize the complexi ty  of  the model,  we suggest selecting s(c0 = 

1 hut, from a mathematical point of  view, this is absolutely not man- 
datory. It is assumed also that the graph g([2, N) is symmetric  and this 

',2 
A 

A ;'k 

Figure 2. Neighborhood N(a) of node cz is composed of c~ 
plus all nodes of its orbit A(ot) = {/3z,/32, ' " ' }. This figure 
corresponds to special situation where N(a) is defined as set 
of nodes which can be reached in at most s(o0 -= I step from 
Or. 
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Figure 3. Examples of objects approximated by discrete 
model: A, triangulated geological surface; B, tetrahedral- 
ized layer; C, polygonal curve corresponding to cross sec- 
tion of geological surfaces; and D, curvilinear grid filling 
layer. 

implies that N(.)  is such that: 

13 e N(a) ~* c~ �9 N(B) 

The subset N(c0 is termed "neighborhood"  of  c~ and it must be noted that N(c0 
contains the node c~ and all its surrounding nodes (see Fig. 2): 

N(o 0 = {~, /3,,/32, . . .  } 

From a mathematical point of  view (Bass, 1971), it can be said that N(-) defines 
a discrete topology on fl in this sense that: 

/3 �9 N(cQ r a �9 N(/3) r a is "c lose"  to 13 

As suggested in Figure 2, the "orb i t "  A(a) of  a node a is defined as the set of  
nodes {C/i, /32, "" �9 } different from a and belonging to N(ot): 

A(cQ = N(~) - {a} 

Examples of Discrete Topological Models 

Potentially, the notion of  Discrete Topological Model presented in the 
previous section can be used for modeling the topology of  any geological object. 
For example and as suggested in Figure 3, it is possible to model: 

�9 a geological horizon or a fault (surface) as a set o f  adjacent triangles 
(Fig. 3A and 4A). 
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Figure 4. Discontinuities are introduced in the graph g(fl, 
N) by removing some edges from network A and B. In grid 
B, all edges intersected by geological surfaces (horizons 
and faults) have been removed. 

�9 a geological body (solid) as a set of adjacent tetrahedra (Fig. 3B). 

�9 a geological cross section (curve) as a set of adjacent segments (Fig. 
30. 

�9 a geological layer (solid) as a regular curvilinear or rectilinear grid (Figs. 
3D and 4B). 

In these models, the vertices of the triangles, tetrahedra, and segments corre- 
spond to the nodes of g(12, N) whereas the edges define the topology. The 
introduction of a discontinuity between two adjacent nodes c~ and/3 is straight- 
forward and, as suggested in Figure 4, this can be achieved simply by removing 
the edge (o~,/3) from the network. 

Notion of Discrete Model Og(~, N, q~, e) 

The discrete topological model g(t~, N) introduced in the previous sections 
does not take care of the properties of the objects. Such properties are modeled 
as a series ~p of numerical functions, termed components of ~#, defined on the 
set of nodes 12 of g(f~, N): 

In practice, the three first components {~X(o0, 9Y(ot), ~z(o~i} correspond to the 
location of the node o~ e i2 in the 3D space whereas the other functions corre- 
spond to physical properties. 

By definition, the notion of discrete model 9E(f~, N, ~, C) consists of a 
triplet composed of g(f/, N), the functions r and a set of constraints C = {Ct, 
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C 2 ,  ~ ~ ~  

9T~(f~, N, ,p, e)  = {~(fl, N), ~, e} 

Each constraint C; �9 (3 is assumed to be linear and to have the following general 
form where A~:(c~) and bi are given coefficients: 

{C/ satisfied} ~ ~ ~ AT(c~) �9 r = b i 

In practice, the coefficients AT(c0 and b i are determined in function of the avail- 
able data, for example: 

�9 If we want ~o'(C~o) to be equal to a given value ~,~ at node c~ o, then this 
data easily can be turned into a constraint C i such that: 

A'(c~)= I :  otherwiseifC~ = c ~ ~  

bi = ~ 

On Figure 1, this constraint can be used for specifying that the coordi- 
nates (~ox(%), ~(ao), ,pz(%)) of a node % of the surface should be equal 
to the coordinates of the intersection of the well with the surface. 

�9 If we want the gradient of ~ to be equal to a given value of 
A"(C~o, cq) between two nodes (%, cq), then this implies that 

~(o~0) - ~(o~,) = An(%, a~) 

and this information can be easily turned into a constraint C~ such that: 

I 1 i f a  = c~ 0 & v - -  

A~'(a) = - 1  ifc~ = a l & v  = ~7 

0 otherwise 

b i = An(O~o, OQ) 

On Figure 1 and 4A, this constraint can be used for specifying that the 
coordinates (~X(~o), ~Y(ao), ~z(%)) and (~x(al), ~Y(al), ~Z(oq)) of two 
nodes located on both sides of a fault should be equal to a given throw 
vector (A~(ao, at), AY(c~o, cq), A~(c~o, cq)). 

�9 If we want the point {~(C~o), ~ (%) ,  ,r } be located on a given plane 
(P(p, n) containing the point p = (p~, pY, p~) and orthogonal to the vector 
n = (n  x, n y, nZ), then we should have 

x(otO ) . n x + ~oy(c~o ) . ny  + ~pz(txo ) . n z --_ pX . n x + p y  . ny  + pZ . n z 
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and this relationship can be turned easily into a constraint Ci such that: 

I i  x ifc~ = a 0 & v  = x  

n y if cr = a0 & v = y 
A ~ ( ~ )  = 

z ifo~ = c~0&r  = z 

otherwise 

bi  = pX . n x + p y  . n y + pZ  . n z 

It is important to notice that, contrary to the two previous constraints as 
presented, this constraint is a "cross"  constraint merging several com- 
ponents of ~o. 
On Figure 1, this constraint can be used for specifying that a node c~ o 
should be located in a given tangent plane. 

�9 If ,p" is the pressure of water (or oil) in a given layer, then ~o" has to 
respect the diffusion equation. Such an equation can be discretized with 
a finite difference or finite element method (Aziz and Settari, 1979) based 
on g(9,  N) in such a way that this equation reduces to a linear constraint 
c; 

~ A~(oO " ~o~(o0 = bi  
o~ED v 

�9 where the coefficients A~'(c0 and bi depend only on the geometry (~o x, 
~ ,  ~o z) and the permeability ,go of the model. 

As you can see, the formulation that we have adopted is general and, for any 
elementary data, we have to look for a linear operator translating the influence 
of this data on ~. Most of the time, the constraints are actually linear relative 
to the values {~p(c~): ~ �9 9} but there are some situations where we are faced 
with nonlinear constraints; for example, if we want that a given component ~o" 
of ,p have a given Cumulative Distribution Function F ( z ) ,  then it can be verified 
that the corresponding constraint is not linear. When a constraint is not linear, 
it is possible to use the Taylor approximation for linearizing it (Gill, Murray, 
and Wright, 1981) relative to the values {~o(t~): c~ e 9} in the neighborhood of 
a given initial solution 'P~ol. 

INTERPOLATION 

In this section, the Discrete Smooth Interpolation Method (abbreviated DSI) 
is presented which has been designed specifically for interpolating the function 
~o of a discrete model 9]Z(9, N, r E) while respecting all the constraints C; e 
C. Contrary to the general presentations in the literature (Mallet, 1989b, 1992b; 
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Overveld, 1995) that focus on mathematical aspects of  this method, here we are 
concerned mainly by showing that this method in fact is simple and can be easily 
understood. 

Introduction 

As suggested in Figure 5, let us consider an ordinary function ,p defined 
on the segment ~ = [1, M] and let fl be the set of  nodes corresponding to the 
regular sampling of ~ with a step equal to 1 : 

f 2 =  {1 ,2  . . . . .  M} 

In Figure 5, the nodes cr ~ f~ correspond to the white points whereas black 
points correspond to some given data points {e, ~(f): f e f~} that we would like 
to interpolate. For that purpose, a classic method (de Boor, 1978; Farin, 1988) 
consists of looking for a spline function ~ minimizing the "global roughness" 
/~(;) such that: 

~(~) = [ ~ ( x )  �9 k ( ~ l x )  �9 ax 
d [2 

d2p  2 
with - /~(~lx ) = ~-~  

In this expression,/z(x) > 0 is a given local "st iffness" coefficient (that we can 
take constant equal to 1 for example) while R(~,lx) can be interpreted as a 

P-(q~lx), = d%2-~dx: 4. I~x)-~(x)12 = R(tplx) ] 

' ~  / i  i i ~ T i  i 
q t t I I t I I 

I IN  / ' f  I % ~ 1  I I I / p X 

q~(x) 
~(x) 

Figure 5. Local roughness/~(r of spline curve ,~(x) at 
node x is proportional to square of length of segment 
I~,(x) - 7(x)l. 
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measure of  the " loca l  roughness"  of  ~, at point x ~ fL If  we let 

~p(x - 1) + ~o(x + 1) 
7 ( x )  = 

2 

then, as suggested in Figure 5, we can verify that a finite difference approxi-  
mation of  d2~o/dx 2 is such that: 

d2~p 
dx--- 2 = 2 �9 {~(x) - ~o(x)} = {1 �9 ~o(x - 1) + I �9 ~o(x + 1)} - 2 �9 ~,(x) 

I f  we neglect the side effects which occur at node c~ = 1 and ct = M, then, for 

any k e ~,  we can write: 
2 

R6~ = k ~ )  v'~(k) " ~ ( ~ )  

~v ~(k) = 1 i f  o t e  A(k) 

with: (vk(k) - -2  o therwise  

If  we let 

R(~o) = Z ~(k) �9 R(~oIk ) 
ct E i )  

 ,o,I 2 

then it can be said that R(~o) is an approximation of  the global  roughness 
/~(~): 

R ( ~ )  = /~(~) 
Thus it is concluded that it is approximately equivalent to minimize R0P) or  
Rrp) and this remark is at the origin of  the Discrete Smooth Interpolation method 

(Mallet, 1989b, 1992b) presented in the next sections. 

Discrete Smooth Interpolation 

Now consider a discrete model  OE(fl, N, ,r e )  where ~, is assumed to have 
only one component  so that we will make no distinction in this paragraph be- 
tween ~o and its unique component .  Let L and I be two complementary subsets 
of  fl such that: 

L = set of  nodes f ~ f~ where ,p(f) is known 

I = set of  nodes i ~ fl where ~( i )  is unknown 

= f ~ - L  
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The set L is termed set of "control nodes" and the values {~o(i): i e 1} should 
be computed in such a way that the resulting function ,p be "as smooth as 
possible" on g(~2, N) whereas respecting strictly the "control values" {~o(e): e 
e L} and respecting "as much as possible" each of the constraints 6",. e e .  For 
that purpose, it proposed to measure the local roughness R(,p[k) of ~o in the 
neighborhood of each node k e fl and the degree of violation P('PlQ) of each 
constraint C i �9 (3 by ~ as follows: 

RG~ = ,~�9 v'~(k) " ~p(o~) 2 

P(~~ = Io~f~ Ai(~ " ~(~ - bi 2 

In the definition of the local roughness R(~[k) above, the {v~(k)} are given 
coefficients and the Discrete Smooth Interpolation method (DSI), proposes to 
look for a function ~ minimizing the following "generalized roughness" cri- 
terion R*(~): 

R*(~,) = Z #(k) �9 R(,p]k) + Z ~i " P(~olCi) 
k e ~  i 

In this criterion, tz(k) > 0 is a given positive "stiffness" function modulating 
the importance of the local roughness R(g, lk ) at node k while the coefficients 
{~i } are positive "certainty factors" weighting the relative importance of each 
of the constraints. 

It can be shown (Mallet, 1992b) that the solution ~o minimizing R*(~) exists 
and is unique if the following general conditions are respected: 

l) L is not empty 

l v'~(k) > 0 vo~ e A(k) 

2) vk(k ) = _  ~ v~(k) 
�9 A(k) 

3) I# (k)  > 0 v k e f ~  

( ~i > 0 Vi 

It is important to notice that these conditions are sufficient for ensuring the 
existance and the uniqueness of the solution ~o but they are not necessary. By 
the way, the conditions (2) are satisfied by the coefficients {v~(k)} proposed in 
the introduction in connection with the spline interpolation method. 
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Remarks 

There is a wide variety of possible selections for the coetJicients 
{ v~(k)} respecting the conditions (2) presented in the previous paragraph. 
As you can imagine, the solution ~o depends on these selections and, 
from this point of view, the DSI method seems as a "generic" method 
able to produce different styles of solutions. 

Mallet (1992a, 1992b) describes several possible selections for the 
coefficients {v~(k)} and the most simple selection correspond to the so- 
called "harmonic weightings" producing solutions "a  la spline" and 
such that: 

v~(k)=I-IA(k)  I ifot  = k 

if ol ~ A(k) 

In this expression, [A(k)[ represents the number of elements in the orbit 
A(k) and, in the situation where g(9,  N) is a polygonal curve, the 
coefficients {v"(k)} are exactly the ones we encountered in the intro- 
duction. 

It also is important to mention that the coefficients {v~(k)} can be used 
for modeling nonconstant anisotropies. In this instance, the magnitude 
of each coefficient v~(k) has to be modulated in function of the location 
of the node c~ ~ ~2 relative to the location of the node k ~ fL For example, 
if we select v~'(k) and v~2(k) in such a way that we have 

v~'(k) > v=2(k) > 0 

�9 then, the solution ~p will be smoother in the direction (k, O/i) than in the 
direction (k, c~2). 

The DSI Solution 

As suggested in Figure 6, the generalized global roughness criterion R*(~o) 
is a positive quadratic function of the M variables {,p(1) . . . . .  ~o(c0 . . . . .  
,p(M)} and this function can be represented by a paraboloid in a (M + 1) 
dimensional space. The solution ,p of the DSI problem corresponds to the min- 
imum of R*(~o) which is characterized by the following conditions of optimality: 

OR*(~) 3R*(~) OR*(~o) 
- -  ~ * . .  - -  ~ . , ,  - -  _ _  

3r 3r O~o(M) - 0  

It can be verified that this solution is achieved if, for each c~ e r ,  the following 
condition, termed the "local DSI equation," is satisfied: 
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/ 

/ 

Figure 6. Generalized global roughness R*(,) is quadratic function 
of {~o(1), ~p(2) . . . . .  ~p(M)}. At each iteration of DSI algorithm, 
function ,# is updated so that this generalized global roughness is 
decreasing. 

~ ( ~ )  = 

with: I 

{~(k)  v~'(k) �9 Z ve(k)  �9 ~o(5)} + Z I'AoO 
keN(or) fl~N(k) i 

/.t(k) �9 (v~(k)) 2 + ~-yi(ce) 
k~N(o~) i 

Fi(C~) = wi Ai(ce) 

~ i ( G t )  = ~ i  " (Ai(ce)) 2 

This local DSI equation can be written as 

~ ( ~ )  = 
G(a) + F(~) 
g(~) + ~(~) 

where G(c0 and g(c0 are terms induced by the minimization of  the roughness 
at node c~ whereas F(a)  and 7(~) are terms corresponding to the minimization 
of the degree of  violation of the constraints attached to node c~: 

a(~  = k~N(~) ~ I I~(k) v'~(k) " ~[~EN(k) vt~(k) " ~~ 1 
t3~a 

g ( a )  = ~ ~(k) . (v~'(k)) 2 
keN(o:) 

and 
P(~) = ~ r / ( ~ )  

i 

v(~) = ~ ( ~ )  
i 
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The local DSI equation presented here suggests to use the following iter- 
ative algorithm for determining the DSI solution ~p: 

let 1 be the set of nodes where ~o(ot) is unknown 
let r be a given initial approximated solution 
while (more iterations are needed) 

{ 
for_all (or ~ I) 

{ 

r  = 

} 
} 

G(~) + F(a) 
g(a) + ~(a) 

This algorithm has been proven to be convergent (Mallet, 1989a, 1992b) what- 
ever the initial solution could be and, of course, it converges to the unique 
solution when the conditions ensuring the uniqueness of the DSI solution are 
satisfied. 

Remark 

In the previous section, the "local DSI equation" was presented, which is 
used for determining iteratively the DSI solution. It may be interesting to point 
out that this DSI solution ~p also satisfies the following "global DSI equation" 
(see Mallet, 1992b): 

[W] �9 ~o = Q 

In this matrix equation, ~o and Q are column vector of size M = If~] whereas 
[W] is a M • M semipositive symmetric matrix: 

[W] depends only: 
-on the topology of the graph g(fl, N), 
-on the given weighting coefficients {v~(k)} and/~(k), 
-on the constraints. 

�9 Q depends only on the constraints and is equal to the null column vector 
in the situation where there is no constraint. 

For example, in the situation where there is no constraint, the element W~a 
located on row o~ and column/3 of [W] is such that: 

w ~  = ~ v(k)  . v~(k) �9 v~(k) 
k• {N(o0 FI N(fl)} 
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Generalization of the DSI Method 

In practical applications the function ~o of the discrete model 5)E(f~, N, ~, 
C) may have several components interacting through "cross constraints" and 
the simplified version of the DSI method presented in the previous paragraph 
has to be extended somewhat for taking care of the multicomponent situation 
where: 

~(~) = { ~ , x ( ~ ) ,  ~ Y ( c 0 ,  ~ ,z (o0 ,  . . .  , ~,"(~), . . .} v ~  �9 

It is possible to change slightly the notations in the definition of the local rough- 
ness criterion R(~olk) and the degree of violation of the constraints p(r in 
such a way that the solution to the multicomponent problem can be obtained 
with generalized local DSI equations formally identical to the one obtained in 
the situation where ~ has only one component. For that purpose, it is simply 
suggested to redefine R6p[k) and p(~]C~) as follows: 

In the definition of the roughness R(plk), r. is a given positive weighting coef- 
ficient allowing to modulate the contribution of the function ~o~( �9 ) to the local 
roughness R(~Ik). If the functions {~(-)}  have approximately the same mag- 
nitude, then one, for example, can select all the coefficients {r.} equal to 1. 

The equation allowing to update the value ~"(c0 in the iterative DSI al- 
gorithm keeps formally almost unchanged and becomes: 

r~ " ~) I Ix(k) v~(k) " ~N(,) v~(k) " ~(13)l + ~ P'(et) 
. . . .  1 3 r  e"(c~) = 

with: 

r~. ~ Ix(k) �9 (v~ z + ~ 3'~(c~) 
k~N(o~) i 

I rr(~) = ~i- Ar(c,) �9 Z Ar(r �9 e"(t~) - bi + cr 

~'r(~)  = ~ i "  ( A r ( o 0 )  2 

c7 = ~ ~ AT(~) " ~'"(~) 

The only noticable difference with the monocomponent situation is the 
introduction of the terms c~' which occur only in the situation of cross constraints 
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involving several components o f  ~,. When there is no such cross constraint 
attached to the node o~, then the given formulae are strictly identical to the one 
corresponding to the monocomponent case presented in a former paragraph. 

Implementing the DSI Method 

In spite of  its apparent complexity, the local DSI equation is simple to 
program and the heart of  the iterative algorithm can be implemented in about 
30 lines of  C + + source code. The real programming difficulty comes from the 
discrete model 01Z(~, N, ,p, C) which has to be implemented in order to: 

�9 optimize the access to the neighborhoods N(c0 and the values ~(c~) used 
by the DSI equation, 

�9 take care of  its "self-consistency" when modifications occur in [2, N( . ) ,  
~ o r C .  

Implementing a totally general algorithm taking care of  the two items here may 
result in a large software with more than 100 thousands lines of  C +  + source 
code playing the role of  a server for the 30 lines corresponding to the DSI 
algorithm. Such an heavy machinery is not always necessary and its description 
is beyond the scope of  this paper. 

In order to have an idea of  the nature of  the problems, let us glance at 
Figure 7. This figure represents a triangulated surface and a set of  data points 

X 

Figure 7. Each point Pi is assumed to hold data ~b(Pi) which are projected on 
triangulated surface in direction A(p~) specific to Pi- Data ~(P,) are transformed 
into constraints affecting nodes corresponding to vertices of triangle hit by 
A(Pi). If direction A(p~) is changed, then different triangle is hit and constraints 
have to be updated. 



Modeling for Natural Objects 215 

{P,, P2, " ' "  } where each point Pi is assumed to hold data 4~(Pi) which are 
projected on the triangulated surface in a direction A(Pi) specific to P~. The data 
ck(Pi) are transformed into constraints affecting the nodes corresponding to the 
vertices of the triangle hit by A(Pi). It results from this situation that: 

�9 If  the direction A(p~) is changed, then a different triangle is hit and the 
constraints C; ~ C have to be updated. 

�9 If the density of the nodes in a region of the model is changed in order 
to get a better numerical approximation then, the set f] and the neigh- 
borhoods {N(a): c~ e fl} are changed and it is necessary to update con- 
straints C~ E C in order to take care of these modifications. 

EXAMPLES 

The field of application of the notions of Discrete Model and Discrete 
Smooth Interpolation presented in this paper is large and the selection of a 
specific example is difficult. It is proposed in Figures 8 and 9 two discrete 
models corresponding, respectively, to the modeling of the geometry of a salt 
dome and to the modeling of a seismic velocity field in a regular rectilinear 3D 
grid: 

= The first example presented in Figure 8 corresponds to the modeling of 
the geometry of a salt dome. In Figure 8A, you can see about 100 data 
points Pi which are assumed to be located on the surface to build. As 
suggested in Figure 7, each of these data points is projected on the 
surface according to a specific direction A(P~) hitting a triangle Ti(o~ 0, 
c~t, o~2) at a point P*. It is possible to define a linear constraint C i on 

Figure 8. Modeling salt dome with DSI: A, initial model and date; and B, final 
model. 
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Figure 9. Modeling seismic velocities in parallelepipedic volume of subsurface. 
Volume is filled by rectilinear 3D grid cut by geological horizons and faults. Vari- 
ations of velocity stored in grid are displayed in shaded mode. 

the nodes (ao, cq, ~2) specifying that Pi should be coincident with P*. 
The modeling process is decomposed into three steps: 
(l) In a first step, an initial discrete model 9E(fl, N, ~o, C) consisting 

of a rectangular triangulated surface is created in the neighborhood 
of the data points {Pi }. 

(2) Each data point Pi is projected on the closest point of this initial 
surface and is transformed into a constraint Ci e (~ constraining the 
components 6p x, ~Y, ~,z) corresponding to the location of the nodes 
of the surface. 

(3) The DSI algorithm is applied and, after convergence, if necessary, 
for giving more flexibility to the surface, the triangles can be split 
where the distance d(Pi, P*) is bigger than a given threshold and 
return to the item (2). Moreover, as suggested in Figure 7, between 
two iterations of the DSI algorithm, it also is possible to optimize 
the directions of projection A(Pi). 

After some iterations of this process, we get the model represented in Figure 
8B. 

�9 The second example presented in Figure 9 corresponds to the modeling 
of a seismic velocity in a parallelepipedic volume of the subsurface. This 
volume is filled by a regular rectilinear 3D grid having 200 steps in the 
x-direction, 200 steps in the x-direction, and 100 steps in the z-direction. 
This grid is assumed to be cut by some horizons and listric faults and 
the velocities dpv(Pi)are known at 150 points {Pi} irregularly distributed 
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in the volume. Each data point {Pi, O"(Pi)} is transformed into a con- 
straint specifying that the velocity ~o~(Oto) of the closest node s 0 should 
be equal to the given value ~'(Pi). The variations of the velocities, 
restricted to one layer, are displayed in shaded mode on the faces of the 
parallelepipedic volume represented in Figure 9. As can be seen, all the 
discontinuities corresponding to the intersections of  the grid with the 
horizons and faults have been strictly taken into account. However, it 
should be noticed that, if necessary, we could maintain some partial 
continuity across these surfaces if we keep randomly some few connec- 
tions between nodes located on both sides of these surfaces; in this 
situation, the density of the connections to be kept could be modeled as 
a property of the surfaces. 

In both of these two examples, for the DSI method, the coefficients {v~(k) the 
"harmonic weights" presented in a previous paragraph are used and the stiffness 
function ~(k) was selected constant equal to 1. The number of iterations was 
taken equal to 10. 

CONCLUSIONS 

In practice, the DSI method has proven to be an efficient numerical method 
and the main reasons for this success are the following: 

�9 It is possible to implement this method in such way that the same soft- 
ware can interpolate the geometry and the properties of curves, surfaces, 
and solids. This surprising flexibility is the result of the fact that the DSI 
method does not need to know the dimension of the graph 9([2, N). It 
is even possible to apply DSI to discrete models having a nonuniform 
dimension and which are locally isomorph to a curve, a surface, or a 
solid. For example this is the situation of a "high permeability region" 
in a 3D layer which is locally a microchannel (=  a curve) connected to 
a permeable fault (=  a surface) itself intersecting a permeable lens (=  
a solid). 

�9 It is potentially possible to account for any type of data provided that 
these data can be turned into linear constraints. 

�9 In the parts of an object ~ ( ~ ,  N, ~p, t2) where the constraints C; �9 C 
are contradictory, these constraints behave in a least-square sense and 
the associated certainty factors ~ control their behavior. For example if 
a part of a surface is attracted by two data points Pt and Pz located on 
two sides of this surface, then the surface will pass in between the points 
P~ and P2 and will be closer to P~ if the certainty factors of P~ is greater 
than the one of P2- 
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�9 In the parts of  an objects 9E(fl, N, ~p, C) where the constraints Ci ~ C 
are consistants, these constraints are respected almost perfectly and be- 
have as if they where "hard"  constraints. This is surprising when we 
remember that, from a mathematical point of  view, the constraints are 
taken into account in a least-square sense. 

�9 It is extremely easy to account for discontinuity: we have only to build 
the topological model g(fl, N) in such a way that it respects these dis- 
continuities. 

�9 It also is easy to account for anisotropies. This can be achieved in two 
different ways: either by defining the weighting coefficients {v~(k)} in 
such a way that they integrate this anisotropy or by introducing some 
special constraints modeling this anisotropy. It is important to notice that 
the anisotropy can be heterogeneous and can change from one node c~ 
f~ to another. 

�9 The iterative algorithm converges fast and even for models having sev- 
eral thousands of nodes, the solution can be obtained in real time on 
most of the current workstations. Moreover, the more we have con- 
straints, the more the method converges rapidely; at the limit, if there is 
enough consistant constraints, the method may converge in 1 iteration. 

�9 The last but not the least, the DSI method is numerically stable, even if 
the data are clustered. 

From a theoretical part of  view, the most interesting aspect of DSI mentioned 
is certainly the fact that this generic interpolation method is decoupled com- 
pletely from the data: the only thing that this method can see are constraints 
induced by the data and not the data themselves. Thus, an existing software 
does not have to be changed each time a new type of data is introduced in the 
modeling process. This is promising for the future and I hope that many geo- 
mathematicians will propose new types of DSI constraints. 
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