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DYNAMIC TENSION OF A CYLINDRICAL SPECIMEN WITH 
CIRCUMFERENTIAL CRACK 

O. E. Andreikiv, V~ M. Boiko, S. E. Kovchyk, and I. V. Khodan' UDC 539.375:620.186.4 

We describe a method for the evaluation of the dynamic stress intensity factors under the action of dyna- 
mic loading. The method is based on the solution of the problem of limiting equilibrium for a cylindri- 
cal specimen of finite dimensions containing a circumferential crack. In the process of solution, we use 
the experimental load-time diagram. We establish a simple formula for the evaluation of the dynamic 
stress intensity factors depending on the history of loading of the specimen. The obtained results serve as 
a basis of an experimental procedure of determination of the crack-growth resistance of materials. The 
results of specially performed experimental investigations confirm the efficiency of the proposed for- 
mulas. 

The analytic solutions of the problems of evaluation of the dynamic stress intensity factors (DSIF) for cracked 
bodies subjected to the action of impulsive loads can be constructed only for some simplified problems for infinite 
bodies. At the same time, the approximate solutions of applied problems are successfully constructed with the help 
of contemporary numerical methods and, in particular, the finite-element method. At the Karpenko Physicomecha- 
nical institute of the Ukrainian Academy of Sciences, we developed a special software package capable of giving 
simple formulas for the numerical evaluation of the DSIF for finite cracked bodies subjected to the action of dyna- 
mic loads. 

There are two basic procedures of experimental determination of the time dependence of the DSIF, namely, by 
using small-base sensors (as a disadvantage of this method, we can mention the necessity of pasting transducers to 
each specimen with subsequent calibration) or by the methods of photoelasticity or caustics. The application of the 
second method requires high-speed photography and, hence, advanced recording equipment. It is also characterized 
by a labor-consuming procedure of decoding the frames. Thus, its application seems to be reasonable only for refer- 
ence measurements. 

The theoretical methods for the evaluation of DSIF are, as a rule, base on the use of complicated models. These 
models describe only a part of dynamic effects and include experimentally measured characteristics. At present, the 
combined numerical and experimental approaches are used especially extensively. Thus, a procedure of processing 
the load-time diagrams for beam specimens subjected to one- and three-point impact bending was proposed in [1, 
2]. In these works, the time dependence of the DSIF was studied with the help of the finite-element method and 
modal analysis [3, 4]. This approach to the solution of problems of dynamic fracture mechanics was originated by 
Nash [5] and developed in [ 1, 6]. It combines the availability of simplified models with the accuracy of the finite- 
element method. The methods and improvements close to this approach were proposed in [7-11]. 

If a cylindrical specimen containing an external circumferential crack is subjected to tension, then the local 
planar strained state is realized along the entire crack contour. This factor, together with high loading rates, imposes 
the severest possible restrictions, which makes its role determining (as compared with all other factors). 

However, for cylindrical specimens, we do not know any investigations of the time dependence of the DSIF. 

Hence, we consider a cylindrical specimen of length 2h and radius a weakened in its middle with a surface cir- 

cumferential crack of depth c (Fig. 1). Two equal forces P(t)  are applied to the end faces of the cylinder. Due to 
the symmetry of the problem, we consider only the upper half of the specimen. Since the problem is axially sym- 
metric, the stresses are completely determined by two components of the displacements, i.e., the problem is, in fact, 
two-dimensional. 

Prior to the initial time t = 0, the specimen was in the state of rest. 
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Fig. 1. Geometric parameters and the scheme of loading of a cylindrical specimen. 

I fa  function A(t) reflects the response of the specimen at an arbitrary point A with coordinates (r, z) to a 

unit pulse of a concentrated force applied at the point with coordinates (0, h), then the normal displacement of the 

specimen u(t) at the point A is described with the help of the Duhamel integral [12] as 

l 

u(t) = S P(Z)A(t - z)dz. (1) 
0 

We approximate the function P(t) by a broken line with N links, i.e., 

N 
P(t) = Z ( k i - k i - i ) ( t - t i - i ) H ( t - t i - l ) "  (2) 

i=1 

where k i are the angular coefficients of the links (k o = 0), t i are the abscissas of the salient points (t o = 0), and 

H(t) is the Heaviside function. Substituting expression (2) in relation (1), we obtain 

N 

u(t) = Z (k i -k i - l )5~-( t - t i - l )"  (3) 
i=1 
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where, according to (1), 
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t 

R ( t l )  = H ( t )  f x A ( t  - "c)d~c 
0 

is the normal displacement of the point A caused by a load applied to the end face of the cylinder and increasing 

with unit rate. One can find an expression similar to (3) for any linear system, by replacing the function A ( t )  by 
the state-transition matrix of the corresponding boundary-value problem [12, 13]. Since the DSIF linearly depends 
on displacements near the crack tip, by analogy with (3), we obtain 

N 

Kl(t) = E (ki - k i - l ) K {  l)(t - t i - l ) ,  (4) 
i=1 

where K~l)(t) is the DSIF for the cylindrical specimen subjected to the action of the unit load P( t )  = 1 • t. 

Further, we find K~l)(t)  by the methods of modal analysis. The frequencies of natural vibrations 0)i and the 

corresponding displacements of the specimen (eigenvectors) are determined from the generalized eigenvalue prob- 
lem [3, 4] 

[J]fi = 0) 2[M]fi (5) 

with the following normalization conditions: 

u I [M]uj = 5,7, 

is the matrix of masses [3], where [K] is the stiffness matrix, [M] 

script "t" means that the matrix is transposed [4]. 

The component uj of the vector of displacements can be expressed as follows [ 14]: 

(6) 

5,7 is the Kronecker symbol, and the super- 

tq iUo____Z P ( z )  sin 0)i (t - z) dz , 
u j ( t )  = 0)i 

i=1 

(7) 

where 0)i are the circular frequencies of natural vibrations of a half of the cylindrical specimen, n is the number of 

modes of natural vibrations taken into account in the analysis, and uji and Uoi are, respectively, the ith compo- 

nents of the vectors of displacements of the current point and the point of application of the force. Since the DSIF is 
proportional to the displacements on the crack surface, by analogy With (7), we can write 

i=1 0)i 0 

where Kli is the stress intensify factor for the ith normalized mode of free vibrations of the cylinder. Substituting 

the load P ( t )  = t in this expression, we get 

K~l)(t) = K~ls)H(t)[t-~ [~.)sin(0)it)), 
i=1 

(8) 



DYNAMIC TENSION OF A CYLINDRICAL SPECIMEN WITH CIRCUMFERENTIAL CRACK 385 

z- ( l )  
where ~xlS 
(Fig. 1) and 

is the static stress intensify factor for the specimen stretched by the unit force applied to its end face 

Ki i Uoi 
(,0 2 t, ,-(1) �9 

'HS 
Tli -- 

By analogy with [1, 6], one can show that the equality 

serves as a criterion for the choice of n 

obtain 

I1 

E ] ] i  = 1  
i=1 

(9) 

in Eq. (8). In view of relations (2) and (8), after simple transformations, we 

~tl K(I) rli KI( t )  = K I s P ( t )  - IS E (ki - k i - l ) H ( t  - t i -1)  sin66j(t - t i _ l ) .  (10) 
i=1 i=1 

In relation (10), the DSIF is represented in the form of the sum of  so-called quasistatic and inertial corrections. 

The dimensionless coefficients' rli and the natural frequencies 

, cola 
66i = ,j E / p ' 

where E is Young 's  modulus and P is the density of the material, do not depend on the dimensions of the speci- 

men. At the same time, they depend on the ratio of  the length of the specimen to its radius, relative crack depth, and 

Poisson's ratio v [4]. 
We determine the circular frequencies of  natural vibrations and the corresponding eigenvectors by the method 

of Lanczos blocks [15] for the most interesting range of geometric parameters  of the specimen: 0.3 < ~. < 0.7, 

13.0 < 7 < 20.0 (~. = c / a  and 7 =  2 h / a ) ,  and v = 0.3. The results of  numerical experiments carried out for dif- 

ferent force- t ime loading diagrams and the analysis of relation (9) enable us  to conclude that, within the indicated 

range of  geometric parameters, for the evaluation of the DSIF, it suffices to consider five modes of free vibrations. 

We process the numerical data by the method of  least squares and, as a result, arrive at the following polynomial ap- 

proximations for 66~ and rli: 

co I = 0.142 - 0.581~, + 0.629~. 2 + 
14.83~. - 22.32~. 2 + 6.417L 3 

66~ = 0.393 - 1.511L + 1.525~. 2 + 
44.48L - 71.41~. 2 + 29.35~. 3 

7 

, 69.49~. - 109.28~. 2 + 47.67~. 3 
663 = 0.674 - 2.45~, + 2.347~, 2 + , (11) 

7 

* .-, ~ 2 664 = 0.981 - 3.246~. + o.0o4~, + 
85.26~, - 127.75~. 2 + 53.8~. 3 

7 

90.77~ - 141.18~, 2 + 65.53~, 3 .t- 

c.o 5 = 1.191 - 3.117~. + 2.855~, 2 + 
7 



386 O.E.  ANDREIKIV, V.M. BOIKO, S.E.  KOVCHYK, AND I. V. KHODAN' 

r I j = 1.228 + 0.358~, - 0.705~, 2 + ( -0 .0047 t ,  + 0.0159L2)y,  

r12 = - 0 . 3 7 2  - 0.484k + 1 .133 t  2 + (0.0057), - 0.0238~,2)7, 

rl 3 = 0.272 + 0.0755 k - 0.597 k 2 + ( -  0.0006 k + 0.0111 k 2 ) y, 

r14 = -0 .229  + 0.158~. + O.19k 2 - 0.00339~ 7, 

r15 = 0.14 - 0.337k + 0.25~, 2 + (0.022L - 0.03~,2)y. 

(12) 

co~ = 0.138 + 0.594k - 0.753k 2 + 

o)~ = - 0 . 0 4 6 7  + 0.5973, - 0.596k 2 + 

e0~ = - 0 . 0 2 7  + 0.171k - 0.064k 2 + 
3.353 - 1.466k - 1.806L ~- 

7 

10.28 - 9.5942E - 5,606~, 2 

7 

13.795 - 10.92~, + 9.05L 2 

Y 

tit = 1.242 + 0 . 3 1 3 k -  0.776~ 2 + ( - 0 . 0 0 5 8 k  + 0.0256X2)7, 

112 = - 0 . 6 3 3  + 0.581k + 0.215k 2 + ( 0 . 0 1 8 8 -  0.0708~, + 0 .395k2)y,  

1"13 = 0.108 + 0.674k - l . l17X 2 + (0 .0533~ , -  0,188~, 2 + 0.176X3)y. 

In this case, the accuracy of  approximation is not higher than 3 and 2.5%, respectively. As above, we deter- 

mined the numerical values of  the coefficients co I' and rl i for the range 0.27 < v < 0.33. Here, we can also use 

relations (13) and (14) without serious loss of accuracy. This follows from the fact that, for all three modes, the cor- 

relation of  the coefficients o~ and rll does not exceed 2% in the most unfavorable cases. 

Finally, we also studied the range 0.4 < k _< 0.8 and 4.0 < y < 8.0. In this case, we observed the nonmono- 

tonic convergence of the sum of  the coefficients r I i to one for some small values of  the parameter ~, [see Eq. (9)]. 

A similar phenomenon was also discovered for plane beam specimens in [ I, 4]. The results of numerical exPeri- 

(13) 

(14) 

The accuracy of  approximation in relations (11) and (12) does not exceed 2.5 and 2%, respectively. 

After this, we find the numerical values of co i and q i for the range 0.27 _< v _< 0..~o. It was discovered that 

the values of  r and r li are practically the equal for the first three modes. For the remaining modes, these param- 

eters are slightly different [they are higher or lower than the values given by relations (l  l) and (12) by at most  

0.003]. Taking into account the fact that the influence of  these two modes on the DSIF is insignificant [this follows 

from the structure of relation (10) and the fact that the moduli of  co,.* and 1"1 i are small as compared with the cor- 

responding values for the first three modes], we conclude that relations (l l) and (12) can be applied within the range 

0.27 < v _< 0.33 without serious loss of  accuracy. 

We also solved the eigenvalue problem (5), (6) for the following range of geometric parameters: 0.3 < k < 0.7 

and 8.0 < 7 < 13.0. As follows f rom the results of the numerical experiments and the analysis of the coefficients 

rli given by formula (9), f o r  the evaluation of the DSIF according to relation (10), it suffices to consider three 

modes of  free vibrations. For v = 0.3, we get the following polynomial approximations to m I' and "q i: 
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ments with different force-time loading dia~ams and the analysis of relation (9) demonstrate that it suffices to con- 

sider two modes of free vibrations to guarantee the reliability of  results. Clearly, this can be explained by the struc- 

ture of relation (10) and the absolute values of co~ and "lqi for i > 3. For v = 0.3, by using the method of least 

squares, we obtain the following polynomial approximations: 

co~ = -0 .1013  + 0.6597~, - 0.51Z 2 + 
3.8903 - 5.0484~, + 1.4326~ 2 

u 

4: 

m, = 0.5576 - 0.7688~. + 0.3508Z 2 + 
5.7305 + 0.7167Z - 1.4534Z 2 

T 

rll = 1.702 - 1.467~. + 0.773Z 2 + ( -0 .0528  + 0 . 1 9 7 Z -  0.149 ~.2 ) y, 

q2 = - 1 . 1 4 2  + 2.223~. - 1.082~. 2 + (0.069 - 0.224Z + 0.157~.2)7. 

The accuracy of approximation in these formulas is equal to 2%. For r 12, it is equal to 4%. 

Parallel with the coefficients col: and r li, we computed the static stress intensity factor under the action of the 

unit force according to the scheme depicted in Fig. 1. It was shown that, within the analyzed ranges, this factor is 

practically independent of the length of  the cylindrical specimen and Poisson's ratio (0.27 < v < 0.33). The error 

of its evaluation did not exceed 0.2% for 0.3 < ~, _< 0.8. As a result, by the method of least squares, we obtained 

the following formula for the static stress intensity factor under the action of the unit force: 

Y(Z) 
KI - r-,fT-" (15) 

where 

Y(Z) = 3.403 - 29.637Z + 104.6t3Z 2 - 156.12~ 3 + 89.14~ 4. (16) 

There are several formulas for the function Y(~.) available from the literature. Thus, in [16], it is represented 

in the form 

1 - 0 . 5 e  - 0 . 1 2 5 e  2 + 0 . 2 7 5 7 e  3 - 0 . 2 0 8 2 e  4 + 0 . 0 6 6 3 e  5 + 0 . 0 0 4 8 e  6 - 0.013c 7 
Y(k) = 41 - c 2c~/c (17) 

Here and in what follows, c = 1 - ~.. In [17], this function is given by the formula 

Y(Z) = ~/-~.1.+ 0.5~ + 0.375~ 2 - 0.363~ 3 + 0.731E 4 

2~ ~-~-E 
(18) 

These formulas were deduced by the method of limiting interpolation. The numerical values of this function 

obtained by the method of integral equations can be found in [ 18]. 

The data obtained according to these formulas ,are in fairly good agreement (Fig. 2) but the best correlation is 

observed between relation (16) and the numerical data f rom [ 18]. In our opinion, relation (16) guarantees the maxi- 

mum possible accuracy of results for 0.3 < ~, < 0.8. 

By using the equations presented above, we found the DSIF for the cylindrical steel specimen loaded according 

to the scheme depicted in Fig. 1. The specimen was 16rnm in diameter and 120ram in length. The diameter of  the 

neck was equal to 8.2 mm. 
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Fig .  2. Values of the function Y(~,) ob{ained by different methods: (1) Eq.(16), (2) Eq. (17), (3) Eq.(l 8), (4) numerical data from [18]. 
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Fig. 3. Comparison of  the values of DSIF obtained according to relation (10) and by the finite-element method: (1) relation (10). (2) fi- 

nite-element method. A t = 5 ~ sec. (3) finite-element method, ,5 t = 1 I.t sec. 

We took the following elastic characteristics: E = 200 GPa, p = 7.87 Mg/m 3, and v = 0.3. In the force-time 
loading dia~am (Fig. 3), the DSIF are presented as functions of time. To check the reliability of the results obtained 
according to formulas (10)-(12) and (16), we analyzed the time dependence of the DSIF by using the finite-element 
method together with the Newmark method [4] for two time steps A t = 1/.t sec and A t = 5 p sec. The values of 
DSIF obtained according to formula (10) and with the help of the finite-element method for At = 1 ~sec are in very 
good a~eement (Fig. 3). 

To find the DSIF, one can also use the approach proposed in [19] and checked for the case of one-and three- 
point bending of a beam specimen [7, 20]. 
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Fig. 4. Comparison of the DSIF obtained by using: (1) relation (10), (2) relation (19) with m = 15, (3)) relation (19) with m = 10. 
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Fig. 5. Dependences of the DSIF on the loading history of the specimen of AK-42 steel (force-time loading diagram on the bases of the 

impact-testing machinel: ( 1 ) relation (10), (2) finite-element method, At  = 1 B sec. 

For this purpose, in the time interval [0, T], we represent the load P(t )  in the form of its Fourier series: 

P ( t )  = 
a 0 ~ 2rt 
-7  + (ak c~ + bl~sinkpt)' P = - - "  

- k = 0  T 

After simple transformations (for details, see [20]), we obtain the following expression for the DSIF in the cy- 
lindrical specimen stretched by two concentrated forces 
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Fig. 6. Temperature dependences of  the stress intensity factors for specimens of AK-42 steel under dynamic (1) and static (2) loading. 

k '(  1 ) m _.~ m 1 
KI(t) = "~Is ~_~ rl){Aisin~~ + Bic~176 + + ~ (ak coskpt + b~.sinkpt), (19) 

i=1 - k=l 1 -- ( k p / o ) i )  2 

where 

A; = ----P ' ~  kbk '" 
(0 i .= 1 - (kp/o)i)2 and Bi - a~ Z 1 - ( k p / c o i )  . 

- k=l  

To check formula (19), we studied a steel specimen 120 mm in length and 16 mm in diameter. The diameter 

of the neck was equal to 9.4 ram. The results obtained by using relations (10) and (19) with m = 15 are well corre- 
lated (Fig. 4). This confirms the conclusion that the accuracy of the results given by relation (19) is satisfactory if 

we take m = 10-15 (see [19]). A criterion for the estimation of m can also be found in [8]. 
In our opinion, relation (10) is more convenient for the evaluation of the DS1F according to the force-time 

loading diagram. Indeed, if we use relation (19), then it is necessary to perform a cumbersome procedure of deter- 
ruination of the coefficients of the Fourier expansion of  the loading function. 

To develop the experimental aspects of the proposed method of finding KI D , we compared the results obtained 
by using the load-time diagrams recorded on the bases and on the hammer of an impact-testing machine. This pro- 
cedure and the corresponding equipment were described in [21]. We tested specimens of AK-42 pressure-vessel 
steel. For various reasons [4], the diagrams recorded on the hammer of the impact-testing machine are more conve- 
nient and better reflect the actual processes. There are no significant discrepancies between the maximum values of 

KID obtained on the bases and on the hammer (Figs. 3 and 5). Indeed, the indicated discrepancies vary within the 
range 5 - 8 %  for a large series of experiments carried out within at temperatures of 77-2930K. However, the peri- 
ods of time covered by the dia~ams recorded on the hammer are shorter than for the diagrams recorded on the bases 
for almost all specimens. Probably, this better corresponds to the character of fracture of the specimen. By using 
these diagrams, we plotted the curves of cold brittleness (Fig. 6) according to the proposed procedure (curve 1) and 
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under s tat ic  l oad ing  (curve 2). As in the m a j o r  part o f  works  ava i l ab l e  f rom the l i terature  (see,  e.g., [22]), the thre- 

shold o f  co ld  br i t t leness  in the dynamic  tests  is shifted to the r ight  ( t ow a rd  higher  tempera tures ) .  

T h e  p r o p o s e d  me thod  enables  one to de termine  the time d e p e n d e n c e s  of  the D S I F  wi th  suff icient ly high accu- 

racy and can be r ega rded  as a new step in the deve lopment  of  nume r i c a l - e xpe r ime n t a l  app roaches  to the evaluat ion 

of the d y n a m i c  charac ter i s t ics  of  s t ructural  materials .  
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