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S C I E N T I F I C  A N D  T E C H N I C A L  S E C T I O N  

EFFICIENCY OF T H E  M E T H O D  OF SPECTRAL VIBRODIAGNOSTICS 

FOR F A T I G U E  D A M A G E  OF S T R U C T U R A L  ELEMENTS.  PART I. 

L O N G I T U D I N A L  VIBRATIONS,  ANALYTICAL SOLUTION 

V. V. Matveev UDC 620.178.5:620.179 

On the basis of an analysis of the asymptotics of higher approximations to solutions of a differential 
equation of  longitudinal vibrations of a macroelastic body whose nonlinearity is explained by the 
hysteresis and "breathing' of the damaged material in the process of its cyclic deformation under 
conditions of tension-'compression, we estimate the applicability of the spectral characteristics of  
strain cycles of the body under conditions of its natural or resonance vibrations to the diagnostics 
of fatigue damage of structural elements. It is shown that if nonlinearity is explained solely by the 
hysteresis of  the material, then even the most representative first higher odd harmonics revealed in 
the vibration spectrum have very small amplitudes and the analysis of their variations is, in fact, 
similar to the analysis of the variations of the logarithmic decrement of vibrations (regarded as an 
integral characteristic of  the dissipative properties of the material of  the investigated element) but 
has lower resolution. At  the same time, the discontinuities of the material appearing in the process 
of strain cycling are characterized by formation of numerous microcracks or a macrocrack and result 
in more clear detection of  the representative constant component and even harmonics (mainly the 
second and fourth ones) in the spectrum of strain cycles of a vibration-insulated structural element 
in the process of  its natural or resonance vibrations. These characteristics may serve as sensitive and 
efficient parameters for  detection of fatigue damage to the material. 

Introduction. We consider a method of spectral vibrodiagnostics based on analysis of harmonic components 
(amplitudes and phases) of strain cycles of the material or displacements of a deformable body. The spectral analysis 
of strain cycles of the material used for assessment of the degree of damage to its structure is known as the method 
of higher harmonics (MHH). As indicated in [11, application of this method shows that, in the process of strain 
cycling, in particular, of ferromagnetic materials, the amplitudes of the third, fifth, and seventh harmonics behave 
as nonmonotonic functions of time in agreement with the fundamental periods of the generalized diagram of fatigue 
fracture. The suggestion has been made to use the factor of higher harmonics determined according to the spectral 
characteristics of strain cycles of a harmonically loaded material as a parameter of inelasticity of the material and 
evaluate the degree of fatigue damage to this material by analyzing the behavior of this parameter [2]. In the 
literature, one can also find works devoted to investigation of the possibility of detection of "breathing" transverse 
cracks in rotating multiple-seated rotors by analyzing the presence and variations of the amplitudes and phases of 
the third and fourth harmonics [3] or the second, third, and fourth harmonics [4] in the spectrum of vibratory 
displacements of the rotor. 

The presence of higher harmonics revealed by spectral analysis of strain cycles of the material or 
displacements of a deformable structural element under harmonic loading is explained by distortion of strain cycles 
or displacements of the investigated macroelastic body caused by nonlinearities in its elastic and dissipative 
properties, which must also manifest themselves in the process of natural and resonance vibrations of the body. In 
this case, to detect fatigue damage to a body subjected to strain cycling, one must evaluate the effect of nonlinearity 
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caused solely by the imperfect elasticity of the material and exclude effects induced by the fasteners of the body 
and its interaction with other  bodies by satisfying the requirements traditionally imposed on the procedures used 
for analysis of dissipative properties of materials [5,61. 

It seems reasonable to compare the informativity of results of harmonic analysis of actual strain cycles of 
a macroelastic body in the process of its natural or resonance vibrations with results obtained by using integral 
characteristics of the elastic and inelastic properties of the body, namely, the resonance frequency and the 
logarithmic decrement of vibrations, both in the stage of dispersed fatigue damage and in the stage of development 
of fatigue cracks. In addition, it is necessary to determine the type of nonlinearity responsible for the appearance 
of individual harmonics and predict their possible amplitudes. 

Computational Procedure.  As is known [7,81, imperfect elasticity of a material leads to fairly small deviations 
from Hooke 's  law. In this case, single-frequency longitudinal vibrations of a macroelastic rodlike element with 
distributed parameters  can be described, for a given mode of its natural vibrations, by the differential equation 

M d2u + K u + ef u, --'d7 = eQ~ sin tot, 
dt 2 

(1) 

where M is the generalized mass,  K is the generalized stiffness, Qo is the amplitude of the driving force, 

ef(u, du/dt) is a nonlinear function that takes into account the imperfect elasticity of the material, and e is a small 
parameter  reflecting the fact that the deviations from linearily are small. 

According to asymptotic methods of nonlinear mechanics [7,8], the third approximation to the general 
solution of Eq. (1) for both natural (Qo = O) and resonance vibrations with frequency to = too, where too = 

= v ~ / M ,  can be represented in the form 

u = a cos ~o + eu,(a, e)  + e2u2(a, ~o), (2) 

where the amplitude a and the phase ~o = tot + g, can be found, with sufficiently high accuracy, from the equations 
of the first approximation 

eQo sin g, 
da eA,(a) eQo cos g, d_.f_ = too + eBb(a) + M(too + to)a (3) 
d'--7 = M(wo + to) and dt 

and the 27r-periodic functions of the angle e in the second (u,(a, 7')) and third (u2(a, e))  approximations are given 

by the expressions 

ua(a, e)  = -go(a) + ~ gi(a) cos ie + hi(a) sin ie 
i= 35 .... i 2 - 1 ' (4) 

Here, 

u2(a, e)  = -So(a) + ~, sj(a) cos ]e + pj(a) sin ]e  
] = 2 , 4  . . . .  ]2 _ 1 

2 n  ,~ A,(a) = - ~  fo(a, e)  sin e de,  

2.,z 

,~ B,(a) -- ~ A(a, e)  cos e de, 

2n 
1 

go(a) = -~  fo A(a, e)de, 

2zt 
l 

gi(a) = -~ f /o(a, e) cos ie de,  
0 

2 n  
l 

hi(a) = -~ f fo(a, e)  sin i e de,  
0 

(5) 

(6) 

(7) 
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1 
So(a) = ~ fo A(a, ~)d~, 

2 n  
1 

sj(a) = -~ f I,(a, T) cos jT d~o, 
o 

2 n  
1 

pj(a) = ~ f ft(a, ~o) sin j,p d~o, 
o 

(8) 

where 

fo(a, ~o) = / ( a  cos ~o, - a w  sin ~o), (9) 

f,(a, T) = u, fu(a, T) + A, cos T - aB~ sin T + co /u'( a, T) 

+ aB 2 - A,--~-a ]cos T + 2A,B, + A , -~a  a sin ~, - 2aoA, OaO----T - 2wB, .... (10) 
d~o2  �9 

Furthermore,  it is necessary to determine the nonlinear function (9), which characterizes the imperfect 
elasticity of the investigated element. As the final result, we arrive at the following expression for the general 
solution: 

,,=acos~+.,,+ E a, cos~+ Z b~s~n~,+ T~ ~:cos/~+ Z b:s~nj~. (~i) 
i =  3,5 . . . .  i =  3,5 . . . .  j =  2,4 . . . .  j =  2,4 ....  

Choice of the Nonlinear Function. 
1. First, we consider the possibility of taking into account imperfect elasticity of a material that is responsible 

for its dissipative properties. Note that hysteresis dissipation of energy, independent of the frequency of strain 
cycling of the material, is typical of the majority of structural materials, especially metallic. For this type of imperfect 
elasticity, we can represent the nonlinear function el(u, du/dt)  in a fairly general form as [7] 

o( 1 
~I u, -d7 ,= 2,3,..n 

(12) 

and, hence, 

- -  [(1 •  ] ,  (13) ~fo (a ,~ )  = ~/o(a cos  ~,) = ~: [~  v:" ~,)" - 2 " - '  
n =  2 , 3  . . . .  n 

where n and Vn are parameters of the hysteresis loop, which depend on the dissipative properties of the material. 
For subsequent analysis, we represent function (13), which can describe longitudinal, bending, and torsional 

vibrations, in terms of the corresponding components 

2 ''+ l ( n  - 1 ) v .  a " -  I 
6n = 6n(a) = n(n + 1) 

of the experimentally established amplitude dependence of the logarithmic decrement of vibrations of the structural 
element under consideration c~(a) = ~] 3n(a): 

. =  2 , 3  . . . .  

.(" + [(l • cos )"- 2"-']. 
n= 2,3 .... 2 n+ I ( n -  1) 

(14) 

563 



In the general case, the (possible) nonlinearity of viscous resistance can be represented in the form 

(15) 

and, therefore, 

efo(a,~o) = X sin,p,  (16) 
m= 0,2,3 .... 

where a, n is a coefficient that depends on the ductile properties of the material and m is the degree of nonlinearity. 

Note that m = 0 corresponds to the case of dry friction with relatively large displacements of contacting surfaces 
and m--- 1 corresponds to l inear viscous resistance, which is not responsible for the appearance of higher 

harmonics. 
Function (16) can be expressed in terms of the components 

~ m" ( [ ] E ]) ( m +  1)?? 2 1 + ( - 1 )  m + n  1 - ( - 1 )  'n 

of the logarithmic decrement of vibrations of the investigated element O(a, w) = ~ 6m(a, w): 
m= 0,2,3 .... 

efo(a, T) = ~ (m + 1)??6,,,alsin TI m-  ' sin T 
m=O,2,3 .... m??{211 + ( - 1 ) m l  + n i l  - ( -1 )ml}  

(17) 

2. We now consider possible deviations from perfect elasticity of the material that may result in nonlinearity 
of its elastic characteristics. It should be noted that the hysteresis function (13) presented above also describes 
certain deviations from linear elasticity that, according to Eq. (3), may be responsible for the experimentally 
corroborated dependence of the resonance frequency on the amplitude of vibrations realized via the function 
B~(a) and the parameters  vn and n of the hysteresis loop [61. In this case, the nonlinear component of the elastic 

characteristic of the vibrating system is given by the expression 

Afo(a, ~,) = -~ a, ~o) + f0(a, ~p) = ~ vnan 
n =  2 , 3  . . . .  2n (1 - cos - (1 + cos 9,) n . (18) 

Function (18) is symmetric  [Afo(a, ~o) = - A.fo(a, -~')1 and, hence, ignores any possible difference between 

the tensile and compressive strain half cycles. 
However, it is known [9] that tensile and compressive half cycles induce different fatigue changes in the 

material. One must  also mention the phenomenon of "breathing" of a transverse macrocrack, i.e., its successive 
opening and closing in the process of rotation of a massive rotor [10]. Here,  we assume that the entire cross section 
of a crack can be regarded as a single whole only in the case where the crack lies in the region of compression. 

Similarly, according to the method of detection of fatigue cracks proposed in [ I l l  and based on analysis of the 
difference between the compliances of specimens under tensile-compressive loading in the half cycles of different 

signs, it is supposed that changes in the compliance of the system are promoted by propagation of the crack in 
tensile half cycles. At the same time, in compressive half cycles, the fatigue crack is completely closed and does not 
propagate, and the compliance of the system remains constant. In [12], it was indicated that photograms of fatigue 
crack opening displacements may serve as experimental corroboration of the accepted scheme of changes in the 

compliance of the material. 
This enables us to assume that the appearance of all types of discontinuities of the material (submicro-, 

micro-, and, especially, macrocracks) caused by accumulation of microplastic deformations in the process of strain 
cycling must lead not only to changes in the resonance frequency of the deformed element (i.e., in its elastic 
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characteristic averaged over a cycle) but also to asymmetry of this characteristic, i.e., to a difference between the 
values of stiffness in tensile and compressive half cycles (more precisely, to lower values of stiffness observed under 
conditions of tension). 

By analogy with simulation of a "breathing" macrocrack in a rotor, this phenomenon can be described by 
a function of "breathing" of discontinuities formed in the material or simply by a "breathing function" of the 
material, i.e., in terms of the difference between the values of stiffness in tensile and compressive half cycles, 
namely, 

K = K(u) = Ko[1-  O.Sa (1+ i-~) ] = Ko[1- O.Sa(1 + sign u)], (19) 

where a is the (small) relative difference between the values of stiffness of the deformed element under conditions 
I 

of compression, or prior to the appearance of discontinuities (Ko), and under conditions of tension (Ko), i.e., 

t 

go-Ko 
a - - -  (20~ 

Ko 

The breathing function is associated with the nonlinear function (9) represented in the form 

efo(a,,,o)=-0.5c~a (1 + "t cosC~ ~~ I )~o  cos,,o=-O.5cta|l+sign(cos~o)]cosq,. (21) 

By substituting relation (21) in expression (6) we obtain B,(a) = 0.25awo. According to (3), this enables 

us to determine the resonance (g, = 0) frequency Wo of the element for the indicated nonlinear function a, o = 

= (1 - 0.25a)Wo. Hence, we arrive at a simple relation for evaluation of the parameter  a via the relative difference 

/5 between the frequencies of natural or resonance vibrations of the element prior to Wo and after co o the appearance 

of discontinuities in the material: 

a = 4/5, (22) 

where 

f 

~Oo - Wo ( 2 3 )  
/ 5 - -  03 0 

Note that, by using the expression for the natural frequency of a nonlinear system with asymmetric elastic 
characteristic from [13], we obtain the following relation for a: 

a =  

(1 +/5)2" 
(24) 

It is clear that for small /~, the values of a given by relations (22) and (24) are close. 
It should be taken into account that the indicated breathing function of the material (19) is true for 

longitudinal vibrations under conditions of symmetric strain cycling of elastic elements. In the presence of the static 
component of strains (displacements) Ust , the breathing function (21) takes the form 

where 

A + cos $, ) 
efo(a,~o) =-0 .5aa  1 + I A + c ~  

" A -  ust 
a 

COS ~O, 
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For ust > a (A > 1), we have efo(a, ~o) = - a a  cos ~o, whereas for Ust <- - a (A < - 1), we can write 

efo(a, ~o) = O. It is clear that, in these cases, we do not detect any asymmetry of the elastic characteristic in the 

process of vibrations. 
A somewhat different situation is observed for discontinuities of the material appearing in the process of 

bending and torsional vibrations of elastic elements. Thus, if a defect of the material subjected to bending is formed 
on one side of the neutral layer, then the breathing function of the material has the same form. However, this 
situation is possible only in the special case of the formation of one or several main cracks. For the period of diffused 
fatigue damage to the material, the elastic characteristic of the deformed element seems to be the same in the half 
cycles of its positive and negative displacements, although its values differ slightly from the values recorded prior 
to damage. 

In this case, when the element passes through the equilibrium position in the process of vibrations, we 
observe jumpwise displacements of the neutral layer either toward compressed fibers or in the direction of the 
curvature of the direct axis of the element. However, this problem should be a subject of special investigation. 

Numerical Results. 
1. Non l inear i t y  D e s c r i b e d  by the Hys teres i s  F u n c t i o n  (14) .  By substituting (14) in (7), in view of (4), we 

obtain 

eu,(a, 99) = E aia cos i~o + E fli a s in  ifp. 
i=  3,5 .... i= 3,5 .... (25)  

Here, 
n - i - e  ( ~ ) ( 7 ~ k )  

(n + 1)3 n z 
1 E 2n + i( n Z 22 k (n  _> i),  a i -  i 2 -  1 n= 3,4 .... - 1) k=O 

(26) 

1 
~ i -  i z - 1 

n -  x 
2 n-(n+ 1)6 n _  { 2  n-il _ 1 + (_1)(i+1)/2 ~ n ( n -  1 ) . . . q ! ( n - q +  1) 

n= 2,3 .... I (n  1)~ q= 2.4 .... 

i - I  
2 

1 

k = l  

] 
(i 2 - I)(i 2 - 32). . .  [i 2 - (2k - 1) 21 / ~ ,  

1) g (- 
(2k)!(2k + q + 1) J J 

(27) 

where 

Z = I - ( - 1 )  n 2  , e =  1 + (-l)n2 , (P) = P ( P - 1 . ) 2 . ~ P - I  . . . . % +  1) , (~) = 1. 

For the first three higher harmonics and n = 2, 3 . . . . .  6, the general solution of the differential equation 
(1) in the second approximation takes the form 

u(a,  ~o) = alcos ~o - (0.00390633 + 0.0065164 + 0.0082465 + 0.00726366) cos 37, 

- (0.00006135 + 0.00017166) cos 5~o + (0.00795832 + 0,00795833 + 0.00694764 + 0.005684c55 

+ 0.004421~6) sin 3~ + (0.00037896~ + 0.000378963 + 0.00049126~ + 0.000631535 + 0.000755534) sin 5~o 

+ (0.000063132 + 0.000063163 + 0.000073334 + 0.000086165 + 0.00010236) sin 7~o 1. (28) 

We now simplify solution (28) by neglecting the difference between the coefficients of 3 n and taking into 
account the fact that Y. 3 n determines the logarithmic decrement of vibrations of the investigated element 
(6 = Y~ 3n), whose maximum value specified by the dissipative properties of the material is approximately equal to 
1% for the majority of structural materials if the maximum amplitude of stresses excludes the possibility of damage 
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to the mater ial  in the  process of vibrodiagnostics and,  hence, is lower than its fat igue strength.  As a result ,  we 
obtain 

u ( a ,  ~o) = a ( c o s  ~o --  0 . 0000650L . . . , 6  c o s  3~o --  0 . 0 0 0 0 0 1 0 ~ ,  6 c o s  5<p + 0.000066 sin 3~o 

+ 0.0000053 sin 5~o + 0.00000078 sin 7~o), (29) 

where  
6 6 

m= 3 n = 5 
03,...,6 - ~ < 1, Os,6 - <1.  

(30) 

It should also be noted tha t  the constant  component  and even harmonics  m a y  appea r  in the spec t rum for 
the indicated type of nonl inear i ty .  To  reveal these components ,  one must deduce explicit expressions for f~(a, ~o), 
so(a), sj(a), and py(a) by using relat ions (I0) and (8) and find the solution of the equation in the third 

approximat ion,  i.e., function (5) responsible  for the terms of order  of smallness e 2. 
For the nonl inear  funct ion (14), we obtain 

Here ,  

Gt 0 

e2u2(a,~o)=aoa+ ~ ayacosj~o+ ~ fljasinj~o. (31) 
j = 2 , 4  .... j =  2,4.. .  

- -  a i  "~ n C o  = i + "~ r'i ~ ~ n .  , .  - o ( v t O  i , 
i= ,... i=2,3 .... 2 ( n -  1) n=2,3 .... Z ( n -  l) 

1 - a~ '0 ~ 2 ,  + = I~i-j31 + ~ , , = i + /  
'~J = i  2 - l ,= , .... .=  z.3 .... ' ( , ~ -  1) 

fl}n) n(n + l)c3t~ [ 2i 2 i - - j  D(n) (n) j]~ 
+ ~ ~ i 2 -  l ( i - ~ l  ~ = ~ ( ; _ j ~ - o ~ = ~ + .  f ,  n= 2,3 .... 2n(n - 1) - j 

f l Y - j 2 -  1 3.~5 l ~ , =  ~ - ~ n - I )  2 i 2 i= . ,... 2,3,... 
(•- i (n) ] 

I i) I Do = ,  ~j_ ,.), - z ~  j+ i 
J 

n= 2,3 .... 2 ' '+ I(n - 1) 
(32) 

where  
II-- O--~ 

2 
c~ . )  = 1 , ~ - 1  n - k -  - ( - 0  ~ 

2 v k= k v + k  ' X= 2 

n-'~ 
o~")  = ~ -  1~ ( v +  1) /2  Z ("  - 1 ) (n  - 2 ) . . . ( n  - q) 

q =  2,4 . . . .  q !  

1 

v - 1  
2 

+ ~ ( _ l ) k  0,  2 - 1)(v 2 - 32) . . .Ev  2 - (2~  - 1)21 
k= l (2k)!(2k + q + 1) 

- 3  + ( - I ) "  
2 

(33) 
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For approximate  assessment  of the values of the constant component  ao = aoa and the ampli tudes of the 

even harmonics aj = ctja and by = flya, we can omit the amplitudes ai = aia and b i = ilia of harmonics  whose 
order  is higher  than three because,  according to relation (28), they are weaker than a3 at least by  an o rder  of 

magni tude (as = 0,1a3 and a7 = 0,01a3). Moreover, since the coefficients of the components  of the ampli tudes 

ai for  different n are  close to each other ,  we can, for the sake of simplicity, restrict ourselves to analysis  of a single 

component  of the ampli tudes a] and  a3 (a~ n) and a~ n)) for any  fixed n, i.e., omit the summation over n in 

expressions (26) and  (32). 
Thus ,  if n = 3 or  n = 4, then,  for the lowest harmonic (j = 2), we find 

(St  3) = (-- 0.125(Z  3) q- 0.13945fl~3))33, 

4) = ( -  0.52083a  4) + 0.12631/3 4))54, 

fl~3) = _ (0.07276a~3) + 0.125fl~3))53, 

fl~') = (0.37894a~ ") - 0.13021fl~'))34, 

(34) 

and, for the constant  component ,  

Of~ 3) = 0.3821~3)(~3, 61f~ 4) ----~ (-- 0 .05208a~ 4) "Jff 0 . 2 1 2 2 1 f l ~ a ) ) 3 4  . (35) 

Since c5 n < 1%,  it follows from the example presented above that the ampli tudes of the second harmonic  

are smaller than the ampli tudes of the third harmonic by more than two orders of magnitude,  i.e., they are 

comparable with the ampli tudes of the seventh harmonic and,  hence, can be neglected. 
2. Dissipative Nonlinearity Described by Expression (17).  By substi tuting relations (17) and (7) in (4) and 

integrating the expression obtained,  we obtain 

where 

elt ,(a,  ~o) = Z ~t i a cos i~o, (36) 
i= 3,5 .... 

/]-i = - -  Z (1 -- m)(3 -- m ) . . .  1 ( i -  2) -- m]5,,, 
m= 0.2,3 .... :r(i 2 -- 1)(i + m)(i  + m -- 2) . . .  li + m -- (i -- 3)1 " (37) 

For the first three harmonics  (i = 3, 5, 7) and m = 0, 2, 3 . . . . .  6, we arrive at the following general  solution 

of the differential equation (I)  in the second approximation:  

u = a[cos ~ + ( - 0 . 0 1 3 2 6 3 3 0  + 0.00795773z + 0.01326333 + 0.0170534 + 0.0198945s + 0-02210536) sin 3~ 

+ ( -  0.002652550 + 0.000378932 - 0.000631534 - 0.0013262935 - 0.002009536) sin 5~o 

+ ( -  0.000947330 + 0.000063132 - 0.000028734 + 0.00007736) sin 7~1. (38) 

It is easy to see that  the ampli tudes of the higher  harmonics are  approximately  equal to those obta ined in 

Subsection 1. 
3. Nonlinear Elasticity Described by Relation (18).  The  indicated type of nonl inear i ty  is responsible  for the 

appearance of a symmetr ic  elastic characterist ic and the odd higher harmonics ay a cos j~o automatical ly obtained 

in the second approximat ion [see relation (29)] if we use the hysteresis  function (12). In view of relat ions (3) and 

(6), in this case, the resonance f requency is a function of the ampli tude of vibrations a or  the components  of the 

decrement  of vibrations 3n: 

(39) 

where 
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n - l - e  n - l - e  

2 2 

bn= 2--n k=O + ' 2 n + 2 ( n -  1) k=O + " 

4. "Breathing' Discontinuities in the Material of a Macroelastic Element Described by Function (21). By 
substituting (21) in (7) and  then in (4) and integrating the relation obtained, we find 

where 

eu,(a, ~o) = yon + ~, vj a cos J'7', (41) 
j = 2 , 4  . . . .  

a = ( _  1)j/2 2a 
"o = ":  ,Oa _ 1 ) z .  

(42) 

For the first four h igher  harmonics (j = 2, 4, 6, 8), we arrive at the following expression for the general 

solution (2) in the second approximation:  

u = a(0.31831a + cos ~o - 0.07074 a cos 2~o + 0.00283 a cos 4~o - 0.00052 a cos 6~o + 0.00016 a cos 8~o). (43) 

It is clear that,  for evaluation of the constant component and the cosine harmonics,  one must  know the 
quantity a .  Approximate  values of a can be obtained by using relation (22) [or (24)! and existing experimental  

data on the variation of the resonance frequency of vibrations COo and the dynamic (shear) modulus of elasticity 

(Esh = const  r in the course of fatigue testing of metal specimens. 

In [14], it was indicated that, for the alloys studied by Lazan and Demer, the maximum relative decrease 
in the value of the modulus  of elasticity at tained in the process of cyclic loading under  the action of stresses higher 

than the fatigue limit was never more than 6 -8% on a base of 105, which corresponds to changes in the frequency 
of vibrations by 3-4Yo. At the same time, an analysis of the dependences of the period of resonance vibrations on 
the length of fatigue cracks recorded near  stress concentrators in the course of fatigue testing of tubular  specimens 

of EP-609Sh steel demons t ra ted  that  the reliably detected minimum relative increase in the period of vibrations is 
as high as 0 .07-0 .2% if the length of the crack is >__ 0.13 mm. Thus,  the experimentally established range of the 
parameter  fl defined by (23) is 0.001--0.04, which specifies, in view of relation (22) ior (24)], the max imum range 
of the parameter  a ,  namely ,  0 .004-0.15,  and, hence, the following values of the harmonics:  

u = a(0.00127. . .0 .0178 + cos ~ - 0.000283.. .0.0106 cos 2~o + 0.0000113. . .0 .000425 cos 4~o 

- 0.000002. . .0.000078 cos 6~o + 0.00000064.. .0.000024 cos 8~o). (44) 

Let us now estimate the values of a on the basis of concepts of l inear fracture mechanics.  Thus ,  as indicated 

in [15], if two identical plates of thickness t are subjected to the action of the same tensile load P and one of 
these plates has no cracks and  the other  is weakened by a symmetric transverse through crack of length 2l, then 

an addit ional  amount  of ene rgy  AFI = st a212t/E is spent in the process of loading of the cracked plate; here,  a 

is the nominal  stress related to unit area of the cross section F of the plate without cracks and E is the modulus 

of elasticity of the material  of the plates. The  expression st a21 can be rewritten in terms of the stress intensity 

factor KI. This  gives 

An  -- K2I Fc (45) 
2E ' 

where Fc is the area of the crack (in this case, it is equal to 2t/). Note that,  under  conditions of plane deformation,  

we must  replace the quanti ty E by El(1 -/~2). Somewhat  arbitrarily, we assume that  relation (45) is t rue for 
various transverse cracks and  boundary  conditions provided that we know the value of KI. Thus,  for  a flat specimen 
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of length L, width b, and thickness t weakened by a transverse crack of area F c, the expression for its potential 
strain energy 1"I under the action of a tensile load P = aF can be represented in the form 

1 /4F, 
FI= K o+ 2E-2K o' (46) 

where Ko = E F / L  is the stiffness of the intact specimen and K~ is the stiffness of the cracked specimen in tension. 

We neglect the possibility of the appearance of bending strains caused by asymmetric location of the crack with 
respect to the direct axis of the specimen. 

By using relation (20), we represent the stiffness K~ in the form K~ = Ko(l - a). We substitute this 

expression in (46) and arrive at the following relation for the parameter a: 

a = (47) 2 " 

Let us now analyze some special cases of tension--compression of elastic elements described by Eq. (1). We 

consider a flat specimen with dimensions: t = 2 ram, b = 10 ram, and L = 25 ram. The specimen is weakened by 

a transverse main crack. The relevant values of K I are determined from reference data [16]. 

For edge cracks of length l = 1-3 mm, the parameter a varies within the range 0.0173--0.2365. For central 
through cracks of length 2l = 2-4 mm, it varies within the range 0.0257-0.1106. For a central semielliptic surface 

crack whose length-to-depth ratio 2 l /a  guarantees attainment of almost equal values of KI along the crack front, 

we have a = 0.00355-0.0219 for l = 1-2 ram. For a through crack of length l appearing on the contour of a 
circular hole of radius R, this parameter varies from 0.028 to 0.0093 if l = 0.2-0.5 and R = 1 ram. 

It is worth noting that if we analyze vibrations of an elastic element regarded as a system with distributed 
parameters, then the values of the parameter a also depend on the location of the crack and the modes of vibration. 

Let us also estimate the value of a in the case of diffused fatigue damage by assuming that the methods 
of linear fracture mechanics are applicable to observed microcracks. According to [171, in the course of tensile-- 
compressive fatigue testing of thin-walled tubular specimens of 45 steel, one observes 200-900 cracks of average 

length 2l = 0.02 mm on a surface of area 1 mm 2 if the number of loading cycles is equal to half the number of 

cycles to failure. If we assume that the system of surface cracks of the same length forms a doubly periodic orthogonal 
lattice, then relation (47) gives a ~ 0.001-0.003 for a 2-ram-thick flat specimen independently of its length. 

It is easy to see that the values of a are in reasonable agreement with its ranges indicated earlier. 
Discussion. As follows from solution (28) and relation (38), for the type of nonlinearity caused by the 

dissipative properties of a material with an expected value of their integral characteristic (i.e., the decrement of 
vibrations) of about 1%, the amplitudes of the first higher odd harmonics in the vibration spectrum are quite small, 
and the amplitudes of even harmonics and the constant component are negligible. Thus, the maximum amplitudes 
of the third harmonics are smaller than the amplitude of the first harmonic by about five orders of magnitude 

(a3 ~ b 3 -  6.5-10 . 5  a) and the amplitude of the second harmonic is smaller than the amplitude of the third 

harmonic by more than two orders of magnitude (a2 ~ 1 .10-  8 a). Moreover, in this case, the presence of higher 

harmonics does not actually serve as an indication of the presence of fatigue damage to the material because the 
dissipation of energy is also typical of its initial state (prior to cycling). In this case, the value of the decrement 
may both increase and decrease in the process of cycling, and the fatigue damage to the material can be more 
efficiently detected by analyzing the behavior of the decrement of vibrations and the amplitude of higher harmonics 
as functions of the number of strain cycles rather than their absolute values [18]. It is also worth noting that if the 
first harmonic obeys the cosine law of variation, then the odd sinusoidal harmonics reflect the imperfect elasticity 
of the material responsible for the amplitude dependence of the relative dissipation of energy. At the same time, 

the odd cosinusoidal harmonics describe pure elastic and symmetric nonlinearity. 
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Results of numerical calculations also demonstrate that it is practically impossible to evaluate the degree of 
damage to the material  from the changes in the mechanism of dissipation of energy or in the character  of the 
amplitude dependence of the decrement of vibrations because the amplitudes of harmonics, including the amplitude 
of the most representative, third harmonic, are determined by the sum of the components of the decrement of 

vibrations 6n. 
In fact, the analysis of the behavior of the amplitudes of higher harmonics is, in this case, similar to the 

analysis of the behavior of the integral characteristic of dissipative properties of the material of the element, i.e., 
of its logarithmic decrement  of vibrations 6 = ~ 6,z, with the only difference that the former is characterized by a 
much lower resolution because it is based on an analysis of the behavior of very small quantities. 

More promising results are obtained in analyzing "breathing" discontinuities of the material. 
First, the spectrum of solution (44) obtained in this case is characterized by the presence of a pronounced 

constant component whose values [even for insignificant variations of the resonance frequency (of about 0.1 ~ ) ]  are 
higher than the values of this component determined by possible nonlinearities of the dissipative properties of the 
material by about four orders of magnitude. Hence, the constant component may serve as a quite sensitive parameter  
for both detection of damage and evaluation of the degree of fatigue damage. This confirms the potential efficiency 
of the experimental procedure suggested in [11] for detection of fatigue cracks by instrument-assisted separation 
of the constant component  of forces acting on the specimen under strain-controlled harmonic loading. 

Second, in this solution, we readily detect even harmonics whose amplitudes (for the indicated changes in 
the resonance frequency) are higher than the amplitudes of the same harmonics induced by possible nonlinearities 
of the dissipative properties of the material by about three orders of magnitude. Moreover, the maximum of these 
amplitudes, i.e., the amplitude of the second harmonic, is greater than the maximum (third) amplitude of odd 
harmonics caused by nonlinearities of dissipative properties by an order of magnitude. 

Third, unlike the nonlinearity of dissipative properties, the process of breathing of the material is observed 
only after the appearance of breathing discontinuities in the process of cycling, i.e., both higher harmonics and the 
constant component are small or almost absent in the intact material. Furthermore, as the degree of damage increases 
and, hence, the resonance frequency of the element decreases in the process of strain cycling, we observe a 
well-pronounced increase in the amplitudes of even harmonics. According to relation (43), this effect is proportional 
to the relative change in the degree of damage of the material described by the parameter  a. Therefore,  the 
increment of the amplitudes of even harmonics recorded in the process of spectral analysis of strain cycles of the 
investigated element both after cycling and in the intact state may serve as a representative informative parameter  
of discontinuities of the material formed in the course of strain cycling. It should also be noted that the analysis of 
the behavior of this parameter  is clearly characterized by higher resolution than the analysis of the behavior of the 
integral characteristic of elasticity of the investigated element, i.e., its resonance frequency. Thus, for a relative 
variation of the resonance frequency of about 0.I %, the amplitudes of even harmonics change by a factor of ten or 
even more and, for a relative variation of the resonance frequency of about 4 ~ ,  the amplitudes vary by a factor 

300. 
Conclusion. The  presence of a constant component of a certain magnitude and even harmonics whose 

amplitudes exceed certain prescribed levels in the spectrum of strain cycles of the material or vibratory displacements 
of the investigated element may serve as an indicator of breathing discontinuities in the material of the vibration- 
insulated structural element in the process of its natural or resonance single-frequency longitudinal vibration. The 
values of the constant component and the amplitudes of even harmonics (primarily, the second and fourth) exceeding 
the corresponding values recorded for the intact material of the investigated element may serve as a sensitive and 
efficient parameter  for detection of fatigue damage to the material and evaluation of its level. 
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