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EMBEDDING L, IN A BANACH LATTICE

BY
N. J. KALTON

ABSTRACT

We show that if X is a Banach lattice containing no copy of ¢, and if Z is a
subspace of X isomorphic to L,[0, 1] then (a) Z contains a subspace Z,
isomorphic to L, and complemented in X and (b) X contains a complemented
sublattice isomorphic and lattice-tsomorphic to L,.

1. Introduction

In [5] (see also [6]) Lotz shows that if X is a Banach lattice such that X * does
not have the Radon-Nikodym property, then either ¢, embeds in X* or L,
embeds as a complemented sublattice. In consequence if X * contains no copy of
¢o and L, can be embedded in X * then L, can be embedded as a complemented
sublattice.

In this paper we show that if X does not contain ¢, and X contains a subspace
Z isomorphic to L, then X contains a complemented sublattice = L,. We also
show that Z has a subspace Z,= L, and complented in X. This result extends a
result of Enflo and Starbird [2] who establish the same result for X = L, (see also
[4])-

In place of L,[0, 1] we shall work with L1(A, %, A ) where A is the Cantor group
IT-, {—1, + 1} with A Haar measure defined on the Borel sets B of A. Of course
L,[0,1] and L,(A) are isometrically lattice-isomorphic.

On A, we denote by & the characters

g{t)=1¢ where ¢t = (£, )/-1 € A.

Let A}, 1=k =2" be the set of t € A such that

3 42t =k -1,
j=1
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Then each Aj is clopen and (A}: 1=k =2") forms the standard nth partition

of A. We denote the characteristic function of Afby xi (1=k =2", 1= n <x).
Suppose X is a Banach lattice which does not contain ¢,. Then if x, € X is an

increasing net with supllx. | <, we conclude that x, converges and

lim x, = sup x,.
(24 a

In particular X is order-complete.
Now if T: L,(A)— X is a bounded linear operator we may define an operator
|T|: L(A)— X such that

IT|(x)=sup 2, |Txr|

man Amcal

and ||| T|||=]|T]. It is clear that if U: L,(A)— X satisfies UZTand Uz — T
then U =|T| (so that £(L,(A), X) is a Banach lattice).

2. Preliminary results
Our starting point is the following theorem proved in [4].

THeoreMm 2.1.  Suppose (2,2, 1) is a measure space with u(Q) = 1. Suppose
T: L,(A)—> L(€) is a bounded linear operator. Then there is an essentially unique
(i.e. up 1o sets of w-measure zero) map o — v, from Q into the space M(A) of
regular Borel measures on A such that

(2.1.1) @ — v, is weak *-measurable with respect to %,

(2.1.2) fa|v.|(B)du(w)=MA(B), B € %,

(2.1.3) Tf(w) = [af(t)dv,(t), n-a.e., fE Li(A),
where M =| T|.

Conversely if  — v, satisfies (2.1.1) and (2.1.2) then (2.1.3) defines a bounded
linear operator from L,(A) into L,(Q) with ||T||= M.

We shall say that T € £(L,(A), L,(})) is atomic if p{w: v. € M (A} <1
where (. (A) is the subset of #(A) of all continuous measures. Since 4, (A) is
weak*-Borel (see [4]), the set {w: v, € M. (A)} € 2.

ProrosiTioN 2.2. If T € L(L\(A), L,(Q)) is atomic then:

(2.2.1) there is a Borel subset B of A with A(B)>0 such that T I L«{B) is an
isomorphism and T(L.(B)) is complemented in L,(Q),

(2.2.2) there is an operator S of the form
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Sf(w) = f(ow), w € Q,,
Sf(w)=0, w & Qo,

where u{Q) >0 and o: Q— A is S-measurable, such that S =m|T|, for some
m €N.

REMARK 1. Of course we assume in (2.2.2) that S is bounded, which implies
some conditions on o.

REMARrk 2. It is clear that (2.2.2) implies T is atomic; in fact (2.2.1) also
implies T is atomic. This last remark follows from Theorem 3.1 below.

ProofF. (2.2.1)is proved in [4] theorem 5.5, for the case when (1 is a compact
metric space and 2, is the Borel o -algebra on (). For the general case we observe
that since L,(A) is separable, we may suppose T(L.(A)) is contained in
L,(Q, 2, ) where 3, is a sub-o-algebra of % such that L,(Q, 2, ) is separable.
Now let 2, be a countable w-dense sub-algebra of 3, and let K be its Stone
space; denote by j: 1 — K the natural map.

Then j is measurable for the Borel o-algebra on K and we may define a Borel
measure £ on K by

AB)=u(7(B))

for B a Borel subset of K. It is easily checked that the map J: f — foj defines an
isometric isomorphism between L,(K, i) and L,(Q, Zo, i ).
Consider J7'T: L,(A)— L(K, i); this has the form

J—‘Tf(s)zfA fOdn (),  peae.,

where s — v, is a Borel-measurable map from K into #((A), satisfying the
conditions of Theorem 2.1.
Then

I ' Tf(w) = Tf(w) = f fO)dv. (1), p-ae.

Hence w — v, “represents” T; by the essential uniqueness of this representa-
tion we conclude

wiow: v, € M.(A)}< 1.
Hence
dis: v, € M. (A)} <1
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and so J™'T is atomic and we may appeal to [3] theorem 5.5 for the result (note
that L,(€), 3, u) is complemented in L,(£2)).
For (2.2.2) observe that by the remarks after theorem 3.2 of [4]

Vo = }j a4, ()8(0uw ) + po,

where

(1) a.: Q—R is S-measurable, n €N,

(2) o.: Q— A is Z-measurable, n €N,

3) la.(w)| =] a.+1(w)], nEN, 0w €0,

@) g.(w)# on(w), m#n,

5) p.€MA(D), v EQ.

Since v, # p., on a set of positive measure there is a set ), with u (€o) > 0 such
that

la(w)|z e >0, 8 € Q.
Define
Sf(w) = f(ow), w € ),

:O, ngO

Then for f= 0

sf=e [ fmdlnle

=& '|T|f

(since it is easy to show that w — |, | represents | T|, cf. [4]).
From this it easily follows that S is bounded; and for (2.2.2) choose m >1/e.
Of course, S# 0 since Sya # 0.

ProposiTiON 2.3. Suppose T € £(L,(A), L,(Q))) and that Ty = bi. Define
h.(w)= max |bi(w)].
1sk=2"

If limsup,—..h,(w)>0 on a set of positive w-measure, then T is atomic.
Proor. Consider |T|; it is enough to show that | T| is atomic. Let

IT|(x®)=ck
and

g:(w)= max ci(w).
1=k =2"
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Then g, = h, and hence for some Qo with w(Qe) >0
limsup g, (w) >0, w € Q.
For w € choose 0<¢, <limsupg.(w) and choose n(j)—>® such that
gni)(®) > £, Then there exists k(j), 1 = k(j)=2"" such that
c:g: >£,.

If we choose 7i € Ai, as in the proof of theorem 3.1 of [4] if
.

2= ci(@)8(rh)

&
then a.—|v,| w-a.e. in the weak*-topology. Now
al = £,8(Th)
and hence if 7, is a limit point of {rry: j € N},
lv, |z £.8(T,) (n-a.e. w €8y)

(since the positive cone of 4 (A) is weak* closed). Thus |v, | & M. (A), n-a.e.,
w € Qo.

3. The main results

THEOREM 3.1. Suppose X is a Banach lattice which does not contain c,.
Suppose T: L\(A)— X is an isomorphism of L,(A) onto a subspace Z of X. Then:

(3.1.1) there exists a subset B of A with A(B)>0 such that T(L\(B)) is
complemented in X,

(3.1.2) there exists an isomorphism S of L.(A) onto a complemented subspace Y
of X which is also a lattice isomorphism, i.e.

S(frg)=SfnaSg, f, g € Li(A).

Proor. Let Y be the smallest closed sublattice of X containing Z. The Y is
separable and order-complete. Consider | T|: L,(A)— X: then | T|(L:)C Y. Let
u =|T|(xa), and let Y. be defined by

Y.= U n((~wu]lnYy),

where [ — u, u] is the order-interval — u = x = u; taking [~ w, u] N Y as the unit
ball Y, becomes an order-complete Banach lattice which is an AM-space. Hence
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Y. is isometrically lattice-isomorphic to a space C({2) where Q is a Stonian
space. We denote by 6: C(2)— Y, C Y this isomorphism.

Since Y is separable, there exists a positive linear functional ¢ € X * such that
¢(u)=1and ¢ is strictly positiveon Y, i.e. $(y)=0,y =0imply y =0(y € Y).
Clearly ¢ o8 € C(Q)* and ||¢ <8/ = 1; hence there is a probability measure
on {) such that

<;‘>(0f)=fn flo)du(@), f€CEQ).

In fact u is normal, since if f, is an increasing net bounded above in C(£2) then
0f. > 8(sup.f.) in Y as X contains no copy of co; thus if G C{} is meagre,
1 {(G)=0. Also the support of u is dense in () since ¢ is strictly positive on Y..
This means that L.(Q, 8(Q), u) may be identified with C(Q) both as a Banach
space and as a lattice; for if f is a bounded Borel function on £) then there is a
unique g € C(€}) such that f=g w-a.e. Note that in L.({), n) the lattice
supremum of a countable subset is the point-wise supremum. Thus we shall
regard 6 as a lattice isomorphism of L.({}, u) onto Y..

If f€ C(A) and ||f||=1, then Tf €E[—u,u] N Y and hence we may induce a
map To: C(A)— L(Q, ) so that | To|=1 and 6T,=T.

Denote by j the natural inclusion map L.(Q, n )= L.(€), n). Suppose B C ) is
Borel, and denote by Py the band projection on X induced by 0ys. Thus for
veX vz=0

Pgv = sup (v A nfxa).
Then ||Ps||=1 and it is easy to show that since X does not contain ¢,, each
x € X, the map B — Ppx is a countably additive vector measure on % (). In
particular B — ¢(Pgx) is a u-continuous measure, and hence by taking its

Radon-Nikodym derivative we may induce an operator V: X — L,({2, u) such
that

B(Pex) = [ Vx(@)du(@).
If A and B are disjoint
| (Pax — Pox)| = & (| Pax | +|Pax|)
< ¢(lx])

=l llx|
so that | V[ ={¢].
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It is easy to see that for f € C(A), jTof = VTf; thus the following diagram
commutes:

X

|

L) —— Y

o

C(A) —2—> Lo(Q, ) ——> Li(Q, 1)

At this point we recall that T is an isomorphism so that for some ¢ >0

ITflzclfll,  f€ L)

We now claim the existence of § >0 such that if B C{} is a Borel set with
w(B)< 8 then ||6xs||<c/2. If this were false then we could find B. with
w(B.)=2" and | 0xs,|Zc/2. If C.=U,2.Bi, then u(C,)—0 and hence
infaxc, =0 in Lo(X,u). Thus ||6(xc.)||—0 and so | 8ys.]| >0 which is a
contradiction.

We shall now show that VT is atomic as an operator from L;(A) into L,(£2).
Let

Toxx= b, 1=k=2", 1=n<w
and

hn(w)zlgals)gnlbﬁ(w)l, w € Q.

It suffices to show limsup.—.h, >0 on a set of positive w-measure. Our
argument here is based on one of Dor [1].
IfseEA I=n<wx,

2n

2 A H EX
Define A, CA X by
A, = {(s,w): F) ;1 e (s)bi(w) '2>‘Z1 ]b;‘(w)F} .
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Since each bi € C((1), A, is open and hence A X u-measurable. For each w € ()
let A, (w) be the set of s € A for which (s,w)€&€ A,. Then

M) B bt@)Fss [ | S ambio)] ao

=5 3 b3

and hence A (A, (w))= 6. Thus (A X u)(A,)= 8 and by Fubini’s theorem there
exists s = s(n)€ A such that if C=C, ={w: (5, ) € A.} then u(C)=8.
Thus

“ ] [Xc 2‘ £i (s)bi'] = |l oxc| = c /2.
Hence
u 0 [XQ_C:Z"I £x (s)bl'] z c/2.
Let
8@ =V (S bi@)F).
For w € Q\C, "
gn(0)Z V8 2 & (s)bi(w)’.
Hence

| 6g [ = tc V.
Now let E = {x: g.(x)>c¢V/4|jull}. Then

0(gnxa-z) = fﬁ—j u
and hence

16(gxa-£)| =4c V.
For w € E

| gn (@) = ha () ‘Zl [bi(w)]
and
0| 3 12| = 3 10621 = 3 1 T2l =1 Tl = w.

Hence

:2’1 [bi(w)|=1.
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Thus for w € E

R (0) Z [ gn(w)]?

> C \/6 ©
au] &)
Hence
c’d
6h. || = —5— .
[l 6h. | 6]
Now
“ 9 (Iim sup f, {é = I H snp h,(
Z lim sup || 6h, |
> c’6 A
16 u ||

Hence limsup,—..h. >0 on a set of positive measure, and so VT is atomic.

Thus we conclude by Proposition 2.2 that there is a Borel subset B of A of
positive measure such that VT maps L,(B) isomorphically to a complemented
subspace of L,(€). Suppose P is a projection of L,(2) onto VT(L.(B)); then
V'PV projects X onto T(L,(B)), since V maps T(L,(B)) isomorphically onto
its image.

For our second claim we appeal to (2.2.2) to produce a non-zero operator
S: L(A)— L, Q) of the form

Sf(w) = f(ow), w €,
Sf(w):O1 w&ﬂo,

with S =m | T| for some m € N. Again by results of [3] there is a subset C of A
of positive measure such that § ,LI(C) is an isomorphism onto a complemented
subspace of L,(}).

Let S, be the restriction of S, S¢: C(A)— L, n). IE fECA), f=0

mV([T{fyzm{VT|f
= Sof
= VOS,f

= VBSof
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and hence m |T|f = 6S,f. Thus 6S, extends to a map S,: L,(A)— Y; clearly
VS = S. As before $;(L(C)) is a complemented subspace of X. To complete the
proof we show that S, is a lattice homomorphism (since of course L,(C) is
isomorphically lattice-isomorphic to L,(A)). If f,g € L,(C) then

VS(frg)=S(frg)
= VS, f A VSg

Let h=S(farg) Then h=S5,farSg and hence Vh=V(S.faSig)=
VS.f A VSig = Vh. Thus

¢(SifrSig—h)= f (V(S:f ASig)— Vh)du =0.
Since ¢ is strictly positive on Y

SifrSig=8(fnrg)
as required.

Now suppose (0,2, u) is a measure space in the u (1) = 1. A re-arrangement
invariant Banach function space X on (2,2, i) is an order-ideal of L€, 2, n)
equipped with a Banach lattice norm such that if f € X and g € L, are such that
[f| and |g| have the same distribution, i.e.

plo:|f(w)]>a} = p{w:[g(w)|>a} (aER),

then g € X and [gll=|f|.
Under these circumstances X is automatically contained in L,(QQ, ). Exam-
ples are Orlicz spaces and Lorentz spaces.

THeoREM 3.2. Suppose X is a re-arrangement invariant Banach function
space on (), 2, u) not containing ¢,. Then if X contains a subspace isomorphic to
LiA), X =L(Q,un).

Proor. By Theorem 3.1 there is a lattice isomorphic embedding
S: L,(A)— X. Consider $ as a map from L,(A) into L,(2). Then § is a lattice
homomorphism.

Suppose

Sf(@)= [ fOdn®

as in Theorem 3.1. If we pick 7€ A} then a,— v, pn-a.e. where

o
al= > Sxr(w)s(ti).
k=1
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Since S is a lattice homomorphism
| Sxx[ A~ [Sx;|=0

and hence a is a single non-negative point mass: p-a.e. Thus v, is a single
non-negative point mass u-a.e., and it follows that

Sf(w)= a{w)f(ow), w-a.e.,

where a(w)=0 and o: Q— A is Z-measurable.
Since S#0, a#0 and so there exists ¢ >0 such that u(A)>0 where
A ={w: a(w)>e}. Then

Tf(0) = xaf(ow),  p-ace.

defines a non-zero bounded linear operator of L,(A) into X. Since
T: L(A)— L,(Q) is atomic, there is a subset C of A of positive measure such
that T l L,(C}) is an isomorphism, i.e. for some ¢ >0

| 1m@lde@)zelrl, feLio.

Now suppose D €% and u (D)< u (o 'C N A); observe that u (e 'C N A)>0.
Then there exists B C C such that w(c7'BNA)=pu(D) as the measure
B - u{c'BNA) is clearly non-atomic. Thus
Ixo =1 Txs |
=[T[A(B)
=c|T|u(@e™BNA)

=c | Tlu(D).
It follows now easily for simple functions and hence for any f € X that
1912 < ITH | 1f(@)ldu (@)

This implies X = L,(}).

Note. After the initial preparation of this paper, the author learned that
Theorem 3.2 had also been obtained by Johnson, Maurey, Schechtman and
Tzafriri [3] under the slightly stronger assumption that ¢, is not finitely
representable in X.
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