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E M B E D D I N G  L, IN A B A N A C H  L A T T I C E  

BY 

N. J. KALTON 

ABSTRACT 

We show that if X is a Banach lattice containing no copy of co and if Z is a 
subspace of X isomorphic to L~[0, 1] then (a) Z contains a subspace Zo 
isomorphic to L~ and complemented in X and (b) X contains a complemented 
sublattice isomorphic and lattice-isomorphic to L~, 

1. Introduction 

In [5] (see also [6]) Lotz  shows that if X is a Banach lattice such that X *  does 

not have the R a d o n - N i k o d y m  proper ty ,  then ei ther  Co embeds  in X *  or  LI 

embeds  as a comp l e m e n t e d  sublattice. In consequence  if X *  contains  no copy of 

Co and LI can be e m b e d d e d  in X *  then LI can be e m b e d d e d  as a comp lemen ted  

sublattice. 

In this paper  we show that if X does not contain co and X contains a subspace 

Z isomorphic  to L1 then X contains  a complemen ted  sublatt ice ~ L1. We  also 

show that Z has a subspace Zo = L1 and complen ted  in X. This result extends a 

result of Enflo and Starbird [2] who establish the same result for X = LI (see also 

[4]). 

In place of  LI[0, 1] we shall work with L~(A, ~ ,  A ) where A is the C a n t o r  g roup  

FIT=~ { - 1, + 1} with A H a a r  measure  defined on the Borel  sets ~ of  A. Of  course  

LI[0, 1] and LI(A) are isometrically lat t ice-isomorphic.  

On  A, we deno te  by e, the characters  

ei (t)  = t, where t = (tj)7=~ ~ A. 

Let  A~, 1-< k =<2" be the set of t C A such that 

~ tl2 i-1= k - 1 .  
j=l 
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Then each A~ is clopen and (A~: 1 _-< k _-<2") forms the standard nth partition 

of A. We denote the characteristic function of A~ by X~ (1 -< k _--- 2", 1 _-< n < ~). 

Suppose X is a Banach lattice which does not contain Co. Then if x,~ E X is an 

increasing net with supItxo I[ < 0% we conclude that x,, converges and 

lim x,~ = sup  x,,. 

In particular X is order-complete. 

Now if T: Lt(A)---> X is a bounded linear operator we may define an operator 

I TI: L~(A)---~X such that 

I T l ( x : ) ) = s u p  ~ ITxTI 
,-~,, a7cA~, 

and IIIT111 = II TII. it is clear that if U: LI(A)--~ X satisfies U _-> T and U _-> - T 

then U >--IT[ (so that ~Lt'(L~(A),X) is a Banach lattice). 

2. P r e l i m i n a r y  r e s u l t s  

Our starting point is the following theorem proved in [4]. 

THEOREM 2.1. Suppose (~, E, ~z ) is a measure space with t~ (~ )=  1. Suppose 

T: LI(A)--~ Ll(fl)  is a bounded linear operator. Then there is an essentially unique 

(i.e. up to sets of iT-measure zero) map to ~ v~ from f~ into the space At(A) of 

regular Borel measures on A such that 

(2.1.1) 09 --~ v~ is weak *-measurable with respect to Z, 

(2.1.2) fn [vo I(B )dtz (to) <-_ MA (B), B E Y3, 

(2.1.3) Tf(to) = f~f( t)dv~ (t), tz-a.e., f E L1(A), 

where M = I1 TII. 

Conversely if to ---, vo, satisfies (2.1.1) and (2.1.2) then (2.1.3) defines a bounded 

linear operator from L,(A) into L,(O) with II Tll --< m. 

We shall say that T E ~ ( L I ( A ) , L ~ ( ~ ) )  is atomic if /x{to: u,, CAtc(A)}<I  

where Ate (A) is the subset of At (A) of all continuous measures. Since Ate (A) is 

weak*-Borel (see [4]), the set {to: v~ E Ate (A)} E X. 

PROPOSmON 2.2. If T E £E(LI(A),LI(I))) is atomic then: 

(2.2.1) there is a Borel subset B of A with A ( B ) > 0  such that T ILI(B ) is an 

isomorphism and T(Lj (B )) is complemented in L~(~), 

(2.2.2) there is an operator S of the form 
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sf(,o) = f ( o . , o ) ,  ,o e a o ,  

Sf(o~) = 0, ,o ~ a o ,  

where/z(~o) > 0  and o. : I)----> A is Z-measurable, such that S <= m ] T I , for some 
m E N .  

REMARK 1. Of course we assume in (2.2.2) that S is bounded, which implies 

some conditions on o-. 

REMARK 2. It is clear that (2.2.2) implies T is atomic; in fact (2.2.1) also 

implies T is atomic. This last remark follows from Theorem 3.1 below. 

PROOF. (2.2.1) is proved in [4] theorem 5.5, for the case when 12 is a compact  

metric space and 5'. is the Borel o.-algebra on ~ .  For the general case we observe 

that since LI(A) is separable,  we may suppose T(LI(A)) is contained in 

L~(12, Xo,/x) where ~0 is a sub-o.-algebra of ~ such that L1(12, 2~o,/z) is separable. 

Now let XI be a countable /1.-dense sub-algebra of Eo and Iet K be its Stone 

space; denote  by j:  fl---~ K the natural map. 

Then ] is measurable for the Borel o.-algebra on K and we may define a Borel 

measure fi on K by 

f i (B)  = IzQ'-'(B)) 

for B a Borel subset of K. It is easily checked that the map J:  f ~ f o ] defines an 

isometric isomorphism between LI(K,/2) and L1(12, ~o,/z). 

Consider J-~T: L~(A)---, L(K,/2);  this has the form 

~ f(t)d~,s(t), p-a .e . ,  J-1Tf(s) 

where s ~ vs is a Borel-measurable  map from K into ~ (A) ,  satisfying the 

conditions of Theorem 2.1. 

Then 

JJ-ZTf(w) = T f (w)=  fa f(t)dvjo(t), /x -a.e. 

Hence ~o ~ ujo " represen ts"  T;  by the essential uniqueness of this representa- 

tion we conclude 

Hence  

{oJ : vi,~ ~ M~ (A)} < 1. 

/2 {s: ~,~ ~ Mo (A)} < 1 
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and so J-~T is atomic and we may appeal to [3] theorem 5.5 for the result (note 

that L~(~, 5~0,/x) is complemented in L,(I))). 

For (2.2.2) observe that by the remarks after theorem 3.2 of [4] 

v,o = ~ a.(w)6(o',w)+ p~ 
n = l  

where 

(1) a, : l l  ~ R is l~-measurable, n ~ N, 

(2) o-, : ~ ~ A is .Y_,-measurable, n G N, 

(3) ]a,,(w)l>=la,,+l(O))l, n E N ,  w e f t ,  
(4) o',(w)~o'm(oo), m ~  n, 

(5) o~ e ~ (a) ,  o, e a .  

Since , .  # p. on a set of positive measure there is a set ~o with/z (~o) > 0 such 

that 

Define 

Then for f=>O 

sf(o) = f(o-l~),  ~ ~ ao, 

=0 ,  to ~ 12o. 

S f ~ e - ' f ~  f ( t ) d  [ v~ ](t) 

= e - ' I T I f  

(since it is easy to show that w---~l v~ I represents ITI ,  cf. [4]). 

From this it easily follows that S is bounded; and for (2.2.2) choose m > 1/e. 

Of course, S ~ 0  since S x ~ O .  

PROPOSITION 2.3. Suppose T ~ 5f(L~(A),L~(I~)) and that TX'~ = b~. Define 

h , ( w ) =  max Ib~,(~)]. 
l ~ k  ~ 2  n 

If  lim s u p , ~  h, (co)> 0 on a set of positive tz-measure, then T is atomic. 

PROOF. Consider IT[ ;  it is enough to show that IT[ is atomic. Let 

I T [ (x~ )=  c~ 
and 

g.(¢o)= max c~(w). 
l ~ k ~ 2  n 
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Then  g~ _-> h~ and hence for some VZo with /~ ( ~ o ) >  0 

l imsupg~ (o~) > 0, oJ E 12o. 

For  ~oEl'10 choose 0 < ~ < l i m s u p g , ( ~ o )  and choose n ( j ) - ->~  such that 

gn(n(to) > ~ .  Then  there exists k( j ) ,  1 =< k(j)<=2 "(n such that 

If we choose r ~ C  A" k, as in the proof  of t heo rem 3.1 of [4] if 

,~ "~ - ._ ,  c ~ ( ~ o ) 8  (~- 0° 
k = l  

then a 2 ~  I v~] /x-a.e. in the weak*- topology.  Now 

OLd(j) ~ ~'- c,t" n(j)~ = g o ~ O ~ ' r k ( j ) j  

r n( j )  and hence if 7~ is a limit point  of ~-~) :  j E N}, 

l u~ I=  > ~L6(r,o) (/x-a.e. w E fl0) 

(since the positive cone o f M  (A) is weak* closed). Thus  I u~ I Z J/~ (A), /z-a.e., 

to (Z~o. 

3. The main results  

THEOREM 3.1. Suppose X is a Banach lattice which does not contain Co. 

Suppose T: Ll(A)--~ X is an isomorphism of L~(A ) onto a subspace Z of X.  Then: 

(3.1.1) there exists a subset B of A with A ( B ) > 0  such that T(LI (B) )  is 

complemented in X,  

(3.1.2) there exists an isomorphism S of L~(A ) onto a complemented subspace Y 

of  X which is also a lattice isomorphism, i.e. 

s ( f  ^ g)  = s [  ^ Sg, f, g E LI(A). 

PROOF. Let  Y be the smallest closed sublatt ice of X containing Z. The  Y is 

separable  and order -comple te .  Consider  I T [: L~(A)--> X :  then [ T [ (L1 )C  Y. Let  

u = I T[(xa), and let Y, be defined by 

Yo= U , , ( [ -  .,  u] n Y), 
n G N  

where  [ - u, u ] is the order- in terval  u _-< x =< u ; taking [ - u, u ] f3 Y as the unit 

ball Y, becomes  an o rde r -comple te  Banach lattice which is an AM-space.  Hence  
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Y, is isometrically lattice-isomorphic to a space C(I I )  where II  is a Stonian 

space. We denote by 0: C(II)---~ Y, C Y this isomorphism. 

Since Y is separable, there exists a positive linear functional 4) ~ X* such that 

4 ' (u)  = 1 and 4) is strictly positive on Y, i.e. 4 ' (y)  = 0, y = 0 imply y = 0 (y E Y). 

Clearly 4' ° 0 E C(ft)* and II 4' ° 0 tt = 1; hence there is a probabili ty measure /x 

on ~ such that 

4,(Of) = fo f(,o)dt~ (o~), f ~ C ( a ) .  

In fact tz is normal,  since if f~ is an increasing net bounded above in C(I I )  then 

Of~--~O(supaf~) in Y as X contains no copy of Co; thus if G CFt is meagre,  

~ ( G )  = 0. Also the support  of /z  is dense in I I  since 4' is strictly positive on Y,. 

This means that L~(II, ~ ( lI) , /z)  may be identified with C(f l)  both as a Banach 

space and as a lattice; for if f is a bounded Borel function on I I  then there is a 

unique g E C(I~) such that f = g  ~-a .e .  Note  that in L~(l~,/z) the lattice 

supremum of a countable subset is the point-wise supremum. Thus we shall 

regard 0 as a lattice isomorphism of L . ( f l , / x )  onto Y,. 

If f E C(A) and Ilf[I =< 1, then Tf  E [ - u ,  u] N Y and hence we may induce a 

map To: C(A)--*L®(II, Ix) so that [[Toll~ 1 and 07"o = 7". 
Denote  by j the natural inclusion map L=(f~, ~ )  ~ Ll(f l , /z) .  Suppose B C II  is 

Borel, and denote by PB the band projection on X induced by OXB. Thus for 

v E X ,  v>=O 

PBv = sup (v ^ nOxB ). 
n 

Then IIPB II---1 and it is easy to show that since X does not contain Co, each 

x ~ X, the map B ~ PBX is a countably additive vector measure on ~(f~).  In 

particular B---~4"(P~x) is a ix-continuous measure,  and hence by taking its 

Radon -Nikodym derivative we may induce an opera tor  V: X ~ L~(II, /z) such 

that 

4'(e,x) = [ Vx(,,,)dt~(,o). 
.I B 

If A and B are disjoint 

1 4 ' ( e A x  - e,,x)l <= 4'(I e,,x I + le ,  x I) 

-<4 '( lxl)  

-< II 4' II II x II 

so that II V II -< It 4) II- 
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It is easy to see that for f E C(A), jTof = VTf; thus the following diagram 

commutes :  

L I(A) 

J 
c(A) 

To 

X 

L~(I~,/x ) ' , L , ( fL /x  ) 

At  this point  we recall that  T is an i somorphism so that for some c > 0 

II Tfl[ >= c Ilfl[, f ~ L,(a). 

We now claim the existence of ~5 > 0  such that if B CI ' I  is a Borel  set with 

/ z ( B ) < ~  then I[0xBIl<c/2. If this were false then we could find B.  with 

/x(B.)=<2 -" and JlOxB. II>=c/2. If Co= Uk__-,Bk, then /x(C,)----~0 and hence  

i n f . x c . = 0  in L~(X,/x). Thus  II0(xc.)ll--,0 and so II0xB.II--,0 which is a 

contradict ion.  

We shall now show that VT is a tomic as an opera to r  f rom LI(A) into LI(II) .  

Let  

and 

ToX"k =bk," 1 < k < 2  " =  = , l < n <  ~ =  

h . ( w ) =  max Ib2(o))l, ~oEa.  

It suffices to show l i m s u p . _ ~ h ,  > 0  on a set of positive /x-measure.  Our  

a rgument  here is based on one of D o r  [1]. 

If s ~ A ,  l _ - - < n < %  

Define A .  C A x I I  by 

Am 
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Since each b ~  C(I1), A,  is open and hence a x/x-measurable.  For each o) E l l  

let A.(oJ) be the set of s CA for which (s,o~)~A.. Then 

12 A(A.(w)) =llb'~(w)12<-6 k= ek(s)b'~(w) dA(s) 

2 n 

= 8 ~ Ib~(o~)t 2 
k = l  

and hence A(A. (o9))-  < 6. Thus (a x /X)(A, )  ~ 8 and by Fubini's theorem there 

exists s = s ( n ) ~ A  such that if C =  C. ={w:  (s, to )~  A.} then /X(C)<-6. 
Thus 

0 x c ~  ek(s)b?, <--]lOXcl[<=c/2. 

Hence 

Let 

For to E f~\C, 

Hence 

2"  

gn(('O)e ~/~ k=lZ ek(s)b'~(w) I • 

II 0g, I1_- >'~c x/k. 

Now let E = {x:  g,,(x)>cX/6/41iu tl}. Then 

and hence 

For co E E 

and 

Hence 

c,,/~ 
o(g.xa-~) ~ ~ u 

II o(g.x.-=)ll <- ¼c Vk. 

2n 

Ig.(o~)12<-h.(co) ~'~ Ib'~(co)l 
k = l  

8 fb~(o~ = rabal=~fTx~l<-ITl (x~)  =u. 
k =1  k =1  k =1  

2 n 
n Y, fb~(o,) l  = 1. 

k = l  
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Thus  for  w E E  

H e n c e  

N o w  

h. (a,) ~ Ig. (o.,)1 ~ 

411,,11 g" 

c28 
1[ Oh. 1[ => t6[[ u II " 

-> lira sup II Oh. IJ 

= 161]u [1" 

H e n c e  l i m s u p , ~  h. > 0 on a set of posi t ive measure ,  and so V T  is atomic.  

Thus  we conclude by Propos i t ion  2.2 that  there  is a Bore l  subset  B of A of 

posi t ive measu re  such that  V T  maps  L~(B) i somorphical ly  to a c o m p l e m e n t e d  

subspace  of L,(O) .  Suppose  P is a p ro jec t ion  of Lt ( [ l )  on to  VT(L , (B ) ) ;  then 

V - ' P V  projec ts  X on to  T(LI(B)) ,  since V maps  T ( L , ( B ) )  i somorphical ly  on to  

its image.  

For  our  second claim we appea l  to (2.2_2) to p roduce  a non-ze ro  o p e r a t o r  

S: L,(A)---~ L , ( f l )  of the fo rm 

S f ( o) ) = f ( oxo ), oJ E rio, 

Sf(o)) = O, ~ ~ l)o, 

with S =< m I TI  for  some  m E N .  Aga in  by results of [3] there  is a subset  C of A 

of posi t ive measu re  such that  S I L d C )  is an i somorph ism onto  a c o m p l e m e n t e d  

subspace  of L, ( I I ) .  

Le t  So be the  restr ict ion of S, So: C ( A ) - ~  L®(fl, /.t ). If f E  C(A), f=>O 

mY(IT[f)>= m f V T [ f  

>= Sol  

= VOgof 

= VOSof 
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and hence m lTlf>= OSof. Thus OSo extends to a mapS, :  L,(A)---* Y; clearly 

VS~ = S. As before S~(LdC)) is a complemented subspace of X. To complete the 

proof we show that S~ is a lattice homomorphism (since of course L, (C)  is 

isomorphically lattice-isomorphic to L~(A)). If f, g ~ L~(C) then 

Let h = S , ( f ^ g ) .  Then 

VS, f  ^ VS,g = Vh. Thus 

v s , f f  ^ g) = s ( f  ^ g) 

= V & f  ^ VS~g. 

h < = S , f ^ S , g  and hence Vh<=V(S , f ^S ,g )<= 

f 
4)(S,f ^ S,g - h )=  J (V (S , f  A S , g ) -  Vh )dp. O. 

Since ,;b is strictly positive on Y 

s , f  ^ s,g = s,(f  ^ g) 

as required. 

Now suppose (fl, Y,/x) is a measure space in the p. (II) = 1. A re-arrangement 

invariant Banach function space X on (~, Y.,/z) is an order-ideal of L0(l), Y-,,/x) 

equipped with a Banach lattice norm such that if f ~ X and g • L0 are such that 

If[ and Ig] have the same distribution, i.e. 

~{,o: If(,o)l>~}=~{o~: Ig(.,)l>a/ (a ~R), 

then g ~ X and fig [I = HflI. 

Under these circumstances X is automatically contained in Lz(l),/z).  Exam- 

ples are Orlicz spaces and Lorentz spaces. 

THEOREM 3.2. Suppose X is a re-arrangement invariant Banach function 

space on (fL "~, tx ) not containing c~,. Then if X contains a subspace isomorphic to 

L,(A), X = L,(I) , /z) .  

PROOF. By Theorem 3.1 there is a lattice isomorphic embedding 

S: LdA)--->X. Consider S as a map from L,(A) into L,(fl).  Then S is a lattice 

homomorphism. 

Suppose 

Sf(w)  = fa f(t)dl,~(t)  

as in Theorem 3.1. If we pick ~-~E A~ then o~"o,---~ u~/J.-a.e, where 

2 ~ 

" Y~ sx"(.,)~0") O d , o =  k k • 
k = l  
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Since S is a lattice homomorphism 

I S x : [  ^ ISx;I : o 

and hence a 2  is a single non-negative point mass: /.t-a.e. Thus ~ is a single 

non-negative point mass ~-a.e . ,  and it follows that 

Sf(oJ) = a(o2)f(~rw), /z-a.e., 

where a(w)=>O and o': fi---> A is '~-measurable. 

Since S # O ,  a ~ O  and so there exists e > O  such that ~ ( A ) > O  where 

A : { w :  a(w)>e}. Then 

Tf(o2) = xaf(o 'w) ,  /z-a.e. 

defines a non-zero bounded linear opera tor  of LI(A) into X. Since 

T: LI(A)--* L~(f~) is atomic, there is a subset C of A of positive measure such 

that T IL,(C ) is an isomorphism, i.e. for some c > 0  

f Irf(w)ldl.t(o))>=cllfl[, fEL,(C) .  

Now suppose D E ~ and/.t (D)  < t2. (or ' C  N A ); observe that /z  (c r - 'C  n A ) > 0. 

Then there exists B CC such that ~ ( o - ~ B  A A ) = / ~ ( D )  as the measure 

B ~ / z  (o--~B n A ) is clearly non-atomic. Thus 

I¢ x o  II = II Tx. II 

<=]ITllA(B) 

<= c-'HTl]l.t(o--'B NA) 

=c-'l]TIIp.(U). 

It follows now easily for simple functions and hence for any f E X that 

I]fI[<-c-'llT]] f• If(c°)ld/z(°2)" 

This implies X = Ll(fi). 

NOTE. After  the initial preparat ion of this paper,  the author learned that 

Theorem 3.2 had also been obtained by Johnson, Maurey, Schechtman and 

Tzafriri [3] under the slightly stronger assumption that co is not finitely 

representable in X. 
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