EMBEDDING L, IN A BANACH LATTICE

BY

N. J. KALTON

ABSTRACT

We show that if X is a Banach lattice containing no copy of c_0 and if Z is a subspace of X isomorphic to $L_1[0, 1]$ then (a) Z contains a subspace Z_0 isomorphic to L_1 and complemented in X and (b) X contains a complemented sublattice isomorphic and lattice-isomorphic to $L₁$,

1. **Introduction**

In [5] (see also [6]) Lotz shows that if X is a Banach lattice such that X^* does not have the Radon-Nikodym property, then either c_0 embeds in X^* or L_1 embeds as a complemented sublattice. In consequence if X^* contains no copy of c_0 and L_1 can be embedded in X^* then L_1 can be embedded as a complemented sublattice.

In this paper we show that if X does not contain c_0 and X contains a subspace Z isomorphic to L_1 then X contains a complemented sublattice $\cong L_1$. We also show that Z has a subspace $Z_0 \cong L_1$ and complented in X. This result extends a result of Enflo and Starbird [2] who establish the same result for $X = L_1$ (see also [4]).

In place of $L_1[0, 1]$ we shall work with $L_1(\Delta, \mathcal{B}, \lambda)$ where Δ is the Cantor group $\Pi_{i=1}^{\infty} \{-1, +1\}$ with λ Haar measure defined on the Borel sets \Re of Δ . Of course $L_1[0, 1]$ and $L_1(\Delta)$ are isometrically lattice-isomorphic.

On Δ , we denote by ε_i the characters

$$
\varepsilon_i(t) = t_i
$$
 where $t = (t_i)_{i=1}^{\infty} \in \Delta$.

Let Δ_{k}^{n} , $1 \leq k \leq 2^{n}$ be the set of $t \in \Delta$ such that

$$
\sum_{j=1}^n t_j 2^{j-1} = k - 1.
$$

Received January 15, 1978 and in revised form April 28, 1978

Then each Δ_k^n is clopen and $(\Delta_k^N: 1 \le k \le 2^n)$ forms the standard *n*th partition of Δ . We denote the characteristic function of Δ_{k}^{n} by χ_{k}^{n} ($1 \leq k \leq 2^{n}$, $1 \leq n < \infty$).

Suppose X is a Banach lattice which does not contain c_0 . Then if $x_\alpha \in X$ is an increasing net with sup $||x_{\alpha}|| < \infty$, we conclude that x_{α} converges and

$$
\lim_{\alpha} x_{\alpha} = \sup_{\alpha} x_{\alpha}.
$$

In particular X is order-complete.

Now if $T: L_1(\Delta) \rightarrow X$ is a bounded linear operator we may define an operator $|T|: L_1(\Delta) \to X$ such that

$$
|T|(\chi^n_k))=\sup_{m\geq n}\sum_{\Delta^n_k\subset\Delta^n_k}|T\chi^m_k|
$$

and $|||T|| = ||T||$. It is clear that if $U: L_1(\Delta) \to X$ satisfies $U \geq T$ and $U \geq -T$ then $U \geq |T|$ (so that $\mathscr{L}(L_1(\Delta), X)$ is a Banach lattice).

2. Preliminary results

Our starting point is the following theorem proved in [4].

THEOREM 2.1. *Suppose* (Ω, Σ, μ) *is a measure space with* $\mu(\Omega) = 1$ *. Suppose* $T: L_1(\Delta) \rightarrow L_1(\Omega)$ *is a bounded linear operator. Then there is an essentially unique (i.e. up to sets of* μ *-measure zero) map* $\omega \rightarrow \nu_{\omega}$ *from* Ω *into the space M(* Δ *) of regular Borel measures on A such that*

 $(2.1.1)$ $\omega \rightarrow \nu_{\omega}$ is weak *-measurable with respect to Σ , $(2.1.2)$ $\int_{\Omega} |\nu_{\omega}|(B) d\mu(\omega) \leq M\lambda(B), B \in \mathcal{B},$ (2.1.3) $Tf(\omega) = \int_{\Delta} f(t) d\nu_{\omega}(t)$, μ -a.e., $f \in L_1(\Delta)$, *where* $M = ||T||$.

Conversely if $\omega \rightarrow \nu_{\omega}$ satisfies (2.1.1) and (2.1.2) then (2.1.3) defines a bounded linear operator from $L_1(\Delta)$ into $L_1(\Omega)$ with $||T|| \leq M$.

We shall say that $T \in \mathscr{L}(L_1(\Delta), L_1(\Omega))$ is *atomic* if $\mu {\omega : \nu_m \in \mathcal{M}_c(\Delta)} < 1$ where $M_c(\Delta)$ is the subset of $M(\Delta)$ of all continuous measures. Since $M_c(\Delta)$ is weak*-Borel (see [4]), the set $\{\omega: \nu_{\omega} \in \mathcal{M}_{c}(\Delta)\}\in \Sigma$.

PROPOSITION 2.2. *If* $T \in \mathcal{L}(L_1(\Delta), L_1(\Omega))$ is atomic then:

(2.2.1) *there is a Borel subset B of* Δ with $\lambda(B) > 0$ *such that* $T \mid L_1(B)$ *is an isomorphism and T(L₁(B)) is complemented in L₁(* Ω *),*

(2.2.2) *there is an operator S of the form*

$$
Sf(\omega) = f(\sigma\omega), \qquad \omega \in \Omega_0,
$$

$$
Sf(\omega) = 0, \qquad \omega \notin \Omega_0,
$$

where $\mu(\Omega_0) > 0$ *and* $\sigma : \Omega \rightarrow \Delta$ is Σ -measurable, such that $S \leq m |T|$, for some $m \in \mathbb{N}$.

REMARK 1. Of course we assume in $(2.2.2)$ that S is bounded, which implies some conditions on σ .

REMARK 2. It is clear that $(2.2.2)$ implies T is atomic; in fact $(2.2.1)$ also implies T is atomic. This last remark follows from Theorem 3.1 below.

PROOF. (2.2.1) is proved in [4] theorem 5.5, for the case when Ω is a compact metric space and Σ is the Borel σ -algebra on Ω . For the general case we observe that since $L_1(\Delta)$ is separable, we may suppose $T(L_1(\Delta))$ is contained in $L_1(\Omega, \Sigma_0, \mu)$ where Σ_0 is a sub- σ -algebra of Σ such that $L_1(\Omega, \Sigma_0, \mu)$ is separable. Now let Σ_1 be a countable μ -dense sub-algebra of Σ_0 and let K be its Stone space; denote by $j: \Omega \rightarrow K$ the natural map.

Then *j* is measurable for the Borel σ -algebra on K and we may define a Borel measure $\hat{\mu}$ on K by

$$
\hat{\mu}(B) = \mu(j^{-1}(B))
$$

for B a Borel subset of K. It is easily checked that the map $J: f \rightarrow f \circ j$ defines an isometric isomorphism between $L_1(K, \hat{\mu})$ and $L_1(\Omega, \Sigma_0, \mu)$.

Consider $J^{-1}T: L_1(\Delta) \to L(K, \hat{\mu})$; this has the form

$$
J^{-1}Tf(s)=\int_{\Delta} f(t)d\nu_s(t), \qquad \hat{\mu}\text{-a.e.,}
$$

where $s \rightarrow v_s$ is a Borel-measurable map from K into $M(\Delta)$, satisfying the conditions of Theorem 2.1.

Then

$$
JJ^{-1}Tf(\omega)=Tf(\omega)=\int_{\Delta} f(t) d\nu_{j\omega}(t), \qquad \mu \text{-a.e.}
$$

Hence $\omega \rightarrow \nu_{j\omega}$ "represents" T; by the essential uniqueness of this representation we conclude

 $\mu\{\omega: \nu_{i\omega} \in M_c(\Delta)\}<1.$

Hence

$$
\hat{\mu}\left\{s\colon\nu_{s}\in M_{c}\left(\Delta\right)\right\}<1
$$

and so $J^{-1}T$ is atomic and we may appeal to [3] theorem 5.5 for the result (note that $L_1(\Omega, \Sigma_0, \mu)$ is complemented in $L_1(\Omega)$).

For (2.2.2) observe that by the remarks after theorem 3.2 of [4]

$$
\nu_{\omega} = \sum_{n=1}^{\infty} a_n(\omega) \delta(\sigma_n \omega) + \rho_{\omega}
$$

where

(1) $a_n : \Omega \to \mathbf{R}$ is Σ -measurable, $n \in \mathbf{N}$,

- (2) $\sigma_n: \Omega \to \Delta$ is Σ -measurable, $n \in \mathbb{N}$,
- (3) $|a_n(\omega)| \geq |a_{n+1}(\omega)|$, $n \in \mathbb{N}$, $\omega \in \Omega$,
- (4) $\sigma_n(\omega) \neq \sigma_m(\omega), m \neq n$,
- (5) $\rho_{\omega} \in \mathcal{M}_{c}(\Delta), \ \omega \in \Omega$.

Since $\nu_{\omega} \neq \rho_{\omega}$ on a set of positive measure there is a set Ω_0 with $\mu(\Omega_0) > 0$ such that

$$
|a_1(\omega)| \geq \varepsilon > 0, \qquad \delta \in \Omega_0
$$

Define

Then for $f \ge 0$

$$
Sf \leq \varepsilon^{-1} \int_{\Delta} f(t) \, d \, | \, \nu_{\omega} |(t)
$$

$$
= \varepsilon^{-1} |T| f
$$

(since it is easy to show that $\omega \rightarrow |\nu_{\omega}|$ represents $|T|$, cf. [4]).

From this it easily follows that S is bounded; and for (2.2.2) choose $m > 1/\varepsilon$. Of course, $S \neq 0$ since $S_{\chi_{\Delta}} \neq 0$.

PROPOSITION 2.3. *Suppose* $T \in \mathcal{L}(L_1(\Delta), L_1(\Omega))$ *and that* $T\chi^* = b^*$. Define

$$
h_n(\omega)=\max_{1\leq k\leq 2^n} |b^n_k(\omega)|.
$$

If $\limsup_{n\to\infty}$ $h_n(\omega) > 0$ *on a set of positive* μ *-measure, then T is atomic.*

PROOF. Consider $|T|$; it is enough to show that $|T|$ is atomic. Let

$$
|T|(\chi^n_k)=c^n_k
$$

and

$$
g_n(\omega)=\max_{1\leq k\leq 2^n} c^n(\omega).
$$

Then $g_n \geq h_n$ and hence for some Ω_0 with $\mu(\Omega_0) > 0$

$$
\limsup g_n(\omega) > 0, \qquad \omega \in \Omega_0.
$$

For $\omega \in \Omega_0$ choose $0 < \xi_{\omega} < \limsup g_n(\omega)$ and choose $n(j) \to \infty$ such that $g_{n(j)}(\omega) > \xi_{\omega}$. Then there exists $k(j)$, $1 \leq k(j) \leq 2^{n(j)}$ such that

$$
c_{k(j)}^{n(j)} > \xi_{\omega}
$$

If we choose $\tau_k^n \in \Delta_k^n$, as in the proof of theorem 3.1 of [4] if

$$
\alpha_{\omega}^{n} = \sum_{k=1}^{2^{n}} c_{k}^{n}(\omega) \delta(\tau_{k}^{n})
$$

then $\alpha_{\omega}^{n} \rightarrow |\nu_{\omega}| \mu$ -a.e. in the weak*-topology. Now

$$
\alpha_{\omega}^{n(j)} \geq \xi_{\omega} \delta(\tau_{k(j)}^{n(j)})
$$

and hence if τ_{ω} is a limit point of $\{\tau_{k(j)}^{n(j)}: j \in \mathbb{N}\},\$

$$
| \nu_{\omega} | \geq \xi_{\omega} \delta(\tau_{\omega}) \qquad (\mu \text{-a.e. } \omega \in \Omega_0)
$$

(since the positive cone of M (Δ) is weak* closed). Thus $|\nu_{\omega}| \notin M_c(\Delta)$, μ -a.e., $\omega \in \Omega_0$.

3. The main results

THEOREM 3.1. *Suppose X is a Banach lattice which does not contain Co. Suppose T:* $L_1(\Delta) \rightarrow X$ *is an isomorphism of* $L_1(\Delta)$ *onto a subspace Z of X. Then:*

(3.1.1) *there exists a subset B of* Δ *with* $\lambda(B) > 0$ *such that* $T(L_1(B))$ *is complemented in X,*

 $(3.1.2)$ *there exists an isomorphism S of L₁(* Δ *) onto a complemented subspace Y of X which is also a lattice isomorphism, i.e.*

$$
S(f \wedge g) = Sf \wedge Sg, \qquad f, g \in L_1(\Delta).
$$

PROOF. Let Y be the smallest closed sublattice of X containing Z. The Y is separable and order-complete. Consider $|T|: L_1(\Delta) \to X:$ then $|T|(L_1) \subset Y$. Let $u = |T|(\chi_{\Delta})$, and let Y_u be defined by

$$
Y_u = \bigcup_{n \in \mathbb{N}} n([-u, u] \cap Y),
$$

where $[-u, u]$ is the order-interval $-u \le x \le u$; taking $[-u, u] \cap Y$ as the unit ball Y_u becomes an order-complete Banach lattice which is an AM-space. Hence

214 N. J. KALTON Israel J. Math.

 Y_u is isometrically lattice-isomorphic to a space $C(\Omega)$ where Ω is a Stonian space. We denote by $\theta: C(\Omega) \to Y_u \subset Y$ this isomorphism.

Since Y is separable, there exists a positive linear functional $\phi \in X^*$ such that $\phi(u) = 1$ and ϕ is strictly positive on Y, i.e. $\phi(y) = 0$, $y \ge 0$ imply $y = 0$ ($y \in Y$). Clearly $\phi \circ \theta \in C(\Omega)^*$ and $\|\phi \circ \theta\| = 1$; hence there is a probability measure μ on Ω such that

$$
\phi(\theta f) = \int_{\Omega} f(\omega) d\mu(\omega), \qquad f \in C(\Omega).
$$

In fact μ is normal, since if f_{α} is an increasing net bounded above in $C(\Omega)$ then $\theta f_{\alpha} \to \theta(\sup_{\alpha} f_{\alpha})$ in Y as X contains no copy of c_0 ; thus if $G \subset \Omega$ is meagre, $\mu(G) = 0$. Also the support of μ is dense in Ω since ϕ is strictly positive on Y_{μ} . This means that $L_*(\Omega, \mathcal{B}(\Omega), \mu)$ may be identified with $C(\Omega)$ both as a Banach space and as a lattice; for if f is a bounded Borel function on Ω then there is a unique $g \in C(\Omega)$ such that $f = g \mu$ -a.e. Note that in $L_{\infty}(\Omega, \mu)$ the lattice supremum of a countable subset is the point-wise supremum. Thus we shall regard θ as a lattice isomorphism of $L_*(\Omega,\mu)$ onto Y_u .

If $f \in C(\Delta)$ and $||f|| \leq 1$, then $Tf \in [-u, u] \cap Y$ and hence we may induce a map T_0 : $C(\Delta) \rightarrow L_{\infty}(\Omega, \mu)$ so that $||T_0|| \le 1$ and $\theta T_0 = T$.

Denote by j the natural inclusion map $L_*(\Omega,\mu) \hookrightarrow L_1(\Omega,\mu)$. Suppose $B \subset \Omega$ is Borel, and denote by P_B the band projection on X induced by $\theta \chi_B$. Thus for $v \in X$, $v \ge 0$

$$
P_B v = \sup_n (v \wedge n\theta \chi_B).
$$

Then $||P_B|| \le 1$ and it is easy to show that since X does not contain c_0 , each $x \in X$, the map $B \to P_B x$ is a countably additive vector measure on $\mathcal{B}(\Omega)$. In particular $B \to \phi(P_Bx)$ is a μ -continuous measure, and hence by taking its Radon-Nikodym derivative we may induce an operator $V: X \to L_1(\Omega, \mu)$ such that

$$
\phi(P_Bx)=\int_B Vx(\omega)d\mu(\omega).
$$

If A and B are disjoint

$$
|\phi(P_Ax - P_Bx)| \leq \phi(|P_Ax| + |P_Bx|)
$$

\n
$$
\leq \phi(|x|)
$$

\n
$$
\leq \|\phi\| \|x\|
$$

so that $||V|| \le ||\phi||$.

It is easy to see that for $f \in C(\Delta)$, $jT_0f = VTf$; thus the following diagram commutes:

At this point we recall that T is an isomorphism so that for some $c > 0$

$$
||Tf|| \geq c||f||, \qquad f \in L_1(\Delta).
$$

We now claim the existence of $\delta > 0$ such that if $B \subset \Omega$ is a Borel set with $\mu(B) < \delta$ then $\|\theta \chi_B\| < c/2$. If this were false then we could find B_n with $\mu(B_n) \leq 2^{-n}$ and $\|\theta \chi_{B_n}\| \geq c/2$. If $C_n = \bigcup_{k \geq n} B_k$, then $\mu(C_n) \to 0$ and hence $\inf_{n \chi_{C_n}} = 0$ in $L_\infty(X,\mu)$. Thus $\|\theta(\chi_{C_n})\| \to 0$ and so $\|\theta \chi_{B_n}\| \to 0$ which is a contradiction.

We shall now show that *VT* is atomic as an operator from $L_1(\Delta)$ into $L_1(\Omega)$. Let

$$
T_0 \chi_k^n = b_k^n, \qquad 1 \le k \le 2^n, \quad 1 \le n < \infty
$$

and

$$
h_n(\omega) = \max_{1 \leq k \leq 2^n} |b_k^n(\omega)|, \qquad \omega \in \Omega.
$$

It suffices to show $\limsup_{n\to\infty} h_n > 0$ on a set of positive μ -measure. Our argument here is based on one of Dor [1].

If $s \in \Delta$, $1 \leq n < \infty$,

$$
\left\|\sum_{k=1}^{2^n} \varepsilon_k(s) T_X\right\| \geq c.
$$

Define $A_n \subset \Delta \times \Omega$ by

$$
A_n = \left\{ (s, \omega) : \delta \middle| \sum_{k=1}^{2^n} \varepsilon_k (s) b_k^n(\omega) \middle| ^2 > \sum_{k=1}^{2^n} |b_k^n(\omega)|^2 \right\}.
$$

Since each $b_{\kappa}^n \in C(\Omega)$, A_n is open and hence $\lambda \times \mu$ -measurable. For each $\omega \in \Omega$ let $A_n(\omega)$ be the set of $s \in \Delta$ for which $(s, \omega) \in A_n$. Then

$$
\lambda(A_n(\omega))\sum_{k=1}^{2^n}|b_{k}^n(\omega)|^2\leq \delta\int_{\Delta}\left|\sum_{k=1}^{2^n}\varepsilon_k(s)b_{k}^n(\omega)\right|^2d\lambda(s)
$$

$$
=\delta\sum_{k=1}^{2^n}|b_{k}^n(\omega)|^2
$$

and hence $\lambda(A_n(\omega)) \leq \delta$. Thus $(\lambda \times \mu)(A_n) \leq \delta$ and by Fubini's theorem there exists $s = s(n) \in \Delta$ such that if $C = C_n = \{\omega : (s, \omega) \in A_n\}$ then $\mu(C) \leq \delta$.

Thus

$$
\left\|\theta\left[\chi_{C}\sum_{k=1}^{2^{n}}\varepsilon_{k}(s)b_{k}^{n}\right]\right\|\leq\|\theta\chi_{C}\|\leq c/2.
$$

Hence

$$
\left\|\theta\left[\chi_{\Omega-C}\sum_{k=1}^{2^n} \varepsilon_k(s)b_k^n\right]\right\| \geq c/2.
$$

Let

$$
g_n(\omega)=\bigvee\left(\sum|b\right|_k^n(\omega)|^2\right).
$$

For $\omega \in \Omega \backslash C$,

$$
g_n(\omega) \geq \sqrt{\delta} \bigg| \sum_{k=1}^{2^n} \varepsilon_k(s) b_k^n(\omega) \bigg|.
$$

Hence

$$
\|\theta g_n\|\geq \tfrac{1}{2}c\,\sqrt{\delta}.
$$

Now let $E = \{x : g_n(x) > c \sqrt{\delta/4} ||u|| \}$. Then

$$
\theta(g_n\chi_{\Omega-E})\leq \frac{c\sqrt{\delta}}{4\|u\|}u
$$

and hence

$$
\|\theta(g_n\chi_{\Omega-E})\| \leq \frac{1}{4}c\sqrt{\delta}.
$$

For $\omega \in E$

$$
|g_n(\omega)|^2 \leqq h_n(\omega) \sum_{k=1}^{2^n} |b_k^n(\omega)|
$$

and

$$
\theta\left[\sum_{k=1}^{2^n} |b_k^n(\omega)|\right] = \sum_{k=1}^{2^n} |\theta b_k^n| = \sum_{k=1}^{2^n} |T\chi_k^n| \leq |T|\left(\chi_{\Delta}\right) = u.
$$

Hence

$$
\sum_{k=1}^{2^n} |b_k^n(\omega)| \leq 1.
$$

Thus for $\omega \in E$

$$
h_n(\omega) \geq |g_n(\omega)|^2
$$

$$
\geq \frac{c\sqrt{\delta}}{4\|u\|} g_n(\omega).
$$

Hence

$$
\|\theta h_n\| \geq \frac{c^2\delta}{16\|u\|}.
$$

Now

$$
\left\|\theta\left(\limsup_{n\to\infty} h_n\right)\right\| = \lim_{n\to\infty} \left\|\theta\left(\sup_{k\ge n} h_k\right)\right\|
$$

$$
\ge \limsup_{n\to\infty} \|\theta h_n\|
$$

$$
\ge \frac{c^2\delta}{16\|u\|}.
$$

Hence $\limsup_{n\to\infty} h_n > 0$ on a set of positive measure, and so VT is atomic.

Thus we conclude by Proposition 2.2 that there is a Borel subset B of Δ of positive measure such that VT maps $L_1(B)$ isomorphically to a complemented subspace of $L_1(\Omega)$. Suppose P is a projection of $L_1(\Omega)$ onto $VT(L_1(B))$; then $V^{-1}PV$ projects X onto $T(L_1(B))$, since V maps $T(L_1(B))$ isomorphically onto its image.

For our second claim we appeal to $(2.2.2)$ to produce a non-zero operator $S: L_1(\Delta) \to L_1(\Omega)$ of the form

$$
Sf(\omega) = f(\sigma\omega), \qquad \omega \in \Omega_0,
$$

$$
Sf(\omega) = 0, \qquad \omega \notin \Omega_0,
$$

with $S \le m |T|$ for some $m \in \mathbb{N}$. Again by results of [3] there is a subset C of Δ of positive measure such that $S | L_1(C)$ is an isomorphism onto a complemented subspace of $L_1(\Omega)$.

Let S_0 be the restriction of S, S_0 : $C(\Delta) \rightarrow L_{\infty}(\Omega, \mu)$. If $f \in C(\Delta)$, $f \ge 0$

$$
mV(|T|f) \ge m |VT|f
$$

$$
\ge S_0 f
$$

$$
= V\theta S_0 f
$$

$$
= V\theta S_0 f
$$

218 N.J. KALTON Israel J. Math.

and hence $m |T| f \geq \theta S_0 f$. Thus θS_0 extends to a map $S_1: L_1(\Delta) \rightarrow Y$; clearly $VS_1 = S$. As before $S_1(L_1(C))$ is a complemented subspace of X. To complete the proof we show that S_1 is a lattice homomorphism (since of course $L_1(C)$ is isomorphically lattice-isomorphic to $L_1(\Delta)$). If $f, g \in L_1(C)$ then

$$
VS_1(f \wedge g) = S(f \wedge g)
$$

= VS_1 f \wedge VS_1 g.

Let $h = S_1(f \wedge g)$. Then $h \leq S_1 f \wedge S_1 g$ and hence $Vh \leq V(S_1 f \wedge S_1 g) \leq$ $VS_1f \wedge VS_1g = Vh$. Thus

$$
\phi(S_1f\wedge S_1g-h)=\int (V(S_1f\wedge S_1g)-Vh)d\mu=0.
$$

Since ϕ is strictly positive on Y

$$
S_1f \wedge S_1g = S_1(f \wedge g)
$$

as required.

Now suppose (Ω, Σ, μ) is a measure space in the $\mu (\Omega) = 1$. A re-arrangement invariant Banach function space X on (Ω, Σ, μ) is an order-ideal of $L_0(\Omega, \Sigma, \mu)$ equipped with a Banach lattice norm such that if $f \in X$ and $g \in L_0$ are such that $|f|$ and $|g|$ have the same distribution, i.e.

$$
\mu\{\omega: |f(\omega)| > a\} = \mu\{\omega: |g(\omega)| > a\} \quad (a \in \mathbf{R}),
$$

then $g \in X$ and $||g|| = ||f||$.

Under these circumstances X is automatically contained in $L_1(\Omega,\mu)$. Examples are Orlicz spaces and Lorentz spaces.

THEOREM 3.2. *Suppose X is a re-arrangement invariant Banach function space on* (Ω, Σ, μ) not containing c_0 . Then if X contains a subspace isomorphic to $L_1(\Delta)$, $X = L_1(\Omega,\mu)$.

PROOF. By Theorem 3.1 there is a lattice isomorphic embedding *S*: $L_1(\Delta) \rightarrow X$. Consider *S* as a map from $L_1(\Delta)$ into $L_1(\Omega)$. Then *S* is a lattice homomorphism.

Suppose

$$
Sf(\omega)=\int_{\Delta} f(t)d\nu_{\omega}(t)
$$

as in Theorem 3.1. If we pick $\tau_k^n \in \Delta_k^n$ then $\alpha_w^n \to \nu_\omega$ μ -a.e. where

$$
\alpha_{\omega}^{n} = \sum_{k=1}^{2^{n}} S \chi_{k}^{n}(\omega) \delta(\tau_{k}^{n}).
$$

Since S is a lattice homomorphism

$$
|S\chi^{\,n}_{k}|\wedge|S\chi^{\,n}_{j}|=0
$$

and hence α_{ω}^{n} is a single non-negative point mass: μ -a.e. Thus ν_{ω} is a single non-negative point mass μ -a.e., and it follows that

$$
Sf(\omega) = a(\omega)f(\sigma\omega), \qquad \mu \text{-a.e.,}
$$

where $a(\omega) \ge 0$ and $\sigma: \Omega \rightarrow \Delta$ is Σ -measurable.

Since $S \neq 0$, $a \neq 0$ and so there exists $\varepsilon > 0$ such that $\mu(A) > 0$ where $A = {\omega : a(\omega) > \varepsilon}.$ Then

$$
Tf(\omega) = \chi_A f(\sigma \omega), \qquad \mu \text{-a.e.}
$$

defines a non-zero bounded linear operator of $L_1(\Delta)$ into X. Since $T: L_1(\Delta) \to L_1(\Omega)$ is atomic, there is a subset C of Δ of positive measure such that $T | L_1(C)$ is an isomorphism, i.e. for some $c > 0$

$$
\int_{\Omega} |Tf(\omega)| d\mu(\omega) \geq c \|f\|, \quad f \in L_1(C).
$$

Now suppose $D \in \Sigma$ and $\mu(D) \leq \mu(\sigma^{-1}C \cap A)$; observe that $\mu(\sigma^{-1}C \cap A) > 0$. Then there exists $B \subset C$ such that $\mu(\sigma^{-1}B \cap A) = \mu(D)$ as the measure $B \rightarrow \mu (\sigma^{-1} B \cap A)$ is clearly non-atomic. Thus

$$
\| \chi_D \| = \| T \chi_B \|
$$

\n
$$
\leq \| T \| \lambda(B)
$$

\n
$$
\leq c^{-1} \| T \| \mu(\sigma^{-1} B \cap A)
$$

\n
$$
= c^{-1} \| T \| \mu(D).
$$

It follows now easily for simple functions and hence for any $f \in X$ that

$$
||f|| \leq c^{-1}||T|| \int_{\Omega} |f(\omega)| d\mu(\omega).
$$

This implies $X = L_1(\Omega)$.

NOTE. After the initial preparation of this paper, the author learned that Theorem 3.2 had also been obtained by Johnson, Maurey, Schechtman and Tzafriri [3] under the slightly stronger assumption that c_0 is not finitely representable in X.

REFERENCES

1. L. Dor, *On projections in L~,* Ann. Math. 102 (1975), 463-474.

2. P. Enflo and T. Starbird, *Subspaces of L, isomorphic to L,,* to appear in Studia Math.

3. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces,* to appear.

4. N. J. Kalton, *The endomorphisms of* L_p , $0 \leq p \leq 1$, Indiana Univ. Math. J. 27 (1978), 353-381.

5. H. P. Lotz, *The Radon-Nikodym property in Banach lattices*, to appear.

6. H. P. Lotz and H. P. Rosenthal, to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801 USA

Current address

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF SWANSEA SINGLETON PARK, SWANSEA SA2 8PP, WALES, U.K.