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ALMOST PERIODIC SETS AND MEASURES ON
THE TORUS
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SHMUEL GLASNER

ABSTRACT

We establish some ""‘number theoretical’ results about a continuous function h
from the circle T into itself, which generalize Kronecker’s theorem in several
ways. These results are used to characterize the almost periodic sets of the fiow
on the torus T® generated by (8, $)— (8 + a, ¢ + h(8)), where a is irrational.
The almost periodic measures are characterized in the case h(8)= 6.

§1. Introduction

If X is a compact Hausdorff space and T a homeomorphism of X onto itself
then the flow on X generated by the powers of T will be denoted (T, X). With
this flow we associate the flows induced by T on the space 2* of closed subsets of
X, and on the space 2 (X)) of probability measures on X, denoting them (T,2%)
and (T, ? (X)) respectively. One of the questions that one would like to answer is
what is the effect of distality of the low (T, X) on the minimal subflows of (T, 2*)
and (T, ?(X)). It is easy to see that the full flows are not distal in general. It was
shown in [6] that when (T, X) is distal and minimal every minimal subflow of
(T.2%) is distal and moreover every such subflow is a factor of the enveloping
semigroup of (T, X). It is not known yet whether this is true for minimal subflows
of (T, P(X)).

In order to study the minimal subflows of (T,2*) and (7, (X)) we must
determine which points are almost periodic points of these flows. We say that a
point x of the flow (T, X) is almost periodic (a.p.) if given a neighbourhood U of
x, a finite subset K of the integers Z exists such that K + L(U)=Z, where
L(U)={n €Z: T"x € U}. It is well known that x is a.p. iff its orbit closure in X,
denoted O(X), is a minimal set. We say that a closed subset of X (a probability
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measure on X) is a.p. if it is an almost periodic point of the flow (T,2%)
(T, 2(X)).

We shall study the problem of determining the a.p. sets and measures of
(T, X) in the case of the simplest non-equicontinuous distal flow-——a flow on the
torus which extends the irrational rotation of the circle. In this paper we study
mainly the flow (T,2%). We achieve a complete characterization of a.p. sets only
under a further restriction on (7, X). As a by-product we shall also obtain some
generalizations of Kronecker’s theorem. In the special case in which we can
characterize the a.p. measures it will be easy to verify that the corresponding
minimal flow is again distal.

Let h: T—T be a continuous map of the 1-torus T = R/Z and let « be an
irrational number. We let T: T°—> T? be the map (6, d)— (6 + a, ¢ + h(0)).
Clearly (T,T’) is distal and we always assume that the flow (T,T?) is not
equicontinuous. In particular this implies that (T,T?) is minimal. If h is an
essential map the assumption is automatically satisfied. Let 7:T°—T and
o:T—T be defined by #(6,¢)=6 and o(8)= 6+ a. For every { €T let
g.: T— T be given by

8:(0)=h({+0)-h(0).
For an integer n put
h(0+(n—1Da)+---+h(@+a)+h() n>0,
h(8)=12 0 n=0,
~h(0+na)—---~h(0~a) n <0.

Notice that T"(8,¢)= (6 + na, ¢ + h,(6)). We let

H.(8)=h,(8)— h,.(0) and A(0)={H,(8):n € Z}.
We shall use script letters for pointed flows. For each { € T let &, = (T, T, (¢, 0)),
FovZ, = (T X T,O0 ((0,0)(L,0)), (0,0)(Z,0)).
If we define a flow on T? by
R(6,d,4)=(0 +a, b+ h(8), ¢+ h({ +0))

then it is easy to see that the orbit closure of (0,0,0) in ¥, = (R, T, (0,0,0)) is
isomorphic to £, v Z,. We say that &, and &, are disjoint over W = (o, T, 0) if ¥,
is minimal.
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Let &, = (S,,T? (0,0)) where

S{(G, (}5) = (9 + a, ¢ + g((e))

The map F: T'— T (6, ¢, &) — (6, ¢ — ¢) is a homomorphism of ¥, onto Z,.
Notice that

R%(6,¢,¢)= (0 + na, ¢ + h.(0), ¥ + h.({ +6)).

S{(O’ 4)) = ("a’ ¢ + H,,({))

We let 7 be also the map (6, ¢, ¢)— 0 then 7: ¥, —» W aswellas 7: &, - W
are homomorphisms of flows.

In section 2 we show that for a residual subset I' of T, { €' implies &, is
disjoint from &, over W. From this we conclude that for every { €T, A({) is
dense in T. In section 3 we prove a proposition which states that a subset @ C T
which satisfies a certain condition with respect to h, has the property that for
every € >0 there exists an integer n for which H,(®) is ¢-dense. We give
Kozma’s proof of the fact that when h is essential every subset ® accumulating
at zero satisfies the condition. (Originally we could prove this only for monotone
h.) In section 4 we use the results of sections 2 and 3 to show that an a.p. A C T?
has the property A D {6} x T whenever m(A) is second category at 8 (i.e. for
every open interval V containing 6, V N 7 (A) is second category). We also
show that when h is essential A CT” is a.p. iff A D{6}x T whenever 6 is an
accumulation point of 7 (A ). An example of a non-essential function A for which
this latter statement fails is given.

In the final section we consider a probability measure u on the flow (T, T?),
where T is given by the function h(8)= 6. We show that p is a.p. iff it has the
form g0 = po+ v. X m where (e} = v, v = va + v, is the decomposition of » into
purely discontinuous and continuous parts, 7{(us)= ve, and m is Lebesgue
measure on T. This theorem is not true for the general h.

I wish to thank H. Furstenberg and B. Weiss for helpful conversations and
I. Kozma for his kind permission to incorporate his result (Theorem 3.3.) in this

paper.

§2. Disjointness over W

2.1. THEOREM. For a residual subset I' of T, { €T implies &, is disjoint from
%, over W. In other words ¥, is minimal.

We first prove a number of lemmas.
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Let E be the enveloping semigroup of (T, T?); E is thus a compact group of
1-1 transformations of T? onto itself which is the elosure of {T":n € Z},
considered as a subset of (T?)". in the topology of pointwise convergence. E is
also the enveloping semigroup of each of the flows (R, T°), and it acts on (S, T°)
and (o, T) as well. Notice however that if p € E and x is a point of T, Tor T
then the point px depends upon the particular flow which is being considered.
There is a weaker topology on E, called the 7-topology, in which E is compact
T, and not Hausdorff. For details on the r-topology the reader is referred to [2]
or [5].

Put

H ={p €EE:p(l.0)=(£0) in (T.T?}

G={p€EE:p(0)=0 in (o T)}
={pEE:m(p(0.0)=0 in (T,T)}

The following statements are easily verified:

(i) G isa r-closed normal subgroup of E. The 7-topology on G coincides with
the pointwise convergence topology, and in this topology G is a compact
Hausdorff topological group. E/G is topologically isomorphic to T, in both
topologies.

(i) For each { €T, H, is a closed normal subgroup of G and G/H, is
topologically isomorphic to T.

(iii) %, and %, are disjoint over W ift HoH, = HH,= G.

2.2. Lemma. If ¥ = (7, V,v,) is a pointed equicontinuous flow which is an
extension of W and a factor of Z,, then the extension V' — W is trivial (i.e. 1-1).

Proor. Let H={p EE:pv,=uv,}; H is a 7-closed subgroup of G and
H,CHCG. Since G/H,=T, H/H, is a subgroup of T. If this is a proper
subgroup it is finite and &, is a finite group extension of ¥. Since V" is
equicontinuous so is &, [7], a contradiction. Thus H = G and V" is isomorphic
to W.

For each { €T put G, = HoH,. Since H, is normal in G this is a 7-closed
subgroup of G. Since G/H,=T, either G, = G or G,/H, is a finite subgroup
{0,1/1,2/1,- - -, (I — 1)/1} of T. In the first case we write /({) = « and in the second
=1

2.3. LEMMA. The function 1({) on T is unbounded.

Proor. Assume {l({):{ €T} is bounded say by l.. Then the 7-closed
subgroup H of G generated by U{G;:{ € T} satisfies
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2 -1
H/H()Q{O,logazia“'a L }

Thus H,C H & G. We claim that H is a normal subgroup of E. In fact let p € E
and q € H, then if in (T, T?), p~'(£,0) = (§ ¢), we have (in (T°. T))

P lqp(&d)=p 'q({,0)=p (£ 0)=(§ ¢).

Since subtraction of ¢ from the second coordinate is an automorphism of (T, T°)
it follows that p~'qp € H; C G, and H is normal in E. This implies that the
unique pointed flow V" = (1, V, v,) which is a factor of ., an extension of %" and
for which {p € E: pv, = vs} = H, is a regular flow. Now V" is regular, distal, and
by Lemma 2.2 is not equicontinuous. By [1, p. 609] such a flow cannot be metric;
a contradiction.

We notice that since the pointed flows %, and %, .. are isomorphic, H, = H,.,,
and I({)= I({ + @). Thus we have the following

2.4. CoroLLARY. Either I({) = for every { €T or for every l, there exisis
L > 1y, I, =, for which {{ € T:l{)=1,} is dense in T.

2.5. LEMMA. Given {,E T, an open set U C T® which contains a point of the
form (0,,0), and an ¢ >0, there exists { €T and n € Z such that

R3(0,0,0)e U and [{—{ol<e.

Proor. Let I, be a positive integer such that |x —¢|<1/l, implies
(0, x,0)€ U. Let { €T be chosen so that | = [({)> 1, and |{ — {s|<e. Such a {
exists by Corollary 2.4. If | = o, ¥, is minimal and the lemma follows. Thus we
can assume that ! <o so that H,H,/H,={0,1/1,---,(l ~ 1)/l}. Given p € H,,
such that pH, generates G;/H, we have for some y €T (in %,)

p(0.0,0)=(0,x,0), p*(0,0,0)=(0,2x.0). ---. p'(0.0,0)=(0,0,0),

so that x = ko/l (1=ko=1-1) and for some k, |ky — & | <1/l <1/, If p* =
lim R 7 then eventually R7(0,0,0)€ U.

2.6. LEmma. Let { €T be such that the orbit closure of (0,0,0) in ¥, contains
the subset {0} < T x {0} of T>. Then ¥, is minimal.

Proor. Let ¢,y ET. Let ¢ € G be such that in (T, T°), q(£,0) = (¢, ¢) and
let q(0,0)=(0, x). By our assumption there exists p € E such that in %,
p(0,0,0)= (0, ¢ — x,0). Now in ¥,

qp(o’()’O):('I(O"b_X’O):(Oa d)v ‘/’)
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Thus {0} x T x T is contained in the orbit closure of (0,0, 0) in ¥,. It follows easily
that the orbit closure of (0,0,0) in %, is all of T’. Since ¥, is distal, hence
semisimple, our lemma follows.

We can now prove Theorem 2.1.

Proor. Let U be an open subset of T* which intersects {0} X T x {0} and put
r(U)={{ €T:3n,R%(0,0,0)€ U}

Clearly I'(U) is an open subset of T; by Lemma 2.5 it is also dense in T. Now let
{U.} be a countable collection of open sets in T? such that {U; N ({0} X T x {0})} is
a basis for open sets in {0} X T x {0}. Then

I'=nrw)
is a residual subset of T and ¢ €T implies
cls{R;(0,0,0): n € Z} D {0} x T x {0}.
By Lemma 2.6 %, is minimal.

2.7. THEOREM. Let h:T— T be continuous and such that the corresponding
flow (T, T?) is not equicontinuous. Then for a residual sub-set T of T, [ €T
implies A () is dense in T.

Proor. We recall that the map F:T°—> T, F(8,0,¢)=(0, 46— ) is a
homomorphism of #, onto &, If I' C T is the residual subset of Theorem 2.1,
then it follows that &, is minimal whenever { € I'. Since

$%(0,0) = (na, H.({))
the theorem follows.

REMARK. The fact that for { €T, %, is minimal can be stated as follows. For
each positive integer [ the equation lg,(0) = f(8 + a)— f(8) has no continuous
solution, [3].

ProBLEM. When h(6)= 6, H,(8) = nb and the set I' is the set of irrationals in
[0,1), is T\I" always countable?
§3. The asymptotic behavior of H,(0)

Let ® be a subset of T having 0 as an accumulation point. We say that ©®
satisfies condition (*) if for every n >0 and a non-empty open subset V of T, there
exist 0 € © and an integer n such that || <n and H,(6)E V.
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3.1. ProposiTiON. Let ® C T satisfy condition (*), then for every £ >0 there
exists an integer n such that H,(0)={H,(6): 8 € ©} is ¢-dense in T.

Proor. We first show that the following statement is true. Given an open
non-empty subset V of T and a cofinite subset N of Z, there exists a subset
N’C N and 6 € © such that N'is cofinite in Z and H,(6) € V forevery k € N'.

Let Z=N+{l,---,d}, let 8,€V and choose &>0 such that
{6:]0 -6, <8}C V. Put U={0:]0~8,] <38}. Since O satisfies condition (*)
there exists @ € @ such that for every { €T, |h({ + 8)— h({)| < 8/2d and for
which H,(8)€ U for some integer n. We observe that in the flow %,
$5(0,0) = (ka, H,(8)). Since %, is a semi-simple flow, we have H,(8) € U for k
in a cofinite subset N, of Z, say Z= N,+{1,---, t}.

For every k €N, choose n, € N such that [k —n.|<d and let N'=
{ni:k €N\}. Then N'C N, Z=N'+{1,---,d + t} and if n, € N’ then (without
loss of generality we assume n, = k >0)

|H, (0)— H(8)|=|h((k —Da+6)+- -+ h(na+0)
~h(k —Da)- - — h(ma)|

S
=d— =3
'd2d 38.

Thus H, ()€ U implies H, (#)E€ V and our claim is proved.

Now let {Vi,---, Vi} be a covering of T by open intervals of length <e.
Inductively we choose elements 8, 8., -, 6, in ® and cofinite subsets of Z,
N2 N2 ---D N, such that H,(6;)€ V, whenever n EN, and jZi If n €N,
then H,(6:))€ V, for i =1,---,1 and consequently H,(®) is e-sence in T.

3.2. CoroLLARY. Let O be an infinite subset of T and £ >0, then there exists
a positive integer n such that n® ={nf: § € O} is £-dense in T.

Proor. Take h(8)= 6, then H,(8)= né. If ® accumulates at zero it clearly
satisfies condition (*) and by Proposition 3.1 n® is ¢-dense for some n. If @
accumulates at ¢ then {6 —¢{:6 €0} accumulates at 0 and for some n,
{n8 — n{: 0 € B} and hence also n® are ¢-dense.

Let h: T—T be a continuous function of index d = 1. h can be lifted to a
function /# : R— R and then for every { ER, h({ + 1)= h({) = d. Notice that for
afixed A ER, A({+A)—h() is a periodic function of period 1. Put

H.(6) = 2 (A (6 + ka)— Fi(ka)] (8 ER).
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The following theorem is due to 1. Kozma.

3.3. THEOREM. Let h be essential. If © is a subset of T accumulating at zero
then for every € >0 there exists an integer n such that H,(0©) is ¢-dense in T.

Proor. By Proposition 3.1 all we have to show is that ® satisfies condition
(*). Without loss of generality we can assume that h is of index d Z 1. We can
also assume that @ C[0,1) and accumulates at zero as a subset of R. Let 5 >0
and an interval V of length § >0 in T be given. By a compactness argument we
deduce the existence of a B>0 such that 0=y <B implies
h(+(A-y)—h()>d—15 for every {ER. Choose § €® such that
(i) 0< 6 <, (i) 8 <B, and (iii) for every { ER, [A({+6)—h({)|<18.

Let N be a positive integer such that 1 - 8 < N@ = 1. For each { € R consider
the sum

zZ

[RGB + L+ k8)— K¢ +k8)) = R (L + N6~ h(Z)>d - 33

Il

There exists a positive integer m such that |ma — @ — p |, for some integer p, is so
small that also

NZ:I (A0 ++kma)—h({ +kma)]>d—38 ([ ER).
Now

Hon(0) = :EN [R(8 + ka)— h(ka))

= i sz [A(6 + la + kma)~ h(la + kma))

Since, for every k, |H,,,(8)— Hc(6)] < 18, we conclude that the set {H, (8)}r",
is 8-dense in T. Thus for some k, H,(#)€ V and the proof is completed.
§4. Almost periodic subsets

Let A be a closed subset of T?, put ® = 7(A) and let @ = ® U ®” where 0" is
the set of isolated points of ©. For every § €0" let A, = A N 77}(6) and let
A= U{A,:0€0", A'=A\A"

4.1. THEOREM. If A’=0'XT = 7"'(0’) then A is an a.p. set.
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Proor. It suffices to show that for every net {n,;} in Z such that T"x — x for
every x € T? and for which lim T™A = B exists, B = A. Consider an arbitrary
subnet {n;} and a net (6, ¢;)E A. We have to show that lim 7" (6, ¢;) =
(6, )€ A. We can assume that (8, ¢d;)— (6o, ¢o) € A. Clearly 0 = 6,. Now if
6, € ©" then ultimately (6, &;) = (0o, ¢;) and T" (60, ¢;)— (60, d) = (0, p) E A. If
6o € @' then by our assumption (6, ¢)=(6,¢$)E A and we conclude that
B C A. Since clearly A C B we have our desired equality.

4.2. THEOREM. Let A be a closed subset of T? which is almost periodic in the
flow (T, T?). If w(A) is of second category at 0 €T then {8} XTC A.

ProoF. Assume first that 7 (A) is of second category at zero. Let (6, ¢:) be a
sequence of points in A which converges to (0, ¢), and such that 6, €T for every
i. Such a sequence exists by our assumption on 7(A) and by the fact that I' is
residual (Theorem 2.7). Since for each i, A(6) is dense in T, each of the sets
0, = {0}~ clearly satisfy condition (*). By Proposition 3.1, given an ¢ >0 we
can find n for which H,(®,) is ¢-dense.

Now

T7(6, &) = (6. + na, ¢ + 1, (6:)) = (6, + na, ¢ + Ho(6:) + . (0))
and it follows that for some sequence n;
B=ImT"A D {XxT,

where ¢ = limna. Since A is a.p. this implies A D {0} x T. The general case
follows since if v (A) is second category at { then for some B in the orbit closure
of A in 2%, 7(B) is second category at zero.

4.3, THEOREM. Let h be essential; a closed subset A of T is a.p. iff
A’'=0'XT. Each orbit closure in 2™ contains a unique minimal set.

Proor. By Theorem 4.1 the condition is sufficient. The necessity follows as in
the proof of Theorem 4.2, only one uses Theorem 3.3 instead of Theorem 2.7.
The second statement in the theorem follows immediately from the first.

Next we show an example of a function h: T — T for which the flow (T, T?) is
not equicontinuous, yet there exists a sequence ® = {6,} C T, which converges to
zero and for which the sets A (6;) = {H.(6.): n € Z} converge to a point. If we let
A ={(6,0): 6, € ®} U {(0,0)} then A is an a.p. set which does not contain {0} x T.

Consider the function h constructed in [3, p. 585]. This generates a minimal
flow which is not uniquely ergodic hence not equicontinuous. Using the
notations of [3] we have for { = ¢, = ny)
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H.({)= 2 [h( + ka)— h(ka)]

n-—1
—_ i 2wing 2ming({ +ka)
-2 [2 TR

=0

=
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k=0
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-| e )
=2 > s e - 1| =47 (27™7).

o5 |1

Thus the diameter of the sets A({) tends to zero as [ tends to infinity.
Choosing a subsequence ® ={{,} so that A ({,) converge to a point, we obtain
the set we are looking for.

§5. Almost periodic measures

Let 4 € P(T°), write v = 7w () € P(T) and let v = v, + v, be the decomposi-
tion of » into continuous and purely discontinuous parts. If v, # 0 let v4 = Z a.5,,
where §,, is the point mass at 8; and a; > 0. For each 6; let u; be the restriction of
u to 7w7(6), then put p"=2u; and u'=pu —p”. Clearly 7 (u’)= v. and
m(u")= vq.Let a = Za; then a 'u" and (1 — a)'u' are probability measures.

5.1. THEOREM. If u'= v.X m then u is a.p.

Proor. By [4, lemma 3.6.] each of the measures a;'u; is an almost periodic
point of ?(T°) and moreover its orbit closure in P(T?) is distal. It therefore
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follows that the point (a;'i,, a;'w., - - ) of the flow P (T?)*" is an almost periodic

point. Now it is easy to see that a sequence {T"a ™'

w"} converges to a measure y
iff v = Xy, where vy, = lim T"a ~'u.. Hence the orbit closure of (ai'p 1, a> s, - *)
in ?(T*)* is isomorphic with the orbit closure of a 'w” in P(T7). In particular
a”'w”is a.p. Finally it is clear that (1 — a) '(v. X m) is a.p. and its orbit closure is

1

distal; thus w = v. xm + " is a.p.
Following the example of R. Jewett presented in [6] we now show that for the

function h(8)= 6 the converse is also true.

5.2. THEOREM. Let h(0)= 6; then a measure u € P(T°) is a.p. iff u'=
v. X m. Each orbit closure in P(T°) contains a unique minimal sei.

ProoF. Assume u is a.p. and write w = u'+ p” as above. Since a ~'u” is also
a.p. (Theorem 5.1) it follows that so is (1 —a) 'w’. Thus it suffices to show that if
w € P(T? is a.p. and 7w(u) = v is continuous then u = v X m.

Let w = [ pod.(8), where 6 — u, is a v-measurable map of T into 2(T), be a
disintegration of u. We compute the Fourier transform of T u. Put f(6,¢) =
exp[2mi(k8 + Id)] and notice that T"(6,¢)=(0+ na.d + nd +in(n —1)a).
Now

(T"w) (k. 1) = f £(6,$)dT" = f F(T" (6. $))du
= ez”'“‘*‘”:""’”’"“f f e:mmunmezmwd#ﬁ(d))dV(e)

— eZm’(k #(l/Z)(n*I)nuJ’ ezm(k”"wﬁ“(l)dl/(e).

The function 6 — (/) is clearly in L'(v) and Z,(0) = 1. Let dy, = d.(l)dv; then
v is continuous and by Wiener’s theorem

N N A AP
lims5 7 2 | 9(m)fF =0.

This implies that there exists a subsequence n; for which y,(k +In)—0
VkVI#0 (for the complement of

7= {n € Z: 9k + )P 30tk + Lo *"Wﬁl‘}

j=1,2,--- has density zero; thus choosing n, € (.. J“' we obtain the
desired subsequence). So that for [# 0,
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N i (ke £ (12 — -
T"';L(k,l): e-m(k 72)n, l))nlu‘yl(k +ln,)-—>0,

P -
while when [ =0, T"u(k,0)= e "*"5(k).

Computing T"(v X ni) (k. ) we see that for [# 0 this is zero, while for I =0
the expression is ™ p (k). Thus lim T"u = lim T" (v X m). Since both u and
v X m are a.p. and both project onto v, we conclude that u = v X m. The last
assertion in the theorem is now clear. The proof is completed.

Using again the example in [3, p. 585], we see that Theorem 5.2 is not true in
the general case, for the flow (T,T°) which corresponds to the function h
produced in this example is not uniquely ergodic. In particular there exists a
measure u € P(T?) such that Ty = u, and hence u is a.p., but u # m X m. Since
om(pw)=m(Tu)= m(n), it folows that 7(u )= m. Thus & is an almost periodic
measure which projects onto m and does not equal m X m.

ProBLEM. Is the conclusion of Theorem 5.2 true for (7, T?) which is uniquely
ergodic?

We conclude with the following observation. There exists a flow (7, T?) and an
a.p. measure u € P(T?) such that supp (u) = T?, but for some measure 7 in the
orbit closure of u the interior of supp(n ) is empty. In fact let h be any essential

x

function, let @ ={6,};_, be a dense subset of [0,1). Let 2z, =(6,0) and put
n = Zaé., where Za; =1 and a; >0 for every i. Then supp(n) = {(6,0): 9 € T},
and 7 is a.p. (Theorem 5.1). By Theorem 4.3 there exists u in the orbit closure of
n for which supp(p)=T".
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