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ABSTRACT 

If all II~ games are determined, every non-norm-separable subspace X of 
I®(N) which is w* - ~l + m contains a biorthogonal system of cardinality 2s0. In 
Levy's model of Set Theory, the same is true of every non-norm-separable 
subspace of I~(N) which is definable from reals and ordinals. Under any oftbe 
above assumptions, X has a quotient space which does not linearly embed 
into 1 ®(N). 

1. Introduct ion  

Let X be a Banach space. A biorthogonal system is a family (xa, Xa*)aEI of 

X × X* such that the following conditions hold: 

(i) sup II II • II x *  II < 
(ii) x*(xp) = 0 i f a  ÷f l ,  

(iii) x*(x~)=  1. 

In the present work, the set (x*) will play no role and therefore we will call 

the family (x~).~l itself a biorthogonal system. 

It is immediate to check that the cardinality of  a biorthogonal system in X 

cannot exceed the density character of  X, and the question arises to know 

whether it is actually possible to construct in any Banach space X a biortho- 

gonal system of  cardinality dens(X). The answer is positive if X is separable; 

then a stronger result ([9]; see [7], p. 43) is actually available. However, i f X i s  

not separable, the answer is negative in general; a striking counterexample is 

the space ~(K) constructed by K. Kunen with the continuum hypothesis (see 
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[11], pp. 1123-1129), which shows that it is not even true that uncountable 
biorthogonal systems can be constructed in any non-separable Banach space. 

Still, positive results are available, and we will show in this note that non- 
separable subspaces of I~°(N) which are not too pathological contain a biortho- 
gonal system of cardinality 2~0. For instance, we will deduce from a suitable 
determinacy axiom that every nonseparable subspace X of I~(N) which 
belongs to the projective hierarchy (for the weak-, topology on I°~(N)) contains 
a biorthogonal system of cardinality 2~0. 

The article consists of the juxtaposition of two techniques: In part 2.2, we 
use a game technique for constructing "big" perfect sets. Our reference for 
these techniques is Moschovakis' book ([ 10], Chapter 6). The other ingredient 
is Stegall's method [13], and its extension ([4], Lemme 4), which gives 2.3. 

As a matter of notation, we use the modem notation (see I10]) for the classes 
of the projective hierarchy: analytic sets are ~:I, coanalytic sets are HI, etc. 
Det(H~) means that all IPn games on the integers are determined. OD(R) 
denotes the class of sets which can be defined in the language of set theory, with 
ordinals and real numbers as parameters. IfR is a binary relation on a set P, we 
write interchangeably (x, y ) E R  and xRy. The w*-topology on I°~(N) is the 
topology of pointwise convergence on its predual P(N); observe that a subset of 
I®(N) is w*-Z~ if and only if it is E~ as a subset of the Polish space R N. 

2. The main results 

If F denotes a class of sets, we denote by T(F) the following property: 

Every subset A of  l~(N) which is not separable in norm 
and belongs to the class F for the w*-topology contains 
a w*-perfect subset which is not separable in norm. 

The following proposition gathers several results about T(I"): 

PROPOSmON 2.1. (1) In ZFC, T(~,~) holds. 
(2) In ZFC, T(~,~) is equivalent to V a R~ tal < R l, and to the perfect set 

theorem for coanalytic sets. 
(3) T(OD(R)) is equiconsistent with the existence of  an inaccessible cardinal. 
(4) In ZFC + Det(II~), T(~+~) holds. 

PROOF. We will first prove the assertions (1) and (4). They rely on the 
following general lemma. 

Lv.Mr~A 2.2. Let P be a Polish space, and R be a binary symmetric, reflexive 
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and ~ relation on P. Assuming Det(II~), every X~ + ~ subset A of P satisfies one 
of the following conditions: 

(i) There is a countable subset (an) of A such that A c_ Un{y :  anRy). 
(ii) There is a perfect subset K of A such that for x ,  y in K, (x, y ) $ R .  

PROOF OF LEMMA 2.2. Let (Vn) be a basis of  P.  The sets Fn = ITn will be 
called elementary closed sets. Let us first assume A is II~. Consider the 
following game G(A) between two players I and II, played with the following 
rules: II starts the game by playing a pair (F~0, F~) of  elementary closed sets of  
diameter < 1, such that for xCF°o, yCF°~, (x,y)q~R (if possible). I then 
chooses e(0) = 0 or 1. II then chooses a pair (F 1, F~) of elementary closed 
subsets of  F~,t0 ~, of  diameter _-< 2 -~, with for xCF~, y CF~, (x, y ) $ R ,  again if 
possible. I then chooses e(1) = 0 or 1, and so on. We say that player II wins the 
run if(i) he has been able to play indefinitely, and (ii) i f x  is the unique element 
of N.  F~t.~, x CA. 

Clearly, this game can be viewed as a game on the integers, and its payoff is 
II~ (for II) i fA is II~. So by our hypothesis, one of  the players has a winning 
strategy. 

Suppose first a is a winning strategy for Player II, and define a function 
f :  {0, 1)N-~A by 

n 

It is clear t h a t f  is continuous and 1-1, so that K = f{0,  1 ) N is a perfect subset 
ofA.  And by the rules of the game, i f x  and y are distinct points in K, one has 
(x, y) ~ R .  So (ii) holds. 

Suppose now I has a winning strategy o'. Say that a finite sequence of  pairs of  
elementary closed sets s is x-admissible if s is a sequence which can be played 
by II in the game G(A), I answering with his winning strategy o, and moreover 
if F(s) is the last closed set chosen by I (with F ( ~ )  = P), x C F(s). Now note 
that for each x in A, there must  be an x-admissible sequence s which cannot be 
extended in an x- admissible sequence. Otherwise, player II would easily defeat 
I's strategy. Let us say that such a sequence is x-terminal. Now the set S of  
sequences which are x-terminal for some x in A is countable, so we can pick, 
for each s in S, a point a(s) in A for which s is a(s)-terminal. We claim that 
every point of A is R-related to one of the a(s)'s. To see this, let x CA, and let 
s C S  be x-terminal. We show that xRa(s). If  not, we can find, as R is closed, 
two elementary closed sets F0 and F~, of small enough diameter, contained in 
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F(s), with F0 X Ft A R = Z ,  and such that xEFo and a(s)~F~. But then II 
can play (F0, F~) after s, and this extension must be admissible for one ofx  or 
a(s). This contradiction proves our claim, and shows (i) holds. 

It remains to study the case where A is 1~ + ~. Let then B be a II~ subset of 
N N X P with second projection A, and apply the preceding result to B and the 
closed relation S on N N X P defined by (a, x)S(fl, y) if xRy. If (i) holds for B 
with (a,, a,), (i) holds forA with (a,). And if (ii) holds for B with a perfect set 
K, (ii) also holds for A with its projection. This concludes the proof of 2.2. [] 

We now come back to the proof of 2.1 (1) and (4). The first assertion is a 
special case of the second one, since the determinacy of closed games is a 
theorem of ZFC. So we prove 2.1(4). 

Let A be a I ~  + ~ subset of I®(N) which is not norm-separable, and assume, 
with no loss of generality, that .4 is a subset of the unit ball P. For each e > 0, 
the relation R~ defined by 

xR y II x - y II e 

is dosed in P and, by our hypothesis, there must be some e for which property 
(i) of Lemma 2.2 does not hold for A and R~. By this lemma, it follows that 
there is a perfect subset K of A such that all points in K are at distance at least e. 
This proves 2. I(4). 

Let us now conclude the proof of 2.1. For (3), note that the existence of an 
inaccessible cardinal allows one to construct by forcing Lcvy's model M of 
ZFC ([6], [ 12]). And this model satisfies T(OD(R)), by applying to the relations 
R~ above, the following result of Louveau ([8], theorem 2.2): In M, if R is a 
closed relation and A in OD(R) is such that (i) if Lemma 2.2 does not hold for 
A, then A contains a E~ subset for which (i) still does not hold. One can then 
apply 2.1(1). For the converse, one can use (2), as the statement Va Ri L[a] < R~ 

implies that R~ is inaccessible in L. 
The implication V a R Lta] < R~ implies T(2~) can be obtained by a direct 

adaptation of the techniques of [8]. Let us finally observe that, conversely, 
T(~)  implies the perfect set theorem for HI sets, because {0, 1 }N is canonically 
homeomorphic to a 1-separated subset of/®(N), hence any counterexample of 
the perfect set theorem for HI sets in {0, 1 }N would yield a counterexample to 
T(~).  This concludes the proof of 2.1. D 

We will now connect 2.1 with properties of non-separable subspaces of 
I®(N). Let us denote, for a class F, by T*(I') the following statement: 



Vol. 67, 1989 AXIOMS OF DETERMINACY 1 13 

Every norm-closed subspace X of l®(N) which is not 
norm-separable and is in the class F for the w*-topology 
contains a biorthogonal system of cardinality 2~o. 

Our next lemma is an easy consequence of ([4], lemma 4), which is itself an 
adaptation of a construction of Stegall [13]. 

LEMMA 2.3. For every class F, T(1-') implies T*(I'). 

PROOF. Let X be a norm-closed subspace of I°°(N), not norm-separable, 
and in F. If T(F) holds, X contains a w*-peffect subset K which is not norm- 
separable. Let Y = ~ (K)  be the norm-closed linear span ofK. Y is a subspace 
of X, and one easily checks from its definition that Y is El (in fact F,~) for the 
w*-topology; it is therefore representable in the terminology of [4], and not 
norm-separable since it contains K. Now by ([4], lemma 4), Y, and hence X, 
contains a w*-perfect subset which is also a biorthogonal system, obviously of 
cardinality c. 

Putting together 2.1 and 2.3 gives our main result: 

THEOREM 2.4. Let X be a norm-closed and not norm-separable subspace of 
F°(N). Under any of the following conditions, X contains a biorthogonal system 
of cardinality c: 

(1) Assuming Va R~taJ< RI, if  X is w*-X~. 
(2) In Levy's model, i f  X is definable from reals and ordinals. 
(3) Assuming Det(II~), i f  X is w*-X~ + 1. 

Let us note that the statement T*(XI) is the main result of [4]; however the 
techniques of [4] do not give the stronger statement T(I:I). Let us emphasize 
that statement 2.4(2) means that in Levy's model any explicit subspace of 
I°~(N), in a precise and very general meaning of the word, is separable or 
contains a biorthogonal system of cardinality c. 

Our techniques lead to further investigation of the "reasonable subspaces" 
of I~(N). For instance, one has: 

PROPOSITION 2.5. Let X be a non-norm-separable subspace of F°(N) which 
satisfies one of the assumptions of 2.4. Then X contains a closed subspace Y 
which is not a countable intersection of closed hyperplanes. 

PROOF. Let us observe that 2.1 and 2.3 actually show that under the 
assumptions of 2.4, the space X contains a subspace Z which is w*-analytic and 
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not norm-separable. Now [4] shows that either Z contains l~(c), or that 
(Z*, w*) is an angelic compact space. 

If Z contains P(c), so does X; hence/°°(N) is a quotient of X, and afortiori 
l°~(N)/co(N) is a quotient of X. Let Q : X - ~  l~(N)/co(N) be a quotient map, and 
Y = Ker Q. Since l®(N)/co(N) does not linearly embed in I®(N), it is easily seen 
that Y is not the intersection of countably many closed hyperplanes. 

If (Z*, w*) is angelic, let (xJaec be a biorthogonal system in Z, and (x*) the 
corresponding subset of Z*. Let Y = CL ker x*. We claim Z/Ydoes  not embed 
in/°°(N). For otherwise, the space Y± = s-p*(x*) would be w*-separable. But by 
angelicity, every y* ~ Y± is the w*-limit of a sequence in sp(x*); and this easily 
implies that for every countable subset (y*) of YZ, there is an a such that 
y*(xJ = 0 for all n, and hence y l  cannot be w*-separable. 

In both cases, Z contains a closed subspace Y which is not the countable 
intersection of closed hyperplanes in Z, hence neither in X. [] 

REMARKS AND EXAMPLES 2.6. (1) Recall that a biorthogonal system (xa) in 

a Banach space X is called a Markushevich basis (see [9]) if it satisfies: 

(i) m(xj = x ,  
(ii) fT~ ker x* = (0}. 

Every separable Banach space has a Markushevich basis [9]. The proof of 2.5 
actually shows the following: If a non-separable Banach space is such that 
w*-dens(X*) -- R0, and (X*, w*) is an angelic compact space, then X has no 
Markushevich basis (see [ 14] for a stronger result). Since these properties are 
hereditary, X does not even contain uncountable Markushevich basic families. 
Let us emphasize two consequences: 

(a) If Y is a separable Banach space and if Y* contains a non-separable 
subspace Z which has a Markushevich basis, then Y contains /I(N). The 
special case Z = l~(c) is classical; and conversely, it is clear that ll(c) c Y* if 

P(N) c Y. 
(b) By [1] and the above, if Yis separable and does not contain/~(N), and Z 

is a dual with the R.N.P. which is isomorphic to a subspace of Y*, then Z is 
separable. Note that Z is not assumed to be w*-dosed in Y*. 

(2) Using C.H., K. Kunen [5] (see [l 1], Theorem 7.7) has constructed a 
scattered separable non-metrizable compact space K, such that X = ~(K) 
satisfies the following property: I fF i s  any subset of X of cardinality R~, there is 
a point x in Fwith  x ~ c--6-~ II u (F \ {x}). In particular, Xcontains no uncount- 
able biorthogonal system. Observe that Xis isometric to a subspace YofP(N),  
since Kis separable; but the proof of 2.3 shows that Xcontains no w*-compact 
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non-norm-separable subset, and thus the space Y is necessarily very irregular 
for the w*-topology. Also [2], Theorem 3.3, shows that even 2.5 fails for X, i.e. 
every closed subspace of X is a countable intersection of  closed hyperplanes, 
and X has "few" subspaces. It would be nice to know if X also has "few" 
operators, as suggested in ([ 11], p. 1129). 

(3) It would be interesting to drop the assumption "Xis a subspace of/®(N)" 
in 2.4, to obtain larger classes of spaces in which non-separability implies the 
existence of uncountable biorthogonal systems; for instance, by [13] and [ 1], 
this is so i f X i s  a dual space. However, note that the space V = ~(oJ~) is such 
that every subspace or quotient of it which is isomorphic to a subspace of/®(N) 
is already separable; hence different techniques seem to be needed for extend- 
ing our results. 
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