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ABSTRACT 
It is shown to be consistent that there is a normal first countable locally 
countable space which is not collectionwise Hausdorffand in which there is a 
closed discrete non-G6 set which provides the counterexample to collection- 
wise Hausdorffness. This answers a question of P. Nyikos. 

This paper will answer a question of P. Nyikos concerning collectionwise 

Hausdorff spaces. A space is collectionwise Hausdorff if and only if every 

closed discrete collection of  points can be separated; in other words, it is 

possible to simultaneously assign a neighbourhood to each point so that no two 

neighbourhoods meet. In all known normal, first countable, not collectionwise 

Hausdorff spaces the closed discrete set witnessing the failure ofcollectionwise 
Hausdorffness is a G6. Hence Nyikos asked in [N] if it is possible to find a 

counterexample where the closed discrete set is not a G6. That is the purpose of  
this paper. 

I thank J. Steprans for informing me of  the problem and writing up the 

paper, and M. Goldstern for corrections and proofreading. 

Let 12--{a~col; a is a limit}. If  S _c ~2 is a stationary set, then a ladder 

system on S is a function L : S × co -~ o91 satisfying the following conditions: 

(1) L(a, n) < a ,  

(2) L(a,  n)<L(c~, n + 1), 

(3) U{L(a ,  n); n Eco} = a. 
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A function g : o~1 ---" 2 is said to uniformize a function c : S ~ 2 on a ladder 

system L if  [(n Ca);  g(L(a, n)) ~ c(a)} ] < R0 for every a E S .  A space can be 

constructed (as in [$2]) from a ladder system considering two copies of  o91. By 

making the points of  one copy, O~l × (0}, isolated and making the a th  ladder of  

isolated points converge to ~ in the other copy, e)l × ( 1 }, one obtains a space 

which is normal if  and only if every function on the ladder system can be 

uniformized. The closed set of  isolated points, S × { 1 }, is Ga if  and only i f  the 

following property (*) fails: 

(,) 
If  f :  o91 ~ o9, then there is some a E S and k @ o~ 

such that L{n E~o; f(L(o~, n)) = k}l = No. 

So it is enough to prove 

THEOREM. Suppose V satisfies CH. Then there is a forcing notion P which 
does not add reals, collapse cardinals, change cofinalities or the value of  the 
exponential function such t,~at in V v there is a ladder system on S c_ ~,  S 
stationary, which satisfies ( . ) and such that every colouring of the ladder system 
can be uniformized. 

PROOF. For notational simplicity assume R2 = 2%.* The partial order 

Q(L,  c) from [S] is designed to produce a function g which uniformizes c on L.  

The elements of  Q(L,  c) are functions P : ( 7  + 1) • S - ' - 2  where 7 ~tol  and 

[ {n~co ;p (L (a ,N) )~c (a ) } l  < R o  for every a E y  + 1. 

The ordering on Q(L,  c) is set containment.  Let L be the partial order for 

adding a ladder system generically with countable condit ions (so the elements 

of  L are countable functions p : r / ×  co ---- r/ and the ordering is again set 

containment  - -  in fact L is simply adding a subset of  o91 with countable 

conditions). Let the name for the generic function from o91 × o9 to ~ol be L.  

Note that L is not necessarily a ladder system since conditions (1), (2) and (3) 

need not necessarily be satisfied at all o~ ~ f~. Let S be a name for (a  E f2; (I), (2) 

and (3) are satisfied). It follows that L F S will be a ladder system. 

Define an iteration P(to2) by induction as follows. Let P(1) = L. If  P(a) has 

been defined and .G is a V v~/ name for a function from f~ to 2, then 

P(a + 1) = P(a) • Q(L r S, c) .  The iteration will have countable support. To 

t Otherwise we can use a longer i teration,  N2-cc will be preserved,  by [S3] Ch. VIII, §2. 
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see that 091 is not collapsed and S is still stationary, see [S2].t This fact, together 

with the appropriate cardinal ari thmetic in the ground model,  makes it is 
possible to construct the iteration so that every name for a function c : S ---- 2 

appears and hence is uniformized. Let d, be a name for the generic colouring 

obtained from the qth partial order. 

Before continuing with the proof  let us make a simple observation. Let D be 

the set of  conditions, p,  in P(092) for which there exists an ordinal h (p ) ,  the 

"height" of  p,  such that for every ~, 

P(7) is an actual function in V(rather  than a Py-name), and 

domain(P(7))  = P ( P )  or domain(p(7) )  = 0. 

In [$2] it is shown that D is dense in P(092) and that any descending sequence of  

condit ions from D has a lower bound  provided the heights o f  the condit ions 

converge to an ordinal without  a ladder at tached to it. In our case the ladder 

system is constructed generically and it will be possible to ensure that a ladder 

is not at tached to a point  by having (2) fail at that ordinal. 

The remainder  of  this paper  is devoted to proving that if G is P(092) generic 

over Vthen  (.) holds in V[G]. To see this suppose that p EP(092) and that it 

forces that f i s  a counterexample.  Let ~ be a countable elementary submodel  

of  H(093) containing p, (c, ; a < co2), P(09z) and f .  Let 5 = ~ n w~ and Z = 

n 092. Choose an increasing sequence {5,; n E o~ } cofinal in 5 and let E \ {0} 
be enumerated  by the sequence {or(n); n E09}. Let T = U{"2 ;  n E09} and 

define t^i  = t U {(domain(t),  i)} for t E T .  Let, f o r s ,  t E T ,  jE09 ,  s "7 t i f f  

t r {i E09 : a ( i ) < a ( j ) }  = s  r {i E09 : a( i )  < a( j )} .  

Induction on m E 09 will be used to construct, in ~ ,  Pt E P(092), kt ~ 09 and 

(t E 5 for each t E " 2 satisfying condit ions (4) to (1 1) below. 

(4) pt^i ~ P t E D  for i E 2 ,  

(5) q _--_ ~om,i,~,~, 
(6) (p t (a ( j ) ) ) ( ( , )  = t(j)  if  I t I >= Is I > J  by (4), it is enough to ensure this for 

Itl = Isl ,  
(7) either (a) p, II- "I { ( E 091; .do(j) ( ( )  = t( j)  for j E domain(t)} I < 09" or 

(b) Pt I}- "l {(~09~; ~d~u)(() = t ( j )  for j ~ d o m a i n ( t )  and f ( ( )  = / q } l  = 
09~" and, moreover,  kt is the least such integer, 

t Alternatively use [$3] Ch. III to show P(to2) is proper, by Ch. V no to-sequence of ordinals is 
added, by Ch. III P(to2) satisfies the 1~2-cc and has (a dense subset of) power Ks. So cardinal 
arithmetic is as required. 
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(8) if case (7b) holds then p, IF " f ( ( , ) =  k~", 

(9) i f t  ~ s then Pt ~ a ( j )  and Ps i v ( j )  are comparable,  
J 

(10) p~ _-< p, 

(11) pt ~ ~( j )  iF "domain(  p, (a( j )))  D 3dom,i.(n" for j ~ domain(t) .  
To show that the induction can be carried out suppose that p, has been 

defined for t ~ m2. Let {t,; i ,E2 "+1 } enumerate  "+~2. We define by induction 

on n < 2  m the following: ( p,": i < " + t 2 ) ,  ( ( , , : i  < n )  and ( k t , : i < n )  such 

that (for our p,~, (t,, k~,) condit ions (4), (7), (9), (11) hold, and condi t ion (5) 

holds for t E {t~ : i < n }, condit ion (6) holds for s E {t, : i < n }, t ~ " + 12 and 

condit ion (8) holds for t E (,~: i < n }. 
For n + 0, we define pO by induction on i < 2 m+l such that: 
(i) p,0 __< 
(ii) for every l _-< m + 1 and s E "2,  if t~ ~ m ~ / s  then p o t  a( l)  =< Ps ~ ~r(l), 

(iii) if s E {tj : j  < i } and I ___< m + 1 and t, ~ l  s then pO ~ e( l )  < Ps F a(l),  
(iv) pt°, satisfies condit ion (7). 

There are no problems - -  first by the induction hypothesis  and condi t ion (9) 

we can find q,0 satisfying (i), (ii), (iii), and then (iv) is satisfied by a dense set o f  

members  of  the forcing notion. 

For n + 1, by condit ion (9) we can find q =< Pt".~" such that: 

if s @ " + 12, l _-< m + 1, s ~ t  tj then q ~ s(l)  < p j t  s(l). 

If  possible, find qo --< q such that q0 forces the first alternative in (7). I f  this is not 

possible then 

q IF "1( (  co,; 6(j)(()  = f o r j  E d o m a i n ( t . ) )  = oJ,". 

Hence q IF- "there is a least integer k such that 

A,l (  ~ Go),; d~o(j)(() = ( t , ) ( j )  f o r j  Edomain(t~^0) and f (~ )  = k,.}[ = (/.)1". 

Let q0 decide the value of  this k to be k , .  Then 

A dz-f { ("  ql does not force ( S A  ) 

is uncountable.  Now in both cases we can find an ordinal ( ,  such that: 

( ,  >--~,n+,, (, > h ( p ~ )  for every s E ' + t 2 ,  and there is qo<-_ql such that 

qt I[- "(,. E A "  and wlog is ql ~5 D. Easily PT. + 1 df = q~ satisfies the relevant case of  
(6) and also (5) holds. Now we have to define p~ +~ (s E "+ L2\ {t,}) to satisfy 

(6) too; this is easy too. 
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So we have finished the induction on n, thus we finish the induction step for 

the induction on m. 

Now note that from (9) and the fact that a ( i ) >  1 for iEo9 it follows that 

{ p,(0); t E T} is linearly ordered. Hence it is possible to find r : 5  X o9--. 5 

such that r < pt(O) for t E T. From (5) it follows that { (,; t E T} has order 

type o9 and hence there is r * : ( 5 + 1 ) × o 9 ~ 5  such that { ( t ; t E T } =  
{r*(5, i); iEog} and r* < r. Note that r* l~-"SES".  

Let the order type of  Z be 0 and let Y. be enumerated in order as {P(7); Y ~ 0}. 
A descending sequence of conditions {qr EP(p(7))  N p; 7 < 0} and a function 

J :  (0\{0})--*2 will now be defined by induction on 7 < 0 .  It will also be 

insisted that ifA (fl) d~= {t E T; t(i) = J(a) if a(i) = p(a) and a < fl} then: 

(12) qy < Pt tP(Y) for all tEA(y ) .  
To start let q l (0)~L be such that ql(0) < r* and qt(0) [[-- "q(5) = J(1) ' .  Now 

suppose that qB and J r (fl \ {0}) have been defined. Find J(fl)  and q* E P(p(fl)) 

such that q* < qp and q* 1[- "cp~p)(5) = J(fl)." 
Choose n such that p(fl) = a(n). It will first be shown that 

{ Pt(P(fl)); t EA( f l  + 1)} is linearly ordered. 

To see that this is so suppose that t and s constitute a counterexample. Let a( j )  
be minimal such that t ( j )  v L s(j).  It follows from the definition of  A(fl) that 

p ( f l ) E a ( j ) .  Since t .-~ s, Pt ~ a( j )  and Ps r a( j )  are comparable, and so are 
J 

p,(p(fl)) and Ps(P(fl)). 
It is now possible to find q~+l < q* such that qp+~(p(fl)) <= Pt(P(fl)) for all 

t EA( f l  + 1)". Since qa+ t(p(fl))(5) has not been defined it is possible to insist 

that qa+l(p(fl))(5) = J(fl)  and, hence, qp+l 1~- dp{p)(5) = J(fl). By extending, if 
necessary, it may be assumed that qp + l ~ D. At limit stages of  the induction it 
suffices to use the fact that descending sequences from D have lower bounds 
provided that their heights converge to a ~ S. This can be arranged by having 

(2) fail at a. For the same reason it is possible to find q such that q ___< qr for 

y E 0. Clearly q 1[-- "c r (5) = J ( p -  ~(7)) = d~ (fi)" for y E Z. Now choose K E o9 
and r < q such that r I[- "f(5) = K". 

~ 

Notice that A (0 + 1) is simply a branch through T. Furthermore, kt < K for 

t E T. To see this suppose that kt > Kfor  some t CA (0 + 1). Then either (7a) or 

(7b) holds. But since 6 ~ ~ it follows by elementarity that (7a) cannot hold. 

Since (Tb) holds, if K < kt then the minimality of kt and the elementarity of 9~ 

will be contradicted. It follows that there is some k such that kt = k for 

infinitely many t E A ( O +  1). But now it follows that r IF"f(~,)=k" for 

infinitely many t ~A(O + I) and hence r IF "I {n Eog; f (L(5 ,  n)) '= k}l = R0". 
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