FINITE REPRESENTABILITY OF *1; (X)* **IN ORLICZ FUNCTION SPACES**

BY

YVES RAYNAUD *Equipe d'Analyse, U.A. N° 754 au C.N.R.S.*, Université Paris VI, 75252 Paris Cedex 05, France

ABSTRACT

We show that if $l_n(X)$, $p \neq 2$, is finitely crudely representable in an Orlicz space L_{α} (which does not contain c_0) then the Banach space X is isomorphic to a subspace of L_p . The same remains true for $p = 2$ when L_p is 2-concave or 2-convex, or if X has local unconditional structure. We extend a theorem of Guerre and Levy to Orlicz function spaces.

Introduction

Let X be a Banach space and $1 \leq p < 2$. It was proved by N. Kalton ([K]) that if $l_p(X)$ isomorphically embeds into L_0 then X embeds into L_p . The same remains true for $p = 2$ as was shown by B. Maurey ([M]). Here we want to give an analogous statement for an Orlicz space L_{α} instead of L_{0} . We consider only normed Orlicz spaces (i.e. associated to a convex Orlicz function) although the results easily extend to the quasinormed case.

In the frame of Orlicz spaces, it is more natural to take as hypothesis that $l_p(X)$ is finitely crudely representable in L_φ (cf. [JMST], p. 170 for a definition), which is equivalent to say that it is *C*-isomorphically embeddable in some ultrapower of L_{α} (for some $C < \infty$).

Now we suppose $1 \leq p < \infty$, $p \neq 2$ and obtain that X embeds in L_p . For $p = 2$, we have to suppose moreover the Orlicz space L_{φ} to be 2-concave (hence embeddable in L_1) or 2-convex. This restriction can be avoided when X has local unconditional structure. As an application we give an extension to Orlicz spaces of a result of S. Guerre and M. Lévy (see [GL]), concerning l_p spaces in

Received September 14, 1988

subspaces of L_1 : an infinite dimensional subspace E of L_{φ} contains $l_{p(E)}$ (resp. $l_{q(E)}$) when $p(E)$ (resp. $q(E)$), the g.l.b. (resp. 1.u.b.) of type (resp. cotype) exponents of E , is different from 2. See also [R] for a less-refined version of this last result.

For $p > 2$ these results were announced in [R2]. A preliminary and shortened version of this work was given also in [R3].

Let us now recall some definitions concerning Musielak-Oflicz spaces (cf. [Mu]). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. A Musielak-Orlicz function is a measurable function $\psi : \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ with partial functions $\psi_\omega = \psi(\omega,.)$ being Orlicz. For $f \in L_0(\Omega)$ define the "modular":

$$
\Psi(f) = \int_{\Omega} \psi(\omega, |f(\omega)|) d\mu(\omega).
$$

Then $|| f ||_{w} = \inf \{ a : \Psi(f/a) \leq 1 \}$ and the Musielak-Orlicz space is $L_{w} =$ $\{ f \in L_0 / || f ||_{\psi} < \infty \}.$ Now if ψ is uniformly moderate, i.e.

$$
\text{Ess sup}_{\omega} \sup_{t} \frac{\psi(\omega, 2t)}{\psi(\omega, t)} < \infty,
$$

then $|| f ||_{\psi}$ is defined by $\Psi(f / || f ||_{\psi}) = 1$.

If φ is a moderate Orlicz function $(\sup_t(\varphi(2t)/\varphi(t)) < \infty)$ then ultrapowers of $L_{\alpha}(\Omega, \mathcal{A}, \mu)$ are Musielak–Orlicz spaces $L_{\alpha}(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$ (associated to an uniformly moderate M.-O. function and a "bigger" measure space): see e.g. [W] or [HLR]. So the finite representability of $l_p(X)$ in L_φ is equivalent to its embeddability in $L_{\nu}(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$. If X is assumed to be separable, then $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$ may be supposed σ -finite, in fact (using a change of density) a probability space.

I. l_p **sequences in a Musielak–Orlicz space** $L_w(\Omega, \mathcal{A}, P)$

As we will be concerned with the asymptotic properties of such sequences, we will make use of the extension S_{ψ} of the space of random measures introduced (for Orlicz spaces) by Garling ([Ga]). Let N_{ν} be the set of random probability measures μ on (Ω , $\mathscr A$, P) such that:

$$
\Psi(\mu):=\mathbf{E}\int_{\mathbf{R}}\psi(\omega, |t|)d\mu_{\omega}(t)<\infty.
$$

Let \mathcal{O}_K be the set of K- moderate Orlicz functions f $(\text{Sup}_{t>0}(f(2t)/f(t)) \leq K)$. N_w is equipped with the w.m. topology (see [Ga], [A]) and \mathcal{O}_K with the topology of uniform convergence on compact sets. Then $S_{\psi} = N_{\psi} \times \mathcal{O}_K$ is equipped with the (metrizable) topology such that:

$$
\sigma_n = (\mu_n, f_n) \xrightarrow[n \to \infty]{} \sigma = (\mu, f) \quad \text{iff } \mu_n \xrightarrow{\text{w.m.}} \mu \text{ and}
$$
\n
$$
f_n + \Psi_{\mu_n} \xrightarrow[n \to \infty]{} f + \Psi_{\mu} \quad \text{(where } \Psi_{\mu}(\lambda) = \mathbf{E} \int \psi(\omega, \lambda |t|) d\mu_{\omega}(t)).
$$

Recall that S_{ν} is locally compact (i.e. the sets $\{\sigma = (\mu, f) \in S_{\nu}$, $\Psi(\mu) + f(1) \leq C$ are compact) and there is a natural homeomorphic embedding *i* of L_{ψ} in S_{ψ} : $i(x) = (\delta_{x}, 0)$, where $(\delta_{x})_{\omega} = \delta_{x(\omega)}$ is the evaluation measure at the point $x(\omega)$. In particular if $i(x_n) \longrightarrow_{n \to \infty} \sigma = (\mu, f)$ then for each $x \in L_{\psi}$:

$$
\Psi(\lambda(x+x_n)) \xrightarrow[n\to\infty]{} \mathbf{E} \int \psi(\omega,\lambda|x(\omega)+t|) d\mu_{\omega}(t) + f(\lambda)
$$

which allows one to calculate $t(x) = \lim_{n \to \infty} ||x + x_n||$, the "type" defined by $(x_n)_{n=1}^{\infty}$ (in the sense of [KM]): see [Ga], th. 36.

On S_{ψ} are defined the operations of scaling and convolution:

• If $a \in \mathbb{R}$ and $\sigma = (\mu, f) \in S_{\psi}$ then $a \cdot \sigma = (s_a \mu, s_a f)$ where $s_a \mu$ is the image of the random measure μ by the scaling $t \rightarrow at$; and $s_a f(t) = f(|a|t)$.

• If $\sigma = (\mu, f)$ and $\tau = (v, g)$ then $\sigma * \tau = (\mu * v, f + g)$.

If $\sigma \in S_{\psi}$ let $K_{\psi}(\sigma)$ be the closure of $\{\sigma\}$ under the scaling and convolution operations in S_{ψ} . Let $\bar{K}_{\psi}(\sigma)$ be its (topological) closure in S_{ψ} .

By a p-stable element of S_{ψ} we mean a couple (μ, f) where $f(t) = a^{p}t^{p}$ $(a \in \mathbb{R}_{+})$ and μ is a random p-stable symmetric probability distribution $(\hat{\mu}_{\omega}(t) = e^{-A^{\rho(\omega)t}})$ when $p \leq 2$; μ is the constant δ_0 when $p > 2$.

A p-stable element is said to be non-trivial if it is distinct from the "zeroelement"

$$
0=(\delta_0, 0).
$$

The following proposition is merely an adaptation to the Orlicz setting of the result of Aldous ([A], th. 3.10) or Krivine-Maurey ([KM], th. IV.2).

PROPOSITION 1. *If* $\sigma \in S_{\psi} \setminus i(L_{\psi})$ then $\bar{K}_{\psi}(\sigma)$ contains a nontrivial p-stable *element (for a certain p* \in [1, ∞ [).

PROOF. 1st Case. Suppose that $\sigma \in \mathcal{O}_K$, that is $\sigma = (\delta_0, f), f \in \mathcal{O}_K$. Then by [LT1], th. 4a9 and 4a8, there exist reals $(\alpha_i^k)_{i=1,\dots,N_K, k=1,\dots}$ and $a \neq 0$ such that the functions f_k : $f_k(\lambda) = \sum_{i=1}^{N_k} f(\lambda \alpha_i^k)$ converge (in \mathcal{O}_K) to $f_{\infty}(\lambda) = a^{\nu \lambda \nu}$. Then

$$
\sigma_k = (\delta_0, f_k) = \mathbf{H} \mathbf{R} \mathbf{a}_i^k \cdot \sigma
$$

belongs to $K_{\psi}(\sigma)$ and converges to $\sigma_{\infty} = (\delta_0, f_{\infty})$ which is a p-stable element of S_{ω} .

2nd Case. Suppose $\bar{K}_w(\sigma) \cap \mathcal{O}_K \neq \{0\}$. Then if $\tau \in \bar{K}_w(\sigma) \cap \mathcal{O}_K$, $\bar{K}_w(\tau)$ contains a *p*-stable element and is contained in $\bar{K}_{\nu}(\sigma)$.

3rd Case. Suppose $\bar{K}_\nu(\sigma) \cap \mathcal{O}_K = \{0\}$. If $\sigma = (\mu, f)$, then (by Aldous theorem) there exist reals $(\alpha_i^k)_{i=1,\dots,N_k,k=1,\dots}$ such that:

$$
\mu_k := \mathbf{X} \cdot \mathbf{S}_{\alpha_i^k} \mu \frac{\mathbf{w} \cdot \mathbf{m}}{k \to \infty} \mu_\infty,
$$

a random p-stable probability measure (note that

$$
|\mu| := \mathbf{E} \int |t| d\mu_{\omega}(t) \le 1 + \mathbf{E} \int_{t \ge 1} |t| d\mu_{\omega}(t)
$$

\n
$$
\le 1 + \mathbf{E} \int_{t \ge 1} \psi(\omega, |t|) d\mu_{\omega}(t)
$$

\n
$$
\le 1 + \Psi(\mu) < \infty,
$$

as we suppose $\psi(\omega, 1) = 1$ and moreover such that

$$
|\mu_k| \xrightarrow[k \to \infty]{} 1.
$$

Then $|\mu_{\infty}| \leq 1$ but it is *a priori* not clear that $\mu_{\infty} \in N_{\nu}$.

Let $|| \mu_k ||_{\psi}$ be the real such that $\Psi(s_{1/||\mu_k||} \cdot \mu) = 1$ and $\alpha'_k = \alpha_k / || \mu_k ||$,

$$
\mu'_k = \mathbf{*}^{N_k}_{i=1} s_{\alpha'_i} \cdot \mu.
$$

Then $\Psi(\mu'_{k}) = 1$.

We claim that $\sup_k \sum_{i=1}^{N_k} f(\alpha_i^k) < \infty$. If not, there would exist reals γ_k with

$$
\gamma_k \xrightarrow[k \to \infty]{} \infty
$$
 and $\sum_{i=1}^{N_k} f\left(\frac{\alpha_i^{\#}}{\gamma_k}\right) \xrightarrow[k \to \infty]{} 1.$

Set:

$$
\alpha''_i = \frac{\alpha''_i}{\gamma_k}, \quad \mu''_k = \mathop{\ast}_{i=1}^{N_k} s_{\alpha''_i} \mu = s_{1/\gamma_k} \mu'_k; \quad f''_k = \sum_{i=1}^{N_k} s_{\alpha''_i} f; \quad \sigma''_k = (\mu''_k, f''_k).
$$

Then $\Psi(\mu''_k) \longrightarrow 0$ and $(f''_k)_k$ is relatively compact in \mathcal{O}_K . Thus we would have $\bar{K}_w(\sigma) \cap \mathcal{O}_K \neq \{0\}$ (containing any limit point of (σ''_k)).

We claim now that $\text{Sup}_k || \mu_k ||_{\psi} < \infty$. If not, then $|\mu'_k||_{\overrightarrow{k \to \infty}}$ 0, and thus $\mu'_k \longrightarrow^{\text{w.m.}} 0$. Up to extraction, we could suppose:

$$
\Psi_{\mu_k} \xrightarrow[k \to \infty]{} g_{\infty}; \qquad f'_k = \sum_{i=1}^{N_k} s_{\alpha_i^k} f \xrightarrow[k \to \infty]{} f'_{\infty} \in \mathcal{O}_K,
$$

thus $\sigma'_k(\mu'_k, f'_k) \rightarrow (0, f'_\infty + g_\infty) \in \mathcal{O}_K$, and again $\bar{K}_\nu(\sigma) \cap \mathcal{O}_K \neq \{0\}.$

Now, by local compactness of S_{ψ} , the sequence $\sigma_k = (\mu_k, f_k)$ is relatively compact in S_{ψ} ; clearly any of its limit points is of the form $(\mu_{\infty}, h_{\infty})$, for some $h_{\infty} \in \mathcal{O}_K$ (μ_{∞} being the preceding p-stable random probability). Note that $\mu_{\infty} \neq \delta_0.$

By the 1st step, $\bar{K}_{\psi}(0, h_{\infty})$ contains a q-stable element $(0, k)$. Suppose $k = \lim_{k \to \infty} \sum_{i=1}^{n_k} s_{\beta_i^k} h_{\infty}$. If $b_k = \sum_{i=1}^{n_k} |\beta_i^k|^{p} \longrightarrow \infty$, then

$$
\stackrel{M_k}{\ast} \frac{\beta_i^k}{b_k} \sigma_\infty \to (\mu_\infty, 0)
$$

which is a non-trivial p-stable element in $\bar{K}_{\nu}(\sigma)$. If not, suppose

$$
\left(\sum_{i=1}^{M_k}|\beta_i^k|^p\right)^{1/p}\xrightarrow[k\to\infty]{}b_\infty;
$$

then:

$$
\ast \beta_i^k \sigma_\infty \underset{k\to\infty}{\longrightarrow} (s_{b_\infty}\mu_\infty, k) = \theta_\infty.
$$

By considering $(1/n^{1/p})$ *,ⁿ_{i-1} θ_{∞} , we see that $\bar{K}_{\psi}(\sigma) \cap \mathcal{O}_K \neq \{0\}$ implies $p \geq q$; if $p > q$ then, again, $\bar{K}_{\psi}(\sigma)$ contains $(\mu_{\infty}, 0)$; if $p = q$ it contains $(s_{b_{\infty}}, \mu_{\infty}, k)$ which is a p -stable element.

COROLLARY 2. *Let* $(x_n)_{n=1}^{\infty}$ *be a l_p-sequence in the Musielak-Orlicz space* $L_{\psi}(\Omega, \mathcal{A}, P)$. *There exist a real a* ≥ 0 , *and (if p* ≤ 2) *a random p-stable symmetric probability distribution* $\mu = (\mu_{\omega})_{\omega}$ *, and a sequence of normalized disjoint blocks* $y_k = \sum_{i=1}^{N_k} \alpha_i^k x_{n_i}$ *such that*:

(i) *For each* $x \in L_{\omega}$,

$$
\lim_{k\to\infty}\Psi(\lambda(x+y_k))=\mathbf{E}\int \psi(\omega,\lambda\,|\,x(\omega)+t\,|\,)d\mu_{\omega}(t)+a^{\,p}\lambda^{\,p}.
$$

(ii) μ *is the limit conditional distribution of* $(x_n)_n$ (*in the terminology of* [BeRI).

(iii) $a^p \lambda^p = \lim_{M \to \infty} \lim_{k \to \infty} \Psi(\lambda \cdot y_k \cdot \mathbf{1}_{|y_k| > M}).$

The second condition is equivalent to:

$$
\forall t \in \mathbf{R}, \qquad \exp(it \, x_n(\,.\,)) \xrightarrow[n \to \infty]{\sigma(L_\infty, L_1)} \hat{\mu}_{(\,.\,)}(t).
$$

PROOF. We apply Proposition 1 to any limit point of $(i(x_n))_n$ in S_{ψ} . We obtain disjoint blocks $(y_k)_k$ with $i(y_k)$ $\overrightarrow{k \to \infty} \sigma$, a q-stable element of S_{ψ} . But then as in the L_1 case ([A]), the subspace span(y_k)_k contains l_q , thus $q = p$. The points (i) to (iii) follow then immediately from [Ga]. •

II. The main result

We state now our main result:

THEOREM 3. *Let* $1 \leq p < \infty$, $p \neq 2$, and X be a Banach space; L_{φ} an Orlicz *space which does not contain Co.*

If $l_p(X)$ *is C-finitely representable in* L_{φ} *then X is K.C-isomorphically embeddable in* L_p (where $K = K(p)$).

In proving this theorem, we can suppose that φ is moderate on \mathbf{R}_{+} and that X is separable. In fact we may suppose that $l_p(X)$ C-embeds in a Musielak-Orlicz space $L_{\nu}(\Omega, \mathcal{A}, P)$.

1. Representation of X in S_{ψ}

If $\sigma \in S_{\nu}$, $\sigma = (\mu, f)$, let us denote $\|\sigma\|$ the real such that

$$
\mathbf{E} \int \psi \left(\omega, \frac{|t|}{\|\sigma\|} \right) d\mu_{\omega}(t) + f\left(\frac{1}{\|\sigma\|} \right) = 1.
$$

Note that if $(x_n)_n \subset L_{\psi}$, $i(x_n) \longrightarrow_{n \to \infty} \sigma$ then $||x_n|| \longrightarrow_{n \to \infty} ||\sigma||$.

The idea of the following key lemma is essentially Maurey's one ([M]).

LEMMA 4. *Let T be an embedding of* $l_p(X)$ *in* L_ν *. There is a map:* $X \rightarrow S_{\psi}$, $x \rightarrow \tau(x)$ *such that:* (i) *for all* $x \in X$, $\tau(x)$ *is a p-stable element of* S_{ψ} ; (ii) $\tau(x) = \lim_{k \to \infty} T(b_k \otimes x)$, where $(b_k)_{k=1}^{\infty}$ *is a sequence of disjoint normalized blocks on the* l_p *basis (fixed independently of x);*

(iii) $\forall x_1, \ldots, x_n \in X$:

$$
\|T^{-1}\|^{-1}\left(\sum_i \|x_i\|^p\right)^{1/p}\leq \left\|*\tau(x_i)\right\|\leq \|T\|\left(\sum_i \|x_i\|^p\right)^{1/p}.
$$

PROOF. Denote by $(e_n)_{n=1}^{\infty}$ the natural l_p basis. Then for each $x \in X$, the sequence $(T(e_n \otimes x))_{n=1}^{\infty}$ in L_{ψ} is equivalent to the l_p basis. Up to extraction we can suppose that

$$
\forall x \in X, \qquad i(T(e_n \otimes x)) \longrightarrow \sigma(x) \in S_{\psi}
$$

(use separability of X and a diagonal argument to obtain this convergence for the same subsequence of the l_p -basis).

Fix $x_0 \in X$. By Proposition 1, a suitable sequence of combinations

$$
\sigma_k = \mathop{\ast}_{i=1}^{N_k} \alpha_i^k \sigma(x_0), \quad \text{where } \sum_i |\alpha_i^k|^p = 1,
$$

converges to a p-stable $\tau_0(x_0) \in S_{\nu}$. Again, by extracting and using a diagonal argument, we can suppose that $\ast_{i=1}^{N_k} \alpha_i^k \sigma(x)$ converges (for each $x \in X$) to a $\tau_0(x) \in S_w$, which is however *a priori* not *p*-stable for $x \neq x_0$. Note that:

$$
\tau_0(x)=\lim_{k\to\infty}\lim_{n_1\to\infty}\cdots\lim_{n_{N_k}\to\infty}i\left(\sum_{i=1}^{N_k}\alpha_i^kT(e_{n_i}\otimes x_0)\right),
$$

i.e. $\tau_0(x)$ is a limit of a countable family $i(T(b^0_\alpha \otimes x))$, where the b^0_α are normalized blocks on the l_p basis, which may easily be taken disjoint.

Fix $x_1 \in X$. We can now choose $(\alpha_i^k)_{i=1,\dots,N_k}$ such that $\Sigma_i |\alpha_i^k|^p = 1$, and:

$$
\forall x \in X, \qquad \begin{array}{l}\n N_k \\
\ast \quad \alpha_i^k \tau_0(x) \to \tau_1(x) \in S_\psi,\n\end{array}
$$

and that $\tau_1(x_1)$ is a *p*-stable element. Note that $\tau_1(x_0) = \tau_0(x_0)$.

Iterating this procedure for a dense sequence $(x_i)_{i=1}^{\infty}$ in X, and using again a diagonal argument we obtain (i) and (ii) of Lemma 4; (iii) is an easy consequence of (i) and (ii) .

2. The case p > 2

In this case Lemma 4 provides a map $X \to \mathbf{R}_+$, $x \to a(x)$ such that:

(1)
$$
\|T^{-1}\|^{-1}\|x\| \le a(x) \le \|T\| \|x\| \quad (\forall x \in X)
$$

and a sequence $(b_k)_k$ of normalized disjoint blocks on the l_p basis such that:

$$
\forall \lambda > 0, \quad \forall x \in X: \quad \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = a(x)^p \lambda^p.
$$

204 Y. RAYNAUD Isr, J. Math.

This formula can be interpreted in any ultrapower $L_{\nu} = L_{\nu}^{N}/\mathcal{U}$ by:

(2)
$$
\tilde{\Psi}(\lambda v(x)) = a(x)^p \lambda^p
$$

where $\tilde{\Psi}$ is the modular on the Musielak–Orlicz space $L_{\tilde{\psi}} = \tilde{L}_{\psi}$ and $v : X \to L_{\tilde{\psi}}$ is the linear operator such that, for each $x \in X$, $v(x)$ is represented by $(T(b_k \otimes x))_{k=1}^{\infty}$.

We use then the following:

LEMMA 5. Let L_w be a Musielak-Orlicz space with modular Ψ . Let $\mathcal G$ be the order ideal in L_w formed by those elements g for which

$$
\sup_{\beta>0}\frac{1}{\beta^p}\ \Psi(\beta g)<\infty;
$$

Let \mathcal{G}_c be the subset of $\mathcal G$ formed by the elements g having constant ratio $(1/\beta^p)\Psi(\beta g)$.

There exists a lattice homomorphism h from $\mathcal G$ *into a* L_p *-space such that for any* $g \in \mathcal{G}_c$ *, and* $\beta > 0$:

$$
\|h(g)\|_{L_p}^p=\frac{1}{\beta^p}\Psi(\beta g).
$$

PROOF OF LEMMA 5. For each $g \in \mathscr{G}$, set:

$$
\theta(g) = \lim_{\Delta,\mathscr{U}} \frac{1}{2 \log \Lambda} \int_{1/\Delta}^{\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}}
$$

where *is any nontrivial ultrafilter finer than the filter of neighborhoods of* $+ \infty$ in \mathbf{R}_{+} .

 θ is nondecreasing and additive on disjoint elements of $\mathcal G$. Moreover it is homogeneous (of degree p). For, if $\rho \geq 1$:

$$
\theta(\rho g) = \lim_{\Delta \cdot \mathscr{U}} \frac{1}{2 \log \Lambda} \int_{1/\Delta}^{\Lambda} \Psi(\lambda \rho g) \frac{d\lambda}{\lambda^{p+1}}
$$

= $\rho^p \lim_{\Delta \cdot \mathscr{U}} \frac{1}{2 \log \Lambda} \int_{\rho/\Delta}^{\rho \Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}}$
= $\rho^p \theta(g) - \lim_{\Delta \cdot \mathscr{U}} \frac{1}{2 \log \Lambda} \int_{\Lambda}^{\rho \Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}} - \cdots$

$$
\cdots - \lim_{\Lambda,\mathscr{U}} \frac{1}{2 \log \Lambda} \int_{1/\Lambda}^{\rho/\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}}.
$$

In this last expression, each integral is less than

$$
\frac{\log \rho}{2 \log \Lambda} \cdot \sup_{\lambda > 0} \frac{\Psi(\lambda g)}{\lambda^p}
$$

which converges to 0 as $\Lambda \rightarrow \infty$.

Hence the homogeneity of θ . Note that:

$$
\theta(g) = \frac{1}{\beta^p} \Psi(\beta g) \quad \text{for each } g \in \mathcal{G}_c \text{ and } \beta > 0.
$$

It is now a standard exercise to show that $g \rightarrow \theta(g)^{1/p}$ is a seminorm on $\mathcal G$ (see e.g. [K], Proof of lemma 2.1).

Let $\mathcal{N} = \{ g \in \mathcal{G} : \theta(g) = 0 \}$ and $E = \mathcal{G}/\mathcal{N}$: this is a normed vector lattice; its norm is a L_p norm (i.e. $|e| \wedge |f| = 0 \Rightarrow ||e + f||^p = ||e||^p$, $\forall e, f \in E$); its bidual E^{**} is therefore an L_p space ([LT2], th. 1.b.2).

Coming back to the relation (2) we see that there exists $h : v(X) \to L_p(v)$ such that:

$$
\forall x \in X \qquad a(x) = ||h\nu(x)||_{L^p(\nu)}^p.
$$

By (1), hv is a $||T|| ||T^{-1}||$ -embedding of X in $L_p(v)$, which proves the conclusion of Theorem 3 in this case.

3. The case $1 \leq p < 2$

Consider now a new Musielak–Orlicz function on Ω , defined by:

$$
\bar{\psi}(\omega,\lambda) = \mathbb{E}_{\omega'}\psi(\omega,\lambda \mid Y(\omega')\mid)
$$

where Y is a p -stable symmetric random variable (of Fourier transform $E e^{itY} = e^{-|t|^p}$.

Extend $\bar{\psi}$ to the space $\bar{\Omega} = \Omega \cup {\bar{\omega}}$ by setting $\bar{\psi}(\bar{\omega}, t) = |t|^p$, and **P** to a measure on Ω by giving the weight 1 to the point ω .

Recall that an application $f: X \to L$, where L is a vector lattice, is said to be of negative type iff:

$$
\forall n, \quad \forall (x_i)_{i=1,\dots,n} \subset X, \quad \forall (c_i)_{i=1,\dots,n} \subset \mathbf{R}^n,
$$

$$
\sum_{i=1}^n c_i = 0 \Longrightarrow \sum_{i,j=1}^n c_i c_j f(x_i - x_j) \leq 0.
$$

LEMMA 6. *If* $l_p(X)$ *embeds in* L_ν *, then there exists an application* $\overline{A}: X \rightarrow$ $L^+_{\nu}(\bar{\Omega})$ such that:

- (i) *d is homogeneous of degree 1,*
- (ii) \overline{A}^p : $X \rightarrow L_0^+$ is of negative type,
- (iii) *for all* x_1, \ldots, x_n *in X*:

$$
\|T^{-1}\|^{-1}\left(\sum_{i=1}^n \|x_i\|^p\right)^{1/p} \leq \left\|\left(\sum_{i=1}^n \bar{A}(x_i)^p\right)^{1/p}\right\|_{\psi} \leq \|T\| \left(\sum_{i=1}^n \|x_i\|^p\right)^{1/p}.
$$

PROOF. Lemma 4 provides now two maps:

$$
a: X \to \mathbf{R}_+, \qquad A: X \to L_0
$$

such that, μ^x being the random probability distribution of Fourier transform $\hat{\mu}^x_{\omega}(t) = e^{-A(x;\omega)^p|t|^p}$, we have:

$$
\forall \lambda > 0, \qquad \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = \mathbf{E}_{\omega} \int \psi(\omega, |t|) d\mu_{\omega}^x(t) + a(x)^p \lambda^p.
$$

Let $\bar{A}(x, \omega) = A(x, \omega)$ and $\bar{A}(x, \omega) = a(x)$. We have clearly:

$$
\forall \lambda > 0, \quad \forall x \in X: \quad \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = \Psi(\lambda \overline{A}(x)).
$$

As $\tau(x) = (\mu^x, a(x)\lambda^p)$ we have $\ast_i \tau(x_i) = (\ast_i \mu^{x_i}, (\Sigma_i a(x_i)) \cdot \lambda^p)$. Noticing that $\ast_i \mu^{x_i}$ has Fourier transform $\exp(-(\Sigma_i A(x_i)^p)|t|^p)$ we obtain more generally, for all $x_1, \ldots, x_n \in X$:

$$
\forall \lambda > 0, \quad \lim_{k_1 \to \infty} \cdots \lim_{k_n \to \infty} \Psi\left(\lambda \sum_{j=1}^n T(b_{k_j} \otimes x_j)\right) = \Psi\left(\left(\sum_{j=1}^n \bar{A}(x_j)^p\right)^{1/p}\right)
$$

which implies in particular the assertion (iii) of Lemma 6.

Assertion (i) is a consequence of the fact that $\tau(\alpha \cdot x) = \alpha \cdot \tau(x)$. To check assertion (ii) we note that (see (ii) of Corollary 2):

$$
\forall t, \qquad e^{iT(b_k \otimes x)t} \xrightarrow[k \to \infty]{\sigma(L_{\infty}, L_1)} e^{-A(x) p_t p}
$$

thus the map $x \to e^{-A(x)^p}$, $X \to L_\infty$ is positive definite (as the w* limit of positive definite functions); i.e. the map $x \rightarrow A(x)^p$ is of negative type. On the other hand (see (iii) of Corollary 2) we have:

$$
\lim_{M\to\infty}\lim_{k\to\infty}(\lambda T(b_k\otimes x))\mathbf{1}_{|T(b_k\otimes x)|>M}=a(x)^p\lambda^p.
$$

As in subsection 2, let us introduce an ultrapower $L_{\psi} = L_{\psi}^{N}/\mathscr{U} = L_{\psi}$ and the linear operator $v: X \to L_{\psi}$, $x \to (T(b_k \otimes x))_k$. Consider in L_{ψ} the band defined by sequences $(f_k)_k$ of functions in L_w whose support tends to 0 measure. Let P be the associated band projection. Then the preceding relation is interpreted as:

$$
\tilde{\Psi}(\lambda Pv(x)) = a(x)^{p} \lambda^{p} \qquad (\forall x \in X, \ \forall \lambda \in \mathbf{R}_{+}).
$$

Now the same proof as in subsection 2 provides an operator $h : Pv(X) \to L_n(v)$ such that $a(x) = ||h P v(x)||_{L_2(v)}$ ($\forall x \in X$); thus $x \rightarrow a(x)^p$ is a function of negative type (see [BDCK]).

Note that in the preceding we could obtain a very degenerate Orlicz function $\bar{\psi}_{\omega}$, i.e. $\bar{\psi}(\omega, t)$ = + ∞ ($\forall t > 0$). However it does not happen for ω in the essential union S of the supports of $\overline{A}(x)$, $x \in X$. On S the Musielak-Orlicz function $\bar{\psi}$ is, up to equivalence, p-concave. For we have the following:

LEMMA 7. Let $1 \leq p < 2$ and Y be a p-stable random variable normalized *in* $L_{p,\infty}$ *. If* ψ *is a moderate Orlicz function then:*

$$
\bar{\psi}(\lambda) = \mathbf{E}\psi(\lambda Y) \sim \lambda^p \int_{\lambda}^{\infty} \psi'(u) \frac{du}{u^p}
$$

(with absolute equivalence constants).

PROOF OF LEMMA 7. We split:

(3)
$$
\mathbf{E}\psi(\lambda Y) = \mathbf{E}\psi(\lambda Y \mathbf{1}_{|Y| \leq 1}) + \mathbf{E}\psi(\lambda Y \mathbf{1}_{|Y| > 1}).
$$

The first term is smaller than $\psi(\lambda)$. For the second we have:

$$
\mathbf{E}\psi(\lambda Y\mathbf{1}_{|Y|>1}) = \psi(\lambda)\mathbf{P}(|Y|>1) + \zeta(\lambda)
$$

with

$$
\zeta(\lambda) = \int_{\psi(\lambda)}^{\infty} \mathbf{P}[\psi(\lambda Y) \ge u] du = \int_{\psi(\lambda)}^{\infty} \mathbf{P}[\lambda Y \ge \psi^{-1}(u)] du
$$

$$
= \int_{\lambda}^{\infty} \mathbf{P}[\lambda Y \ge t] \psi'(t) dt \sim \int_{\lambda}^{\infty} \frac{\lambda^p}{t^p} \psi'(t) dt,
$$

the last equivalence resulting from standard asymptotical estimation of pstable distribution.

On the other hand, as $t\psi'(t) \geq \psi(t)$ we have:

$$
\lambda^p \int_{\lambda}^{\infty} \psi'(t) \frac{dt}{t^p} \geq \lambda^p \int_{\lambda}^{\infty} \psi(t) \frac{dt}{t^{p+1}} = \int_{1}^{\infty} \psi(\lambda s) \frac{ds}{s^{p+1}} \geq \psi(\lambda) \int_{1}^{\infty} \frac{ds}{s^{p+1}}.
$$

Thus $\zeta(\lambda) \gtrsim \psi(\lambda)$ (up to a constant factor).

So if $\bar{\psi}(\lambda) < \infty$ then $\bar{\psi}(\lambda)/\lambda^p$ is equivalent to a decreasing function; it is then well known that $\bar{\psi}$ is equivalent to a (not necessarily normalized) p-concave Orlicz function, with absolute equivalence constants (see [BDC]). So our preceding Musielak–Orlicz space L_{ψ} is in fact p-concave.

END OF THE PROOF OF THEOREM 3. We apply to the (nonlinear, but homogeneous) operator $\bar{A}: X \to L_{\hat{u}}(\bar{\Omega})$ the same argument as in the proof of Krivine's factorization theorem ([LT 2], th. 1.d.ll or [Kr]) to obtain an L_1 norm on the lattice \mathcal{T} generated by the elements $\bar{A}(x)$ ^p, $x \in X$ in L_{ψ} , such that:

$$
\forall x \in X \qquad \|\tilde{A}(x)^p\|_1 \leqq \|T\|^p \|x\|^p,
$$

$$
\forall \xi \in \mathcal{F} \qquad \|\xi\|_1 \geqq \frac{1}{c_p(\psi)^p} \| |\xi|^{1/p} \|_{\psi}^p.
$$

where $c_p(\bar{\psi})$ is the *p*-concavity constant of the lattice L_{ψ} . Thus

$$
\|\,\bar{A}(x)^p\,\|_1 \geq \frac{1}{c_p(\bar{\psi})^p\,\|\,T^{-1}\,\|_p^p}\,\,\|x\,\|_p^p \qquad (\forall\,x\in X).
$$

As the map $x \rightarrow \bar{A}(x)^p$ is of negative type $(X \rightarrow L_{\psi})$, the same is true for the map $x \to ||\overline{A}(x)|^p ||_1$. Thus $x \to ||x||^p$ is C_1^p equivalent to a negative type function $(C_1 = C, c_p(\bar{\psi}))$. By the isomorphic version of a theorem of Bretagnolle, Dacunha-Castelle and Krivine (Lemma 8 below) X is C_1 -isomorphic to a subspace of L_p .

For the sake of completeness, we state the following lemma, which is a slight modification of th. 6.1 of [AMM].

LEMMA 8. Let X be a normed space; suppose that the map $x \to \parallel x \parallel^p$ is C^p *equivalent to a negative type function* $x \rightarrow f(x)$ *. Then X C-embeds in* L_p *.*

PROOF. Note that $x \rightarrow e^{-f(x)}$ is positive definite and that, for all $q < p$.

$$
\|x\|^q \sim_{C^q} K_q \int_0^{\infty} (1-e^{-f(tx)}) \frac{dt}{t^{q+1}}.
$$

By [AMM], lemma 4.2, there is a continuous linear operator U : $X \rightarrow L_0(\Omega', \mathcal{A}', \mathbf{P}')$ such that:

$$
e^{-f(tx)} = \int_{\Omega'} \exp(itUx(\omega'))d\mathbf{P}'(\omega')
$$

and we obtain:

$$
\int_0^\infty (1-e^{-f(x)}) \frac{dt}{t^{q+1}} = K'_q \int_\Omega |Ux(\omega)|^q dP'(\omega')
$$

Thus X is $C^{q/p}$ embeddable in L_q , for each $q < p$.

III. The case $p=2$

In this case the preceding Musielak–Orlicz functions ψ and $\bar{\psi}$ are equivalent. For we can suppose $\psi(t)/t^q$ decreasing (for a $q < \infty$) and thus (G being a L_2 -normalized gaussian random variable)

$$
C'_{a}\psi(\lambda) \leq \bar{\psi}(\lambda) = \mathbf{E}_{\omega'}\psi(\lambda G(\omega')) \leq C_{a}\psi(\lambda)
$$

with $C_q = \mathbb{E}(|G| \vee |G|^q)$ and $C'_q = \mathbb{E}(|G| \wedge |G|^q)$.

The proof of §II, subsection 3 works if ψ is 2-concave; then L_{ψ} is a subspace of L_1 (by [BDC]) and this case was already known ([M]). It works as well if ψ is 2-convex. We obtain therefore:

PROPOSITION 9. *If* $l_2(X)$ *is C-finitely representable into a 2-convex Orlicz space* L_{φ} *, then X is K. C*₂(φ). *C isomorphic to an Hilbert space* ($C_2(\varphi)$ *being the 2-convexity constant of* L_{φ}).

We leave as open the question if this result can be extended to general Orlicz spaces. We will only show that X is necessarily of type 2^- and cotype 2^+ (as a consequence of Corollary 12 below).

However we can settle the problem when X is supposed to have 1.u.st (in the sense of [DPR]).

THEOREM 10. *If X is a Banach space with local unconditional structure such that* $l_2(X)$ *is C-finitely representable into an Orlicz space* L_{φ} *(not containing and the C-finitely representable into an Orlicz space* L_{φ} *(not containing Co) then X is (isomorphic to) an Hilbert space.*

210 Y. RAYNAUD Isr. J. Math.

PROOF. We will only sketch the proof, which is very similar to that of Theorem 3.

As in [K] we may suppose w.l.o.g. that X has an unconditional basis $(f_n)_{n=1}^{\infty}$. If $l_2(X)$ embeds in L_{ψ} , then (as a consequence of Maurey-Khintchine inequalities, see [LT2], th. 1.d.6) it embeds as a sublattice in $L_{\psi}(l_2)$. Let $Y = X_{1/2}$ be the *(a priori* quasi-normed) lattice defined by:

$$
\|\sum a_n f_n\|_Y = \|\sum |a_n|^{1/2} f_n\|_X^2.
$$

Let Y_+ be the positive cone of Y (with respect to $(f_n)_{n=1}^{\infty}$) and $\zeta = \psi_{1/2}$ the Musielak-Orlicz function defined by:

$$
\zeta(t)=\psi(\sqrt{t}).
$$

We have then clearly an embedding $S: I_1^+(Y_+) \hookrightarrow L_{\zeta}^+$ which is positively linear (i.e. $S(\alpha u + \beta v) = \alpha S(u) + \beta S(v)$ for all positive reals α , β and elements u, v of $l_1^+(Y_+)$ and verifies:

$$
A \| T^{-1} \|^{-1} \| u \| \le \| Su \| \le B \| T \| \| u \|
$$

(T being the given embedding of $l_2(X)$ in L_{ψ} and constants A, B depending only on the q-concavity of L_{ν} , for some $q < \infty$).

To ζ we associate the space S_{ζ}^+ of the pairs (μ, f) , where μ is a positive random probability distribution verifying $Z(\mu) := \mathbb{E} \int \zeta(|t|) d\mu_{\omega}(t) < \infty$, and f a generalized $\frac{1}{2}$ -convex Orlicz function satisfying Δ_2 conditions with fixed constant K .

Using an adapted version of Aldous theorem (Proposition 11 below) and proceeding as in \S II, subsection 1, we see that S induces an application $Y_+ \rightarrow S_\zeta^+$ which satisfies:

- (i) for all $y \in Y_+$, $\sigma(y)$ is a 1-stable element of S^+_c (i.e. of the form $(\delta_A, a\lambda)$),
- (ii) $\sigma(y) = \lim_{k \to \infty} S(b_k \otimes y)$ where $(b_k)_k$ is a normalized sequence of disjoint blocks in l_{+}^{1} ,
- (iii) for all $y_1, \ldots, y_n \in Y_+$,

$$
A \| T^{-1} \|^{-1} \sum_{i=1}^n \| y_i \| \leq \left\| \frac{1}{*} \sigma(y_i) \right\| \leq B \| T \| \sum_{i=1}^n \| y_i \|.
$$

So we obtain applications $A: Y \to L_{\zeta}^+$ and $a: Y \to \mathbb{R}_+$ such that:

 $||y|| \sim ||\sigma(y)|| \sim ||A(y)||_g + a(y).$

As in §II, subsection 2 we have $a(y) = ||u(y)||_{L_1}$ for a certain positively linear

operator $u: Y_+ \to L^+(v)$. Thus $a: Y_+ \to \mathbb{R}_+$ is a positively linear map. On the other hand we have:

$$
\forall y \in Y_+ \qquad S(b_k \otimes y) \xrightarrow[k \to \infty]{L_0} A(y).
$$

This is a consequence of the coincidence of the w.m. and s.m. topologies at degenerate random measures (see [A], lemma 2.14). Thus the map $y \rightarrow A(y)$ is positively linear.

Finally the point (iii) before can be reformulated as:

$$
\forall y_1, ..., y_n \in Y, \nA \parallel T^{-1} \parallel^{-1} \sum_i \parallel y_i \parallel \leq \left\| \sum_i A(y_i) \right\|_{\zeta} + \sum_i a(y_i) \leq B \parallel T \parallel \sum_i \parallel y_i \parallel
$$

where the central term can be written as:

$$
\left\|A\left(\sum_i y_i\right)\right\|_{\zeta}+a\left(\sum_i y_i\right).
$$

Now if $v = \sum_i \alpha_i f_i \in Y_+$, setting $y_i = \alpha_i f_i$ we obtain:

$$
\|y\|_{Y_+} \sim \|A(y)\|_{\zeta} + a(y) \sim \Sigma |\alpha_i|.
$$

Thus $Y_+ \sim l_1^+$ and therefore $X \sim l_2$.

In the preceding proof we made use of the following proposition. By positive probability distribution we mean a probability on \mathbf{R}_{+} . We note

$$
|\lambda|_{1/2}=\int_0^\infty |t|^{1/2}d\lambda(t).
$$

PROPOSITION 11. Let *C* be a class of random positive probability distribu*tions such that:*

- (i) $\forall \mu \in \mathscr{C}$, $\mathbf{E}|\mu|_{1/2} < \infty$,
- (ii) $\mathscr C$ *is closed under operations of scaling and convolution,*
- (iii) $\mathscr C$ is $w.m. closed$,

(iv) *if* $(\mu_n)_n \subseteq \mathscr{C}$ and $\mu_n \xrightarrow{w.m.} \mu$ then $\mathbf{E}|\mu_n|_{1/2} \longrightarrow \mathbf{E}|\mu|_{1/2}$.

Then ~ contains a p-stable positive random probability distribution for some $\frac{1}{2} < p \leq 1$.

PROOF. To each probability μ on \mathbf{R}_+ we associate the probability $\tilde{\mu}$ on \mathbf{R} , whose Fourier transform is:

$$
\hat{u}(t) = \mathscr{L}\mu(t^2)
$$

where $\mathscr{L}\mu$ is the Laplace transform of μ .

Recall that if μ is the probability distribution of a random variable X, then $\tilde{\mu}$ is the probability distribution of $\sqrt{2}$. $X^{1/2} \otimes G$, G being a standard gaussian variable.

To $\mathscr C$ is associated a class $\check{\mathscr C}$ of random measures on **R**, which is easily seen to be a C-class in Aldous' terminology.

Thus $\tilde{\mathcal{C}}$ contains a q-stable random measure $\lambda = \tilde{\mu}_0$; using (4) it is clear that μ_0 is a $q/2$ -stable positive random probability distribution, belonging to \mathscr{C} .

COROLLARY 12. *If* $l_n(l_q)$ is finitely (crudely) representable in an Orlicz space (not containing c_0) then $p \leq q \leq 2$ or (if $p > 2$) $q \in \{2, p\}$.

We will now make use of the following fact, due to J. L. Krivine and B. Maurey (see [R] for a proof).

FACT. *If E is a stable infinite dimensional Banach space which contains* l_q^n *uniformly, then* $(\bigoplus_{n=1}^{\infty} l_n^n)_k$ *embeds in E (for some* $1 \leq p < \infty$).

We refer to [KM] for the definition of stable Banach spaces and recall that Orlicz spaces not containing c_0 are stable ([Ga]).

COROLLARY 13. *Let q > 2. If a subspace E of an Orlicz space (not contain*ing c_0) contains l_a^n uniformly, then E contains l_a .

For by Corollary 12, if $l_p(l_q)$, $q > 2$ is finitely representable in an Orlicz space, then $p = q$.

COROLLARY 14. *Let E be an infinite dimensional subspace of an Orlicz space* (*not containing c*₀); *set*:

 $p(E) = \sup \{ p : E \text{ is of type } p \}$ and $q(E) = \inf \{ q : E \text{ is of copy } q \}.$

Then E contains almost isometrically l_p *for* $p \in \{p(E), q(E)\} \setminus \{2\}$ *(and* l_2 *if* $p(E) = q(E) = 2$).

PROOF. By Krivine-Maurey-Pisier's theorem ([MS], th. 13.2) E contains $l_{p(E)}^n$ and $l_{q(E)}^n$ uniformly. Thus E contains $(\bigoplus_{n=1}^{\infty} l_{p(E)}^n)_{l_p}$ and $(\bigoplus_{n=1}^{\infty} l_{q(E)}^n)_{l_p}$, and by Corollary 12 we have $p \leq p(E)$ if $p(E) < 2$, and $q = q(E)$ if $q(E) > 2$.

REFERENCES

[A] D. Aldous, *Subspaces of* L^1 *via random measures*, Trans. Am. Math. Soc. 267 (1981), 445-463.

[AMM] I. Aharoni, B. Maurey and B. S. Mityagin, *Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces,* Isr. J. Math. 52 (1985), 251-265.

[BDC] J. Bretagnolle and D. Dacunha-Castelle, *Applications de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans les espaces L^p, Ann. Sci. Ec. Norm.* Sup. 4° série, 2 (1969), 437-480.

[BDCK] J. Bretagnolle, D. Dacunha-Castelle and J. J. Krivine, *Lois stables et espaces L p,* Ann. Inst. Henri Poincar6, Sect. B (1966), 231-259.

[BeR] I. Berkes and H. P. Rosenthal, *Almost exchangeable sequences of random variables, Z.* Wahrscheinlichkeitstheor. Verw. Geb. 70 (1985), 473-507.

[DPR] E. Dubinski, A. Pelczynski and H. P. Rosenthal, *On Banach spaces X for which* $\Pi_2(\mathcal{L}_\infty, X) = B(\mathcal{L}_\infty, X)$, Studia Math. 44 (1972), 617–648.

[G] S. Guerre, *Sur les sous-espaces de L^p*, Séminaire d'Analyse Fonctionnelle, Université Paris 7, 1983-84.

[Ga] D. J. H. Garling, *Stable Banach spaces, random measures and Orlicz function spaces,* in *Probability Measures on Groups,* Lecture Notes in Math. 928, Springer-Verlag, Berlin, 1982.

[GL] S. Guerre and M. Lévy, *Espaces ^p dans les sous-espaces de L*¹, Trans. Am. Math. Soc. 279 (1983), 611-616.

[HLR] R. G. Haydon, M. Lévy and Y. Raynaud, *Randomly normed spaces*, preprint.

[JMST] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces,* Am. Math. Soc. Memoirs 19 (1979), 217.

[K] N. Kalton, *Banach spaces embedding into Lo,* Isr. J. Math, 52 (1985), 305-319.

[Kr] J. L. Krivine, *Théorèmes de factorisation dans les espaces réticulés*, Séminaire Maurey-Schwartz 1973-74, exposé 22, Ecole Polytechnique, Paris.

[KM] J. L. Krivine and B. Maurey, *Espaces de Banach stables,* Isr. J. Math. 39 (1981), 273-295.

[LT1] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I: Sequence Spaces,* Springer-Verlag, Berlin, 1977.

[LT2] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces H: Function Spaces,* Springer-Verlag, Berlin, 1979.

[M] B. Maurey, Oral communication.

[MS] V. Milman and G. Schechtman, *Asymptotic Theory of Finite Dimensional Normed Spaces,* Lecture Notes in Math. No. 1200, Springer-Verlag, Berlin, 1986.

[Mu] J. Musielak, *Orlicz spaces and modular spaces,* Lecture Notes in Math. No. 1034, Springer-Verlag, Berlin, 1983.

[R] Y. Raynaud, *Sur les sous-espaces de L^p(L^q)*, Séminaire de Géométrie des Espaces de Banach, Universités Paris 6-7, 1984-85.

[R2] Y. Raynaud, *Finie repésentabilité de l^p(X) dans les espaces d'Orlicz*, C.R. Acad. Sci. Paris 304, Série I (1987), 331–334.

JR3] Y. Raynaud, *Ahnost isometric methods in some isomorphic embedding problems,* Proceedings of the 1987 Iowa Workshop on Banach Space Theory, Contemporary Math. 85, Am. Math. Soc., 1989.

[W] W. Wnuk, *Representations of Orlicz lattices,* Diss. Math. 235 (1984).