FINITE REPRESENTABILITY OF $l_p(X)$ IN ORLICZ FUNCTION SPACES

BY

YVES RAYNAUD Equipe d'Analyse, U.A. N° 754 au C.N.R.S., Université Paris VI, 75252 Paris Cedex 05, France

ABSTRACT

We show that if $l_p(X)$, $p \neq 2$, is finitely crudely representable in an Orlicz space L_{φ} (which does not contain c_0) then the Banach space X is isomorphic to a subspace of L_{φ} . The same remains true for p = 2 when L_{φ} is 2-concave or 2-convex, or if X has local unconditional structure. We extend a theorem of Guerre and Levy to Orlicz function spaces.

Introduction

Let X be a Banach space and $1 \le p < 2$. It was proved by N. Kalton ([K]) that if $l_p(X)$ isomorphically embeds into L_0 then X embeds into L_p . The same remains true for p = 2 as was shown by B. Maurey ([M]). Here we want to give an analogous statement for an Orlicz space L_{φ} instead of L_0 . We consider only normed Orlicz spaces (i.e. associated to a convex Orlicz function) although the results easily extend to the quasinormed case.

In the frame of Orlicz spaces, it is more natural to take as hypothesis that $l_p(X)$ is finitely crudely representable in L_{φ} (cf. [JMST], p. 170 for a definition), which is equivalent to say that it is C-isomorphically embeddable in some ultrapower of L_{φ} (for some $C < \infty$).

Now we suppose $1 \le p < \infty$, $p \ne 2$ and obtain that X embeds in L_p . For p = 2, we have to suppose moreover the Orlicz space L_{φ} to be 2-concave (hence embeddable in L_1) or 2-convex. This restriction can be avoided when X has local unconditional structure. As an application we give an extension to Orlicz spaces of a result of S. Guerre and M. Lévy (see [GL]), concerning l_p spaces in

Received September 14, 1988

subspaces of L_1 : an infinite dimensional subspace E of L_{φ} contains $l_{p(E)}$ (resp. $l_{q(E)}$) when p(E) (resp. q(E)), the g.l.b. (resp. l.u.b.) of type (resp. cotype) exponents of E, is different from 2. See also [R] for a less-refined version of this last result.

For p > 2 these results were announced in [R2]. A preliminary and shortened version of this work was given also in [R3].

Let us now recall some definitions concerning Musielak-Orlicz spaces (cf. [Mu]). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. A Musielak-Orlicz function is a measurable function $\psi: \Omega \times \mathbf{R}_+ \to \mathbf{R}_+$ with partial functions $\psi_{\omega} = \psi(\omega, ...)$ being Orlicz. For $f \in L_0(\Omega)$ define the "modular":

$$\Psi(f) = \int_{\Omega} \psi(\omega, |f(\omega)|) d\mu(\omega).$$

Then $|| f ||_{\psi} = \inf \{a : \Psi(f/a) \leq 1\}$ and the Musielak-Orlicz space is $L_{\psi} = \{f \in L_0 / || f ||_{\psi} < \infty\}$. Now if ψ is uniformly moderate, i.e.

$$\operatorname{Ess\,sup\,}_{\omega} \sup_{t} \frac{\psi(\omega, 2t)}{\psi(\omega, t)} < \infty,$$

then $|| f ||_{\psi}$ is defined by $\Psi(f / || f ||_{\psi}) = 1$.

If φ is a moderate Orlicz function $(\sup_{l}(\varphi(2t)/\varphi(t)) < \infty)$ then ultrapowers of $L_{\varphi}(\Omega, \mathcal{A}, \mu)$ are Musielak-Orlicz spaces $L_{\psi}(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$ (associated to an uniformly moderate M.-O. function and a "bigger" measure space): see e.g. [W] or [HLR]. So the finite representability of $l_{p}(X)$ in L_{φ} is equivalent to its embeddability in $L_{\psi}(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$. If X is assumed to be separable, then $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mu})$ may be supposed σ -finite, in fact (using a change of density) a probability space.

I. l_p sequences in a Musielak–Orlicz space $L_{\psi}(\Omega, \mathcal{A}, \mathbf{P})$

As we will be concerned with the asymptotic properties of such sequences, we will make use of the extension S_{ψ} of the space of random measures introduced (for Orlicz spaces) by Garling ([Ga]). Let N_{ψ} be the set of random probability measures μ on $(\Omega, \mathcal{A}, \mathbf{P})$ such that:

$$\Psi(\mu) := \mathbb{E} \int_{\mathbb{R}} \psi(\omega, |t|) d\mu_{\omega}(t) < \infty.$$

Let \mathcal{O}_K be the set of K-moderate Orlicz functions $f(\operatorname{Sup}_{t>0}(f(2t)/f(t)) \leq K)$. N_{ψ} is equipped with the w.m. topology (see [Ga], [A]) and \mathcal{O}_K with the topology of uniform convergence on compact sets. Then $S_{\psi} = N_{\psi} \times \mathcal{O}_K$ is equipped with the (metrizable) topology such that:

$$\sigma_n = (\mu_n, f_n) \xrightarrow[n \to \infty]{} \sigma = (\mu, f) \quad \text{iff } \mu_n \xrightarrow{\text{w.m.}} \mu \quad \text{and}$$
$$f_n + \Psi_{\mu_n} \xrightarrow[n \to \infty]{} f + \Psi_{\mu} \quad (\text{where } \Psi_{\mu}(\lambda) = \mathbf{E} \int \psi(\omega, \lambda | t |) d\mu_{\omega}(t)).$$

Recall that S_{ψ} is locally compact (i.e. the sets $\{\sigma = (\mu, f) \in S_{\psi}, \Psi(\mu) + f(1) \leq C\}$ are compact) and there is a natural homeomorphic embedding *i* of L_{ψ} in S_{ψ} : $i(x) = (\delta_x, 0)$, where $(\delta_x)_{\omega} = \delta_{x(\omega)}$ is the evaluation measure at the point $x(\omega)$. In particular if $i(x_n) \xrightarrow[n \to \infty]{} \sigma = (\mu, f)$ then for each $x \in L_{\psi}$:

$$\Psi(\lambda(x+x_n)) \xrightarrow[n\to\infty]{} \mathbf{E} \int \psi(\omega,\lambda | x(\omega)+t |) d\mu_{\omega}(t) + f(\lambda)$$

which allows one to calculate $t(x) = \lim_{n \to \infty} ||x + x_n||$, the "type" defined by $(x_n)_{n=1}^{\infty}$ (in the sense of [KM]): see [Ga], th. 36.

On S_{ψ} are defined the operations of scaling and convolution:

• If $a \in \mathbf{R}$ and $\sigma = (\mu, f) \in S_{\psi}$ then $a \cdot \sigma = (s_a \mu, s_a f)$ where $s_a \mu$ is the image of the random measure μ by the scaling $t \rightarrow at$; and $s_a f(t) = f(|a|t)$.

• If $\sigma = (\mu, f)$ and $\tau = (\nu, g)$ then $\sigma * \tau = (\mu * \nu, f + g)$.

If $\sigma \in S_{\psi}$ let $K_{\psi}(\sigma)$ be the closure of $\{\sigma\}$ under the scaling and convolution operations in S_{ψ} . Let $\bar{K}_{\psi}(\sigma)$ be its (topological) closure in S_{ψ} .

By a *p*-stable element of S_{ψ} we mean a couple (μ, f) where $f(t) = a^{p}t^{p}$ $(a \in \mathbf{R}_{+})$ and μ is a random *p*-stable symmetric probability distribution $(\hat{\mu}_{\omega}(t) = e^{-A^{p}(\omega)t^{p}})$ when $p \leq 2$; μ is the constant δ_{0} when p > 2.

A *p*-stable element is said to be non-trivial if it is distinct from the "zeroelement"

$$0=(\delta_0,0).$$

The following proposition is merely an adaptation to the Orlicz setting of the result of Aldous ([A], th. 3.10) or Krivine–Maurey ([KM], th. IV.2).

PROPOSITION 1. If $\sigma \in S_{\psi} \setminus i(L_{\psi})$ then $\tilde{K}_{\psi}(\sigma)$ contains a nontrivial *p*-stable element (for a certain $p \in [1, \infty[$).

PROOF. 1st Case. Suppose that $\sigma \in \mathcal{O}_K$, that is $\sigma = (\delta_0, f), f \in \mathcal{O}_K$. Then by [LT1], th. 4a9 and 4a8, there exist reals $(\alpha_i^k)_{i=1,\dots,N_K, k=1,\dots}$ and $a \neq 0$ such that the functions $f_k : f_k(\lambda) = \sum_{i=1}^{N_k} f(\lambda \alpha_i^k)$ converge (in \mathcal{O}_K) to $f_{\infty}(\lambda) = a^p \lambda^p$. Then

$$\sigma_k = (\delta_0, f_k) = \overset{N_k}{\underset{i=1}{\ast}} \alpha_i^k \cdot \sigma$$

belongs to $K_{\psi}(\sigma)$ and converges to $\sigma_{\infty} = (\delta_0, f_{\infty})$ which is a *p*-stable element of S_{ψ} .

2nd Case. Suppose $\bar{K}_{\psi}(\sigma) \cap \mathcal{O}_{K} \neq \{0\}$. Then if $\tau \in \bar{K}_{\psi}(\sigma) \cap \mathcal{O}_{K}, \bar{K}_{\psi}(\tau)$ contains a *p*-stable element and is contained in $\bar{K}_{\psi}(\sigma)$.

3rd Case. Suppose $\bar{K}_{\psi}(\sigma) \cap \mathcal{O}_{K} = \{0\}$. If $\sigma = (\mu, f)$, then (by Aldous theorem) there exist reals $(\alpha_{i}^{k})_{i=1,\dots,N_{k}, k=1,\dots}$ such that:

$$\mu_k := \overset{N_k}{*} \quad s_{\alpha_i^k} \mu \xrightarrow[k \to \infty]{\text{w.m.}} \mu_{\infty},$$

a random *p*-stable probability measure (note that

$$|\mu| := \mathbf{E} \int |t| d\mu_{\omega}(t) \leq 1 + \mathbf{E} \int_{t \geq 1} |t| d\mu_{\omega}(t)$$
$$\leq 1 + \mathbf{E} \int_{t \geq 1} \psi(\omega, |t|) d\mu_{\omega}(t)$$
$$\leq 1 + \Psi(\mu) < \infty,$$

as we suppose $\psi(\omega, 1) = 1$) and moreover such that

 $|\mu_k| \xrightarrow[k \to \infty]{} 1.$

Then $|\mu_{\infty}| \leq 1$ but it is a priori not clear that $\mu_{\infty} \in N_{\psi}$.

Let $\|\mu_k\|_{\Psi}$ be the real such that $\Psi(s_{1/\|\mu_k\|} \cdot \mu) = 1$ and $\alpha'_k = \alpha_k / \|\mu_k\|$,

$$\mu'_k = \overset{N_k}{*} \quad s_{\alpha'^k} \cdot \mu.$$

Then $\Psi(\mu'_k) = 1$.

We claim that $\sup_k \sum_{i=1}^{N_k} f(\alpha_i^k) < \infty$. If not, there would exist reals γ_k with

$$\gamma_k \xrightarrow[k \to \infty]{} \infty \quad \text{and} \quad \sum_{i=1}^{N_k} f\left(\frac{\alpha_i^{\prime k}}{\gamma_k}\right) \xrightarrow[k \to \infty]{} 1.$$

Set:

$$\alpha_{i}^{\prime\prime k} = \frac{\alpha_{i}^{\prime k}}{\gamma_{k}}, \quad \mu_{k}^{\prime\prime} = \frac{s_{k}}{*} s_{\alpha_{i}^{\prime\prime}} \mu_{k} = s_{1/\gamma_{k}} \mu_{k}^{\prime}; \quad f_{k}^{\prime\prime} = \sum_{i=1}^{N_{k}} s_{\alpha_{i}^{\prime\prime}} f_{i}^{\prime\prime}; \quad \sigma_{k}^{\prime\prime} = (\mu_{k}^{\prime\prime}, f_{k}^{\prime\prime}).$$

Then $\Psi(\mu_k^n) \xrightarrow[k \to \infty]{} 0$ and $(f_k^n)_k$ is relatively compact in \mathcal{O}_K . Thus we would have $\bar{K}_{\psi}(\sigma) \cap \mathcal{O}_K \neq \{0\}$ (containing any limit point of (σ_k^n)).

We claim now that $\sup_k \|\mu_k\|_{\psi} < \infty$. If not, then $|\mu'_k| \xrightarrow[k \to \infty]{} 0$, and thus $\mu'_k \xrightarrow[k \to \infty]{} 0$. Up to extraction, we could suppose:

$$\Psi_{\mu_k} \xrightarrow[k \to \infty]{} g_{\infty}; \qquad f'_k = \sum_{i=1}^{N_k} s_{\alpha_i^{\prime k}} f_{\xrightarrow[k \to \infty]{}} f'_{\infty} \in \mathcal{O}_K,$$

thus $\sigma'_k(\mu'_k, f'_k) \rightarrow (0, f'_{\infty} + g_{\infty}) \in \mathcal{O}_K$, and again $\check{K}_{\psi}(\sigma) \cap \mathcal{O}_K \neq \{0\}$.

Now, by local compactness of S_{ψ} , the sequence $\sigma_k = (\mu_k, f_k)$ is relatively compact in S_{ψ} ; clearly any of its limit points is of the form $(\mu_{\infty}, h_{\infty})$, for some $h_{\infty} \in \mathcal{O}_K$ (μ_{∞} being the preceding *p*-stable random probability). Note that $\mu_{\infty} \neq \delta_0$.

By the 1st step, $\bar{K}_{\psi}(0, h_{\infty})$ contains a *q*-stable element (0, k). Suppose $k = \lim_{k \to \infty} \sum_{i=1}^{M_k} s_{\beta_i^k} h_{\infty}$. If $b_k = \sum_{i=1}^{M_k} |\beta_i^k|^p \xrightarrow[k \to \infty]{} \infty$, then

$$\overset{M_k}{\underset{i=1}{*}} \frac{\beta_i^k}{b_k} \sigma_{\infty} \rightarrow (\mu_{\infty}, 0)$$

which is a non-trivial *p*-stable element in $\bar{K}_{\psi}(\sigma)$. If not, suppose

$$\left(\sum_{i=1}^{M_k} |\beta_i^k|^p\right)^{1/p} \xrightarrow[k \to \infty]{} b_{\infty};$$

then:

*
$$\beta_i^k \sigma_{\infty} \xrightarrow[k \to \infty]{} (s_{b_{\infty}} \mu_{\infty}, k) = \theta_{\infty}.$$

By considering $(1/n^{1/p}) *_{i=1}^{n} \theta_{\infty}$, we see that $\bar{K}_{\psi}(\sigma) \cap \mathcal{O}_{K} \neq \{0\}$ implies $p \geq q$; if p > q then, again, $\bar{K}_{\psi}(\sigma)$ contains $(\mu_{\infty}, 0)$; if p = q it contains $(s_{b_{\infty}}\mu_{\infty}, k)$ which is a *p*-stable element.

COROLLARY 2. Let $(x_n)_{n=1}^{\infty}$ be a l_p -sequence in the Musielak–Orlicz space $L_{\psi}(\Omega, \mathcal{A}, \mathbf{P})$. There exist a real $a \ge 0$, and (if $p \le 2$) a random p-stable symmetric probability distribution $\mu = (\mu_{\omega})_{\omega}$, and a sequence of normalized disjoint blocks $y_k = \sum_{i=1}^{N_k} \alpha_i^k x_{n_i}$ such that:

(i) For each $x \in L_{\psi}$,

$$\lim_{k\to\infty} \Psi(\lambda(x+y_k)) = \mathbf{E} \int \psi(\omega,\lambda|x(\omega)+t|) d\mu_{\omega}(t) + a^{p}\lambda^{p}.$$

(ii) μ is the limit conditional distribution of $(x_n)_n$ (in the terminology of [BeR]).

(iii) $a^{p}\lambda^{p} = \lim_{M \to \infty} \lim_{k \to \infty} \Psi(\lambda \cdot y_{k} \cdot \mathbf{1}_{|y_{k}| > M}).$

The second condition is equivalent to:

$$\forall t \in \mathbf{R}, \qquad \exp(it x_n(..)) \xrightarrow[n \to \infty]{\sigma(L_{\omega}, L_1)} \hat{\mu}_{(..)}(t).$$

PROOF. We apply Proposition 1 to any limit point of $(i(x_n))_n$ in S_{ψ} . We obtain disjoint blocks $(y_k)_k$ with $i(y_k) \xrightarrow[k \to \infty]{} \sigma$, a *q*-stable element of S_{ψ} . But then as in the L_1 case ([A]), the subspace span $(y_k)_k$ contains l_q , thus q = p. The points (i) to (iii) follow then immediately from [Ga].

II. The main result

We state now our main result:

THEOREM 3. Let $1 \leq p < \infty$, $p \neq 2$, and X be a Banach space; L_{φ} an Orlicz space which does not contain c_0 .

If $l_p(X)$ is C-finitely representable in L_{φ} then X is K.C-isomorphically embeddable in L_p (where K = K(p)).

In proving this theorem, we can suppose that φ is moderate on \mathbf{R}_+ and that X is separable. In fact we may suppose that $l_p(X)$ C-embeds in a Musielak– Orlicz space $L_{\psi}(\Omega, \mathcal{A}, \mathbf{P})$.

1. Representation of X in S_{ψ}

If $\sigma \in S_{\psi}$, $\sigma = (\mu, f)$, let us denote $\| \sigma \|$ the real such that

$$\mathbf{E} \int \psi\left(\omega, \frac{|t|}{\|\sigma\|}\right) d\mu_{\omega}(t) + f\left(\frac{1}{\|\sigma\|}\right) = 1.$$

Note that if $(x_n)_n \subset L_{\psi}$, $i(x_n) \xrightarrow[n \to \infty]{} \sigma$ then $||x_n|| \xrightarrow[n \to \infty]{} ||\sigma||$.

The idea of the following key lemma is essentially Maurey's one ([M]).

LEMMA 4. Let T be an embedding of $l_p(X)$ in L_{ψ} . There is a map: $X \to S_{\psi}, x \to \tau(x)$ such that: (i) for all $x \in X, \tau(x)$ is a p-stable element of S_{ψ} ; (ii) $\tau(x) = \lim_{k \to \infty} T(b_k \otimes x)$, where $(b_k)_{k=1}^{\infty}$ is a sequence of disjoint normalized blocks on the l_p basis (fixed independently of x);

(iii) $\forall x_1, \ldots, x_n \in X$:

$$|| T^{-1} ||^{-1} \left(\sum_{i} || x_{i} ||^{p} \right)^{1/p} \leq || * \tau(x_{i}) || \leq || T || \left(\sum_{i} || x_{i} ||^{p} \right)^{1/p}.$$

PROOF. Denote by $(e_n)_{n=1}^{\infty}$ the natural l_p basis. Then for each $x \in X$, the sequence $(T(e_n \otimes x))_{n=1}^{\infty}$ in L_{ψ} is equivalent to the l_p basis. Up to extraction we can suppose that

$$\forall x \in X, \qquad i(T(e_n \otimes x)) \xrightarrow{n \to \infty} \sigma(x) \in S_{\psi}$$

(use separability of X and a diagonal argument to obtain this convergence for the same subsequence of the l_p -basis).

Fix $x_0 \in X$. By Proposition 1, a suitable sequence of combinations

$$\sigma_k = \overset{N_k}{\underset{i=1}{*}} \alpha_i^k \sigma(x_0), \quad \text{where } \sum_i |\alpha_i^k|^p = 1,$$

converges to a *p*-stable $\tau_0(x_0) \in S_{\psi}$. Again, by extracting and using a diagonal argument, we can suppose that $*_{i=1}^{N_k} \alpha_i^k \sigma(x)$ converges (for each $x \in X$) to a $\tau_0(x) \in S_{\psi}$, which is however *a priori* not *p*-stable for $x \neq x_0$. Note that:

$$\tau_0(x) = \lim_{k \to \infty} \lim_{n_1 \to \infty} \cdots \lim_{n_{N_k} \to \infty} i\left(\sum_{i=1}^{N_k} \alpha_i^k T(e_{n_i} \otimes x_0)\right),$$

i.e. $\tau_0(x)$ is a limit of a countable family $i(T(b^0_{\alpha} \otimes x))$, where the b^0_{α} are normalized blocks on the l_p basis, which may easily be taken disjoint.

Fix $x_1 \in X$. We can now choose $(\alpha_i^{\not k})_{i=1,\dots,N_k}$ such that $\sum_i |\alpha_i'^k|^p = 1$, and:

$$\forall x \in X, \qquad \overset{N_k}{\ast} \quad \alpha_i^{k} \tau_0(x) \to \tau_1(x) \in S_{\psi},$$

and that $\tau_1(x_1)$ is a *p*-stable element. Note that $\tau_1(x_0) = \tau_0(x_0)$.

Iterating this procedure for a dense sequence $(x_l)_{l=1}^{\infty}$ in X, and using again a diagonal argument we obtain (i) and (ii) of Lemma 4; (iii) is an easy consequence of (i) and (ii).

2. *The case p* > 2

In this case Lemma 4 provides a map $X \rightarrow \mathbf{R}_+, x \rightarrow a(x)$ such that:

(1)
$$||T^{-1}||^{-1}||x|| \le a(x) \le ||T|| ||x||$$
 $(\forall x \in X)$

and a sequence $(b_k)_k$ of normalized disjoint blocks on the l_p basis such that:

$$\forall \lambda > 0, \quad \forall x \in X: \qquad \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = a(x)^p \lambda^p.$$

Y. RAYNAUD

This formula can be interpreted in any ultrapower $L_{\psi} = L_{\psi}^{N}/\mathcal{U}$ by:

(2)
$$\tilde{\Psi}(\lambda v(x)) = a(x)^p \lambda^p$$

where $\hat{\Psi}$ is the modular on the Musielak-Orlicz space $L_{\hat{\psi}} = \hat{L}_{\psi}$ and $v: X \to L_{\hat{\psi}}$ is the linear operator such that, for each $x \in X$, v(x) is represented by $(T(b_k \otimes x))_{k=1}^{\infty}$.

We use then the following:

LEMMA 5. Let L_{ψ} be a Musielak-Orlicz space with modular Ψ . Let \mathscr{G} be the order ideal in L_{ψ} formed by those elements g for which

$$\sup_{\beta>0}\frac{1}{\beta^p}\Psi(\beta g)<\infty;$$

Let \mathscr{G}_c be the subset of \mathscr{G} formed by the elements g having constant ratio $(1/\beta^p)\Psi(\beta g)$.

There exists a lattice homomorphism h from \mathscr{G} into a L_p -space such that for any $g \in \mathscr{G}_c$, and $\beta > 0$:

$$\|h(g)\|_{L_p}^p = \frac{1}{\beta^p} \Psi(\beta g).$$

PROOF OF LEMMA 5. For each $g \in \mathcal{G}$, set:

$$\theta(g) = \lim_{\Lambda, \#} \frac{1}{2 \log \Lambda} \int_{1/\Lambda}^{\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}}$$

where \mathcal{U} is any nontrivial ultrafilter finer than the filter of neighborhoods of $+\infty$ in \mathbf{R}_+ .

 θ is nondecreasing and additive on disjoint elements of \mathscr{G} . Moreover it is homogeneous (of degree p). For, if $\rho \ge 1$:

$$\theta(\rho g) = \lim_{\Lambda,\mathscr{U}} \frac{1}{2\log\Lambda} \int_{1/\Lambda}^{\Lambda} \Psi(\lambda \rho g) \frac{d\lambda}{\lambda^{p+1}}$$
$$= \rho^{p} \lim_{\Lambda,\mathscr{U}} \frac{1}{2\log\Lambda} \int_{\rho/\Lambda}^{\rho\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}}$$
$$= \rho^{p} \theta(g) - \lim_{\Lambda,\mathscr{U}} \frac{1}{2\log\Lambda} \int_{\Lambda}^{\rho\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}} - \cdots$$

$$\cdots - \lim_{\Lambda,\mathscr{U}} \frac{1}{2 \log \Lambda} \int_{1/\Lambda}^{\rho/\Lambda} \Psi(\lambda g) \frac{d\lambda}{\lambda^{p+1}} .$$

In this last expression, each integral is less than

$$\frac{\log \rho}{2\log \Lambda} \cdot \sup_{\lambda>0} \frac{\Psi(\lambda g)}{\lambda^p}$$

which converges to 0 as $\Lambda \rightarrow \infty$.

Hence the homogeneity of θ . Note that:

$$\theta(g) = \frac{1}{\beta^p} \Psi(\beta g)$$
 for each $g \in \mathscr{G}_c$ and $\beta > 0$.

It is now a standard exercise to show that $g \rightarrow \theta(g)^{1/p}$ is a seminorm on \mathscr{G} (see e.g. [K], Proof of lemma 2.1).

Let $\mathcal{N} = \{g \in \mathcal{G} : \theta(g) = 0\}$ and $E = \mathcal{G}/\mathcal{N}$: this is a normed vector lattice; its norm is a L_p norm (i.e. $|e| \land |f| = 0 \Rightarrow ||e + f||^p = ||e||^p, \forall e, f \in E$); its bidual E^{**} is therefore an L_p space ([LT2], th. l.b.2).

Coming back to the relation (2) we see that there exists $h: v(X) \rightarrow L_p(v)$ such that:

$$\forall x \in X \qquad a(x) = \| hv(x) \|_{L^{p}(v)}^{p}.$$

By (1), hv is a $||T|| ||T^{-1}||$ -embedding of X in $L_p(v)$, which proves the conclusion of Theorem 3 in this case.

3. The case $1 \leq p < 2$

Consider now a new Musielak–Orlicz function on Ω , defined by:

$$\bar{\psi}(\omega,\lambda) = \mathbf{E}_{\omega'}\psi(\omega,\lambda \,|\, Y(\omega')|)$$

where Y is a p-stable symmetric random variable (of Fourier transform $\mathbf{E}e^{itY} = e^{-|t|^p}$).

Extend $\bar{\psi}$ to the space $\bar{\Omega} = \Omega \cup \{\bar{\omega}\}$ by setting $\bar{\psi}(\bar{\omega}, t) = |t|^p$, and **P** to a measure on $\bar{\Omega}$ by giving the weight 1 to the point $\bar{\omega}$.

Recall that an application $f: X \rightarrow L$, where L is a vector lattice, is said to be of negative type iff:

$$\forall n, \quad \forall (x_i)_{i=1,\dots,n} \subset X, \quad \forall (c_i)_{i=1,\dots,n} \subset \mathbf{R}^n,$$

$$\sum_{i=1}^n c_i = 0 \Longrightarrow \sum_{i,j=1}^n c_i c_j f(x_i - x_j) \leq 0.$$

LEMMA 6. If $l_p(X)$ embeds in L_{ψ} , then there exists an application $\overline{A}: X \to L_{\psi}^+(\overline{\Omega})$ such that:

- (i) \overline{A} is homogeneous of degree 1,
- (ii) $\overline{A}^{p}: X \to L_{0}^{+}$ is of negative type,
- (iii) for all x_1, \ldots, x_n in X:

$$\|T^{-1}\|^{-1} \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{1/p} \leq \left\|\left(\sum_{i=1}^{n} \bar{A}(x_{i})^{p}\right)^{1/p}\right\|_{\psi} \leq \|T\| \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{1/p}$$

PROOF. Lemma 4 provides now two maps:

$$a: X \to \mathbf{R}_+, \qquad A: X \to L_0$$

such that, μ^x being the random probability distribution of Fourier transform $\hat{\mu}_{\omega}^x(t) = e^{-A(x;\omega)^p |t|^p}$, we have:

$$\forall \lambda > 0, \qquad \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = \mathbf{E}_{\omega} \int \psi(\omega, |t|) d\mu_{\omega}^x(t) + a(x)^p \lambda^p.$$

Let $\bar{A}(x, \omega) = A(x, \omega)$ and $\bar{A}(x, \bar{\omega}) = a(x)$. We have clearly:

$$\forall \lambda > 0, \quad \forall x \in X: \lim_{k \to \infty} \Psi(\lambda T(b_k \otimes x)) = \bar{\Psi}(\lambda \bar{A}(x)).$$

As $\tau(x) = (\mu^x, a(x)\lambda^p)$ we have $*_i \tau(x_i) = (*_i \mu^{x_i}, (\Sigma_i a(x_i)), \lambda^p)$. Noticing that $*_i \mu^{x_i}$ has Fourier transform $\exp(-(\Sigma_i A(x_i)^p)|t|^p)$ we obtain more generally, for all $x_1, \ldots, x_n \in X$:

$$\forall \lambda > 0, \quad \lim_{k_1 \to \infty} \cdots \lim_{k_n \to \infty} \Psi\left(\lambda \sum_{j=1}^n T(b_{k_j} \otimes x_j)\right) = \bar{\Psi}\left(\left(\sum_{j=1}^n \bar{A}(x_j)^p\right)^{1/p}\right)$$

which implies in particular the assertion (iii) of Lemma 6.

Assertion (i) is a consequence of the fact that $\tau(\alpha, x) = \alpha, \tau(x)$. To check assertion (ii) we note that (see (ii) of Corollary 2):

$$\forall t, \qquad e^{iT(b_k \otimes x)t} \xrightarrow[k \to \infty]{\sigma(L_{\infty}, L_1)} e^{-A(x)^{p_t p}}$$

thus the map $x \to e^{-A(x)^p}$, $X \to L_{\infty}$ is positive definite (as the w*limit of positive definite functions); i.e. the map $x \to A(x)^p$ is of negative type. On the other hand (see (iii) of Corollary 2) we have:

$$\lim_{M\to\infty} \lim_{k\to\infty} (\lambda T(b_k\otimes x))\mathbf{1}_{|T(b_k\otimes x)|>M} = a(x)^p \lambda^p.$$

As in subsection 2, let us introduce an ultrapower $L_{\psi} = L_{\psi}^{N}/\mathcal{U} = L_{\psi}$ and the linear operator $v: X \to L_{\psi}, x \to (T(b_k \otimes x))_k$. Consider in L_{ψ} the band defined by sequences $(f_k)_k$ of functions in L_{ψ} whose support tends to 0 measure. Let P be the associated band projection. Then the preceding relation is interpreted as:

$$\Psi(\lambda Pv(x)) = a(x)^{p}\lambda^{p} \qquad (\forall x \in X, \forall \lambda \in \mathbf{R}_{+}).$$

Now the same proof as in subsection 2 provides an operator $h: Pv(X) \to L_p(v)$ such that $a(x) = \| h Pv(x) \|_{L_p(v)} \ (\forall x \in X)$; thus $x \to a(x)^p$ is a function of negative type (see [BDCK]).

Note that in the preceding we could obtain a very degenerate Orlicz function $\bar{\psi}_{\omega}$, i.e. $\bar{\psi}(\omega, t) = +\infty$ ($\forall t > 0$). However it does not happen for ω in the essential union S of the supports of $\bar{A}(x)$, $x \in X$. On S the Musielak-Orlicz function $\bar{\psi}$ is, up to equivalence, p-concave. For we have the following:

LEMMA 7. Let $1 \le p < 2$ and Y be a p-stable random variable normalized in $L_{p,\infty}$. If ψ is a moderate Orlicz function then:

$$\bar{\psi}(\lambda) = \mathbf{E}\psi(\lambda Y) \sim \lambda^p \int_{\lambda}^{\infty} \psi'(u) \ \frac{du}{u^p}$$

(with absolute equivalence constants).

PROOF OF LEMMA 7. We split:

(3)
$$\mathbf{E}\psi(\lambda Y) = \mathbf{E}\psi(\lambda Y \mathbf{1}_{|Y| \le 1}) + \mathbf{E}\psi(\lambda Y \mathbf{1}_{|Y| > 1}).$$

The first term is smaller than $\psi(\lambda)$. For the second we have:

$$\mathbf{E}\psi(\lambda Y \mathbf{1}_{|Y|>1}) = \psi(\lambda)\mathbf{P}(|Y|>1) + \zeta(\lambda)$$

with

$$\zeta(\lambda) = \int_{\psi(\lambda)}^{\infty} \mathbf{P}[\psi(\lambda Y) \ge u] du = \int_{\psi(\lambda)}^{\infty} \mathbf{P}[\lambda Y \ge \psi^{-1}(u)] du$$
$$= \int_{\lambda}^{\infty} \mathbf{P}[\lambda Y \ge t] \psi'(t) dt \sim \int_{\lambda}^{\infty} \frac{\lambda^{p}}{t^{p}} \psi'(t) dt,$$

the last equivalence resulting from standard asymptotical estimation of *p*-stable distribution.

On the other hand, as $t\psi'(t) \ge \psi(t)$ we have:

$$\lambda^{p} \int_{\lambda}^{\infty} \psi'(t) \ \frac{dt}{t^{p}} \ge \lambda^{p} \int_{\lambda}^{\infty} \psi(t) \ \frac{dt}{t^{p+1}} = \int_{1}^{\infty} \psi(\lambda s) \ \frac{ds}{s^{p+1}} \ge \psi(\lambda) \int_{1}^{\infty} \frac{ds}{s^{p+1}} \ .$$

Thus $\zeta(\lambda) \gtrsim \psi(\lambda)$ (up to a constant factor).

So if $\bar{\psi}(\lambda) < \infty$ then $\bar{\psi}(\lambda)/\lambda^p$ is equivalent to a decreasing function; it is then well known that $\bar{\psi}$ is equivalent to a (not necessarily normalized) *p*-concave Orlicz function, with absolute equivalence constants (see [BDC]). So our preceding Musielak-Orlicz space L_{ψ} is in fact *p*-concave.

END OF THE PROOF OF THEOREM 3. We apply to the (nonlinear, but homogeneous) operator $\overline{A}: X \to L_{\psi}(\overline{\Omega})$ the same argument as in the proof of Krivine's factorization theorem ([LT 2], th. 1.d.11 or [Kr]) to obtain an L_1 norm on the lattice \mathscr{F} generated by the elements $\overline{A}(x)^p$, $x \in X$ in L_{ψ} , such that:

$$\forall x \in X \qquad \| \tilde{A}(x)^{p} \|_{1} \leq \| T \|^{p} \| x \|^{p},$$

$$\forall \xi \in \mathscr{F} \qquad \| \xi \|_{1} \geq \frac{1}{c_{p}(\bar{\psi})^{p}} \| |\xi|^{1/p} \|_{\bar{\psi}}^{p}$$

where $c_p(\bar{\psi})$ is the *p*-concavity constant of the lattice L_{ψ} . Thus

$$\|\bar{A}(x)^{p}\|_{1} \ge \frac{1}{c_{p}(\bar{\psi})^{p} \|T^{-1}\|^{p}} \|x\|^{p} \quad (\forall x \in X).$$

As the map $x \to \overline{A}(x)^p$ is of negative type $(X \to L_{\psi})$, the same is true for the map $x \to || \overline{A}(x)^p ||_1$. Thus $x \to || x ||^p$ is C_1^p equivalent to a negative type function $(C_1 = C \cdot c_p(\overline{\psi}))$. By the isomorphic version of a theorem of Bretagnolle, Dacunha-Castelle and Krivine (Lemma 8 below) X is C_1 -isomorphic to a subspace of L_p .

For the sake of completeness, we state the following lemma, which is a slight modification of th. 6.1 of [AMM].

LEMMA 8. Let X be a normed space; suppose that the map $x \to ||x||^p$ is C^p equivalent to a negative type function $x \to f(x)$. Then X C-embeds in L_p .

PROOF. Note that $x \rightarrow e^{-f(x)}$ is positive definite and that, for all q < p:

$$||x||^q \sim_{C^q} K_q \int_0^\infty (1 - e^{-f(tx)}) \frac{dt}{t^{q+1}}.$$

By [AMM], lemma 4.2, there is a continuous linear operator U: $X \rightarrow L_0(\Omega', \mathcal{A}', \mathbf{P}')$ such that:

$$e^{-f(tx)} = \int_{\Omega'} \exp(it Ux(\omega')) d\mathbf{P}'(\omega')$$

and we obtain:

$$\int_0^\infty (1-e^{-f(tx)}) \frac{dt}{t^{q+1}} = K'_q \int_\Omega |Ux(\omega)|^q d\mathbf{P}'(\omega')$$

Thus X is $C^{q/p}$ embeddable in L_q , for each q < p.

III. The case p = 2

In this case the preceding Musielak–Orlicz functions ψ and $\bar{\psi}$ are equivalent. For we can suppose $\psi(t)/t^q$ decreasing (for a $q < \infty$) and thus (G being a L_2 -normalized gaussian random variable)

$$C'_{a}\psi(\lambda) \leq \tilde{\psi}(\lambda) = \mathbf{E}_{\omega'}\psi(\lambda G(\omega')) \leq C_{a}\psi(\lambda)$$

with $C_q = \mathbf{E}(|G| \vee |G|^q)$ and $C'_q = \mathbf{E}(|G| \wedge |G|^q)$.

The proof of §II, subsection 3 works if ψ is 2-concave; then L_{ψ} is a subspace of L_1 (by [BDC]) and this case was already known ([M]). It works as well if ψ is 2-convex. We obtain therefore:

PROPOSITION 9. If $l_2(X)$ is *C*-finitely representable into a 2-convex Orlicz space L_{φ} , then X is K. $C_2(\varphi)$. C isomorphic to an Hilbert space $(C_2(\varphi)$ being the 2-convexity constant of L_{φ}).

We leave as open the question if this result can be extended to general Orlicz spaces. We will only show that X is necessarily of type 2^- and cotype 2^+ (as a consequence of Corollary 12 below).

However we can settle the problem when X is supposed to have 1.u.st (in the sense of [DPR]).

THEOREM 10. If X is a Banach space with local unconditional structure such that $l_2(X)$ is C-finitely representable into an Orlicz space L_{φ} (not containing c_0) then X is (isomorphic to) an Hilbert space.

Y. RAYNAUD

PROOF. We will only sketch the proof, which is very similar to that of Theorem 3.

As in [K] we may suppose w.l.o.g. that X has an unconditional basis $(f_n)_{n=1}^{\infty}$. If $l_2(X)$ embeds in L_{ψ} , then (as a consequence of Maurey-Khintchine inequalities, see [LT2], th. 1.d.6) it embeds as a sublattice in $L_{\psi}(l_2)$. Let $Y = X_{1/2}$ be the (*a priori* quasi-normed) lattice defined by:

$$\| \Sigma a_n f_n \|_{Y} = \| \Sigma | a_n |^{1/2} f_n \|_{X}^2.$$

Let Y_+ be the positive cone of Y (with respect to $(f_n)_{n=1}^{\infty}$) and $\zeta = \psi_{1/2}$ the Musielak-Orlicz function defined by:

$$\zeta(t)=\psi(\sqrt{t}).$$

We have then clearly an embedding $S: l_1^+(Y_+) \hookrightarrow L_{\zeta}^+$ which is positively linear (i.e. $S(\alpha u + \beta v) = \alpha S(u) + \beta S(v)$ for all positive reals α, β and elements u, v of $l_1^+(Y_+)$) and verifies:

$$A || T^{-1} ||^{-1} || u || \le || Su || \le B || T || || u ||$$

(*T* being the given embedding of $l_2(X)$ in L_{ψ} and constants *A*, *B* depending only on the *q*-concavity of L_{ψ} , for some $q < \infty$).

To ζ we associate the space S_{ζ}^+ of the pairs (μ, f) , where μ is a positive random probability distribution verifying $Z(\mu) := \mathbb{E} \int \zeta(|t|) d\mu_{\omega}(t) < \infty$, and f a generalized $\frac{1}{2}$ -convex Orlicz function satisfying Δ_2 conditions with fixed constant K.

Using an adapted version of Aldous theorem (Proposition 11 below) and proceeding as in §II, subsection 1, we see that S induces an application $Y_+ \rightarrow S_{\zeta}^+$ which satisfies:

- (i) for all $y \in Y_+$, $\sigma(y)$ is a 1-stable element of S_{ζ}^+ (i.e. of the form $(\delta_A, a\lambda)$),
- (ii) $\sigma(y) = \lim_{k \to \infty} S(b_k \otimes y)$ where $(b_k)_k$ is a normalized sequence of disjoint blocks in l_+^1 ,
- (iii) for all $y_1, \ldots, y_n \in Y_+$,

$$A \parallel T^{-1} \parallel^{-1} \sum_{i=1}^{n} \parallel y_i \parallel \leq \parallel^{n} \star \sigma(y_i) \parallel \leq B \parallel T \parallel \sum_{i=1}^{n} \parallel y_i \parallel.$$

So we obtain applications $A: Y \rightarrow L_{\zeta}^+$ and $a: Y \rightarrow \mathbf{R}_+$ such that:

 $|| y || \sim || \sigma(y) || \sim || A(y) ||_{\zeta} + a(y).$

As in §II, subsection 2 we have $a(y) = || u(y) ||_{L_1}$ for a certain positively linear

operator $u: Y_+ \to L_1^+(v)$. Thus $a: Y_+ \to \mathbf{R}_+$ is a positively linear map. On the other hand we have:

$$\forall y \in Y_+ \qquad S(b_k \otimes y) \xrightarrow[k \to \infty]{L_0} A(y).$$

This is a consequence of the coincidence of the w.m. and s.m. topologies at degenerate random measures (see [A], lemma 2.14). Thus the map $y \rightarrow A(y)$ is positively linear.

Finally the point (iii) before can be reformulated as:

$$\forall y_1, \dots, y_n \in Y,$$

$$A \parallel T^{-1} \parallel^{-1} \sum_i \parallel y_i \parallel \leq \left\| \sum_i A(y_i) \right\|_{\zeta} + \sum_i a(y_i) \leq B \parallel T \parallel \sum_i \parallel y_i \parallel$$

where the central term can be written as:

$$\left\|A\left(\sum_{i} y_{i}\right)\right\|_{\zeta} + a\left(\sum_{i} y_{i}\right).$$

Now if $y = \sum_i \alpha_i f_i \in Y_+$, setting $y_i = \alpha_i f_i$ we obtain:

$$|| y ||_{Y_+} \sim || A(y) ||_{\zeta} + a(y) \sim \Sigma |\alpha_i|.$$

Thus $Y_+ \sim l_1^+$ and therefore $X \sim l_2$.

In the preceding proof we made use of the following proposition. By positive probability distribution we mean a probability on \mathbf{R}_+ . We note

$$|\lambda|_{1/2} = \int_0^\infty |t|^{1/2} d\lambda(t).$$

PROPOSITION 11. Let *C* be a class of random positive probability distributions such that:

- (i) $\forall \mu \in \mathscr{C}, \mathbf{E} | \mu |_{1/2} < \infty$,
- (ii) *C* is closed under operations of scaling and convolution,
- (iii) *C* is w.m. closed,

(iv) $if(\mu_n)_n \subseteq \mathscr{C} and \mu_n \xrightarrow[n \to \infty]{w.m.} \mu then \mathbf{E} |\mu_n|_{1/2} \xrightarrow[n \to \infty]{w.m.} \mathbf{E} |\mu|_{1/2}.$

Then \mathscr{C} contains a p-stable positive random probability distribution for some $\frac{1}{2} .$

PROOF. To each probability μ on \mathbf{R}_+ we associate the probability $\tilde{\mu}$ on \mathbf{R} , whose Fourier transform is:

(4)
$$\hat{\mu}(t) = \mathscr{L}\mu(t^2)$$

where $\mathscr{L}\mu$ is the Laplace transform of μ .

Recall that if μ is the probability distribution of a random variable X, then $\tilde{\mu}$ is the probability distribution of $\sqrt{2} \cdot X^{1/2} \otimes G$, G being a standard gaussian variable.

To \mathscr{C} is associated a class $\check{\mathscr{C}}$ of random measures on **R**, which is easily seen to be a *C*-class in Aldous' terminology.

Thus $\tilde{\mathscr{C}}$ contains a *q*-stable random measure $\lambda = \tilde{\mu}_0$; using (4) it is clear that μ_0 is a *q*/2-stable positive random probability distribution, belonging to \mathscr{C} .

COROLLARY 12. If $l_p(l_q)$ is finitely (crudely) representable in an Orlicz space (not containing c_0) then $p \leq q \leq 2$ or (if p > 2) $q \in \{2, p\}$.

We will now make use of the following fact, due to J. L. Krivine and B. Maurey (see [R] for a proof).

FACT. If E is a stable infinite dimensional Banach space which contains l_q^n uniformly, then $(\bigoplus_{n=1}^{\infty} l_q^n)_{l_q}$ embeds in E (for some $1 \leq p < \infty$).

We refer to [KM] for the definition of stable Banach spaces and recall that Orlicz spaces not containing c_0 are stable ([Ga]).

COROLLARY 13. Let q > 2. If a subspace E of an Orlicz space (not containing c_0) contains l_q^n uniformly, then E contains l_q .

For by Corollary 12, if $l_p(l_q)$, q > 2 is finitely representable in an Orlicz space, then p = q.

COROLLARY 14. Let E be an infinite dimensional subspace of an Orlicz space (not containing c_0); set:

 $p(E) = \sup \{ p : E \text{ is of type } p \}$ and $q(E) = \inf \{ q : E \text{ is of cotype } q \}.$

Then E contains almost isometrically l_p for $p \in \{p(E), q(E)\} \setminus \{2\}$ (and l_2 if p(E) = q(E) = 2).

PROOF. By Krivine–Maurey–Pisier's theorem ([MS], th. 13.2) E contains $l_{p(E)}^n$ and $l_{q(E)}^n$ uniformly. Thus E contains $(\bigoplus_{n=1}^{\infty} l_{p(E)}^n)_{l_p}$ and $(\bigoplus_{n=1}^{\infty} l_{q(E)}^n)_{l_q}$, and by Corollary 12 we have $p \leq p(E)$ if p(E) < 2, and q = q(E) if q(E) > 2.

References

[A] D. Aldous, Subspaces of L^1 via random measures, Trans. Am. Math. Soc. 267 (1981), 445–463.

[AMM] I. Aharoni, B. Maurey and B. S. Mityagin, Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces, Isr. J. Math. 52 (1985), 251-265.

[BDC] J. Bretagnolle and D. Dacunha-Castelle, Applications de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans les espaces L^p , Ann. Sci. Ec. Norm. Sup. 4° série, 2 (1969), 437-480.

[BDCK] J. Bretagnolle, D. Dacunha-Castelle and J. J. Krivine, *Lois stables et espaces* L^{p} , Ann. Inst. Henri Poincaré, Sect. B (1966), 231–259.

[BeR] I. Berkes and H. P. Rosenthal, Almost exchangeable sequences of random variables, Z. Wahrscheinlichkeitstheor. Verw. Geb. 70 (1985), 473-507.

[DPR] E. Dubinski, A. Pelczynski and H. P. Rosenthal, On Banach spaces X for which $\Pi_2(\mathscr{L}_{\infty}, X) = B(\mathscr{L}_{\infty}, X)$, Studia Math. 44 (1972), 617–648.

[G] S. Guerre, Sur les sous-espaces de L^p , Séminaire d'Analyse Fonctionnelle, Université Paris 7, 1983-84.

[Ga] D. J. H. Garling, Stable Banach spaces, random measures and Orlicz function spaces, in Probability Measures on Groups, Lecture Notes in Math. 928, Springer-Verlag, Berlin, 1982.

[GL] S. Guerre and M. Lévy, *Espaces* l^p dans les sous-espaces de L^1 , Trans. Am. Math. Soc. **279** (1983), 611–616.

[HLR] R. G. Haydon, M. Lévy and Y. Raynaud, Randomly normed spaces, preprint.

[JMST] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces*, Am. Math. Soc. Memoirs **19** (1979), 217.

[K] N. Kalton, Banach spaces embedding into L₀, Isr. J. Math. 52 (1985), 305-319.

[Kr] J. L. Krivine, *Théorèmes de factorisation dans les espaces réticulés*, Séminaire Maurey-Schwartz 1973-74, exposé 22, Ecole Polytechnique, Paris.

[KM] J. L. Krivine and B. Maurey, *Espaces de Banach stables*, Isr. J. Math. 39 (1981), 273-295.

[LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Springer-Verlag, Berlin, 1977.

[LT2] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function Spaces, Springer-Verlag, Berlin, 1979.

[M] B. Maurey, Oral communication.

[MS] V. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. No. 1200, Springer-Verlag, Berlin, 1986.

[Mu] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. No. 1034, Springer-Verlag, Berlin, 1983.

[R] Y. Raynaud, Sur les sous-espaces de $L^{p}(L^{q})$, Séminaire de Géométrie des Espaces de Banach, Universités Paris 6-7, 1984-85.

[R2] Y. Raynaud, Finie repésentabilité de $l^p(X)$ dans les espaces d'Orlicz, C.R. Acad. Sci. Paris 304, Série I (1987), 331-334.

[R3] Y. Raynaud, Almost isometric methods in some isomorphic embedding problems, Proceedings of the 1987 Iowa Workshop on Banach Space Theory, Contemporary Math. 85, Am. Math. Soc., 1989.

[W] W. Wnuk, Representations of Orlicz lattices, Diss. Math. 235 (1984).