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ABSTRACT 

We show that if lp(X), p ~ 2, is finitely crudely representable in an Orlicz 
space L~ (which does not contain Co) then the Banach space X is isomorphic to 
a subspace of L~. The same remains true for p = 2 when L~ is 2-concave or 
2-convex, or if X has local unconditional structure. We extend a theorem of 
Guerre and Levy to Orlicz function spaces. 

Introduction 

Let X be a Banach space and 1 ~ p < 2. It was proved by N. Kal ton ([K]) 

that  i f  lp(X) isomorphical ly embeds into L0 then X embeds into Lp. The same 

remains true for p = 2 as was shown by B. Maurey  ([M]). Here  we want to give 

an analogous s ta tement  for an Orlicz space L ,  instead o f  L0. We consider only 

no rmed  Orlicz spaces (i.e. associated to a convex Orlicz function) although the 

results easily extend to the quas inormed case. 

In the frame o f  Orlicz spaces, it is more  natural  to take as hypothesis  that 

lp(X) is finitely crudely representable in L~ (cf. [ JMST],  p. 170 for a definition), 

which is equivalent  to say that  it is C-isomorphical ly embeddable  in some 

ul t rapower  o f  L ,  (for some C < m). 

Now we suppose 1 < p < ~ ,  p ~ 2 and obtain that X embeds in Lp. For  

p = 2, we have to suppose moreover  the Orlicz space L~ to be 2-concave (hence 

embeddable  in L1) or 2-convex. This restriction can be avoided when X has 

local uncondi t ional  structure. As an applicat ion we give an extension to Orlicz 

spaces o f  a result o f  S. Guerre  and M. Lrvy  (see [GL]), concerning lp spaces in 
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subspaces of L~: an infinite dimensional subspace E of L~ contains lp(e) (resp. 
lq(e)) when p(E) (resp. q(E)), the g.l.b. (resp. 1.u.b.) of type (resp. cotype) 
exponents of E,  is different from 2. See also [R] for a less-refined version of this 
last result. 

For p > 2 these results were announced in [R2]. A preliminary and shor- 
tened version of this work was given also in [R3]. 

Let us now recall some definitions concerning Musielak-Oflicz spaces 
(cf. [Mu]). Let (f~, ~¢,/~) be a measure space. A Musielak-Orlicz function is a 
measurable function ~, : f~ X R+ ---- R+ with partial functions ~'o~ = ~u(o~,. ) 
being Orlicz. ForfEL0(f~) define the "modular": 

~ ( f )  = ,fa~ ~,(w, I f(og) I )d#(og). 

Then II fll~ = inf (a  : W(f/a)  "=" 1) and the Musielak-Orlicz space is L~, = 
{ f~Lo / I I  f < oo). Now if ¢/is uniformly moderate, i.e. 

~u(og, 2t) 
Ess sup sup - -  < ~ ,  

o9 t ~u(og, t) 

then II fl[~ is defined by vd(f/II fll ) = 1. 
If(p is a moderate Orlicz function (supt(~(2t)/~o(t)) < oo) then ultrapowers of  

L~(fL ~¢,/z) are Musielak-Orlicz spaces L~,(~, ~ , / ] )  (associated to an uni- 
formly moderate M.-O. function and a "bigger" measure space): see e.g. [W] or 
[HLR]. So the finite representability of lp(X) in L~ is equivalent to its embedd- 
ability in L~,(~, ~¢,/~). I f × i s  assumed to be separable, then (~, ~¢,/~) may be 
supposed a-finite, in fact (using a change of density) a probability space. 

I. lp sequences in a Musielak-Orlicz space L~, (~,  ~¢, P) 

As we will be concerned with the asymptotic properties of such sequences, 
we will make use of the extension S v, of the space of random measures 
introduced (for Orlicz spaces) by Garling ([Ga]). Let N~, be the set of  random 
probability measures ¢t on (f2, ~,~¢, P) such that: 

• (/z) "= E f ~(o9, I tl)d#,o(t) < co. 
J R  

Let (gKbe the set of K- moderate Orlicz func t ionsf  (SuPt>o(f(2t)/f(t)) < K). N~, 
is equipped with the w.m. topology (see [Ga], [A]) and Cr with the topology of  
uniform convergence on compact sets. Then S~, = N~ × ¢K is equipped with 
the (metrizable) topology such that: 
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a, = (/t,, f , )  , a = ( / ~ , f )  i f f # , - 5 - ~ / 2  and 
n ~ o o  

(where %(2)  = E f ~(co, it lt [)d/z,o(t)). 

Recall that S~, is locally compact (i.e. the sets ( a = ( l t ,  f )ES~ , ,  
u?(/t) + f(1) < C} are compact) and there is a natural homeomorphic embed- 

ding i of L~ in S~,: i(x) = (fix, 0), where (~x),o = fix~,o) is the evaluation measure 
at the point x(o)). In particular if i (x ,)  ~o~' a = (¢t, f )  then for each x ~L~,: 

W(it(x + x,)) , ~  E f q/(co, it [x(og) + t l )d~,o(t) + f(it) 

which allows one to calculate t(x)  = lim,_~ [I x + xn 11, the "type" defined by 
(x,),=l ~ (in the sense of [KM]): see [Ga], th. 36. 

On S~, are defined the operations of scaling and convolution: 

• I f a  E R  and a = (~t, f )ES~ ,  then a .  ~ = (SAP, Saf)  where Sap is the image 
of the random measure/~ by the scaling t ---" at; and Saf(t) = f ( [a  [ t). 

• I f a  = (/~, f )  and T = (v, g) then a • r = (/t .v ,  f +  g). 
If a ES~, let K~,(a) be the closure of {a} under the scaling and convolution 

operations in S~,. Let/('~,(a) be its (topological) closure in S~,. 
By a p-stable element of S~, we mean a couple (¢t , f)  where f ( t ) - - -apt  p 

( a ~ R + )  and /t is a random p-stable symmetric probability distribution 
(fi,o(t) = e-AP(~°)tP) when p =< 2;/z is the constant g0 when p > 2. 

A p-stable element is said to be non-trivial if it is distinct from the "zero- 
element" 

0 = (fo, 0). 

The following proposition is merely an adaptation to the Orlicz setting of the 
result of Aldous ([A], th. 3.10) or Krivine-Maurey ([KM], th. IV.2). 

PROPOSITION 1. I f  a ~ S~ \ i(L~,) then I(~,(a) contains a nontrivial p-stable 
element ( for  a certain p E[1, oo[). 

PROOF. 1 st Case. Suppose that a E (gK, that is a = (g0, f ) , f ~  (gK. Then by 

[LT1], th. 4a9 and 4a8, there exist reals (a~)i = 1,...,N~, k = 1,... and a 4:0 such that 

the functions fk • fk(2) = zN~ l f(ita/k) converge (in (gK) to f , ( 2 ) =  a Pit P. Then 

Uk 

fk)  = * a .6 
i = l  
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belongs to K~,(a) and converges to o~ = (do, f~) which is a p-stable element 

of  S~,. 
2nd Case. Suppose/('~,(a) N (gK ~ (0}. Then i f z  ~/(~,(a) N C/c,/('~,(r) con- 

tains a p-stable element and is contained in/(~,(a). 
3rd Case. Suppose /(~,(a)A (9~: = (0). I f  a = ( # , f ) ,  then (by Aldous 

theorem) there exist reals (a/k),~ = ~....,N,., = L... such that:  

Nk 
w,m. 

i ~ l  

a random p-stable probability measure (note that 

I.l:=E f f, >1 

< 1 + E f,, ~u(e), I t[)d~¢~(t) 
>1 

_-< 1 + ud(/~) < ~ ,  

as we suppose gt(m, 1) = 1) and moreover  such that 

I~kl k~2 1. 

Then  I/t~ l --- 1 but  it is a priori not clear that #~ E N~. 

Let 11 #k I[~, be the real such that W(Sl/IE,~II ./z) = 1 and a~ = a~/11/tk I1, 

Nk 

/~ = * so,~./t. 
i = l  

Then W(/~f,) = 1. 
We claim that supg Zi~ 1 f(oT~ k) < O0. I f  not, there would exist reals 7k with 

ykg---2--~oC and 2 f k--~ " 
i = 1  

Set: 

Ol ittk___ , = * s~rq~', =svMlk,'" f"k = Y~ s~r~f; a"k = (J~"k, f"~). 
~k i = t  i =  I 

Then ~(/t '~) k-~' 0 and (f~)k is relatively compact  in (gK. Thus we would have 

I(~,(a) 0 (gr v~ {0} (containing any limit point of  (a"k)). 
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We claim now that SUPk l[ l[ < oo. If not, then l/t;, I ~ O, and thus 
/t~ ,.m.O. Up to extraction, we could suppose: 

i ~ l  

thus a~(/t;,, f;~)-~ (0, f "  + go~)~ tgx, and again/(~,(a) N (gK ~ {0}. 
Now, by local compactness of S,, the sequence ak = (/Zk, fk) is relatively 

compact in S,; clearly any of its limit points is of the form (/z~, h~), for some 
h~ E Cr (/zoo being the preceding p-stable random probability). Note that 

/~® ÷ ~0. 
By the 1st step, /('~,(0, ho~) contains a q-stable element (0, k). Suppose 

k limk-o~ u~ = Zu~ = gi=l sp~h~. Ifb~ i=l 1/~ I"-----" oo, then 
k ~ a o  

- -  o)  
i = 1 bk 

which is a non-trivial p-stable element in R~,(a). If not, suppose 

(Mk )l/p 

i = !  

then: 
*  ikcr  k---7 (sj , k) = 

By considering (1/n '/") *,"=1 0~, we see that g~,(a) N CK ¢ {0} impliesp _-_ q; if 
p > q then, again, g~,(a) contains (/1~, 0); i fp = q it contains (SbJZ~, k) which 
is a p-stable element. • 

X ct~ COROLLARY 2. Let ( ,),=t be a lp-sequence in the Musielak-Orlicz space 
L~,(f~, a¢, P). There exist a real a > O, and ( i f  p <= 2) a random p-stable 
symmetric probability distribution It = (l~o,)o,, and a sequence o f  normalized 
disjoint blocks Yk = ZiULl a~x,, such that: 

(i) For each x ~ L~,, 

~(2(x +Yk)) = E ~" ~,(o~, 2 Ix(w) + t l)dlzo,(t) + lim ap2 p 
J 

(ii)/ t  is the limit conditional distribution o f  (x,), (in the terminology o f  

[BeRI). 
(iii) aV2 v = limu_~ limk_® W(2 "Yk" ljykl >u). 
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The second condition is equivalent to: 

V t E R ,  exp(itxn( )) ~(L,L,) • . - ~  , / ~ ( . ) ( t ) .  

PROOF. We apply Proposition 1 to any limit point of  (i(x,)), in Sv,. We 

obtain disjoint blocks (Yk)k with i ( Y k ) ~  a, a q-stable element of  S~. But 

then as in the L~ case ([A]), the subspace span(Yk)k contains lq, thus q = p. The 
points (i) to (iii) follow then immediately from [Ga]. • 

I I .  T h e  m a i n  r e s u l t  

We state now our main result: 

THEOREM 3. Let 1 < p < oo,p :~ 2, andXbeaBanachspace;  L~an Orlicz 
space which does not contain Co. 

I f  lp(X) is C-finitely representable in L~ then X is K.C-isomorphically 
embeddable in Lp (where K = K(p)). 

In proving this theorem, we can suppose that (p is moderate on R+ and that 
X is separable. In fact we may suppose that lp(X) C-embeds in a Musielak- 

Orlicz space L~(~2, d ,  P). 

1. Representation of X in S~ 
If a E S~, a = (#, f ) ,  let us denote [I a I[ the real such that 

Note that i f (x,) ,  C L~, i(x,) ,_~  othen  ]l x, 11 ~ ]l a ] l .  

The idea of the following key lemma is essentially Maurey's one ([M]). 

LEMMA 4. Let T be an embedding oflp(X) in L~,. 
There is a map: X ~ S~,, x ~ r ( x )  such that: 
(i) for all x EX,  z(x) is a p-stable element of S~,; 
(ii) ~(x) = limk_~ T(bk ® ~:), where (bk)~=~ is a sequence of  disjoint norma- 

lized blocks on the lp basis ( fi)ced independently of  x); 
(iii) V x~ . . . . .  x, E X: 

IIT- ' I I  IIx, ll' <= . z ( x , )  < = I I T I I  Ilx, ll' 
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e ~ the natural lp basis. Then for each x E X, the PROOF. Denote by ( n)n= l  

sequence (T(e, ®x))~= l in L~, is equivalent to the lp basis. Up to extraction we 

can suppose that 

V x E X ,  i (T(e ,®x))~_~ cr(x)ES~ 

(use separability of  X and a diagonal argument to obtain this convergence for 

the same subsequence of  the/p-basis). 

Fix XoE X. By Proposit ion 1, a suitable sequence of  combinations 

ak = * aika(Xo), where E I~/kl p = 1, 
i=1 i 

converges to a p-stable r0(x0)E S~. Again, by extracting and using a diagonal 

argument, we can suppose that *i=~Nk aka(x) converges (for each x E X )  to a 

%(x) E S~,, which is however a priori not p-stable for x ¢ )Co. Note that: 

r 0 ( x , = l i m  lim . . .  lim i ( ~  a~T(e,,®Xo)), 
k ~  nl~zC nNk~°Z i 1 

i.e. to(X) is a limit of  a countable family i(T(b°®x)), where the b ° are 

normalized blocks on the l r basis, which may easily be taken disjoint. 

Fix x~ ~ X. We can now choose ,k ,k i p = 1 and: ( O g i ) i =  l,...,Nk such that Yi l a~ 

Uk 

V x E X ,  * 
i ~ 1  

-~r0(x)  ~ r , (x )  ~ S~,, 

and that rl(Xl) is a p-stable element. Note that r~(Xo) = z0(x0). 
X oo Iterating this procedure for a dense sequence ( l)t= ~ in X, and using again a 

diagonal argument we obtain (i) and (ii) of  Lemma 4; (iii) is an easy con- 

sequence of  (i) and (ii). • 

2. The case p > 2 

In this case Lemma 4 provides a map X ~ R+, x ~ a(x) such that: 

(1) II T - '  II -~ II x II ---< a(x) <= II T II II x II (VxeX) 

and a sequence (bDk of normalized disjoint blocks on the lp basis such that: 

V2 > 0, Vx EX:  lim te(XT(bk ® x ) )  = a(x)P2 p. 
k ~ c  
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This formula can be interpreted in any ul trapower L~ N = L~,/o-//by: 

(2) q~(2v(x)) = a(x)P2 p 

where qu is the modular  on tile Musielak-Orl icz space L~, = £~ and v : X ~ L~ 

is the linear operator  such that, for each x E X ,  v(x) is represented by 

(T(bk ® x))/~= 1. 

We use then the following: 

LEMMA 5. Let L~, be a Musielak-Orlicz space with modular u?. 
Let ~ be the order ideal in L~, formed by those elements g for which 

1 
sups>0 ~ 't'(/~g) < oc; 

Let ~c be the subset o f  ~ formed by the elements g having constant ratio 
(1/p~)Y(Pg). 

There exists a lattice homomorphism h from ~q into a Lp-space such that for 

any g E ~ ,  and fl > 0: 

1 ,, _ y(/~g). 
II h(g)II L, 

PROOF OF LEMMA 5. For each g E N, set: 

1 f l  A O(g) = lim ~(2g)  alp+----5 
A,~U 2 log A /A 

where ,~/z is any nontrivial ultrafilter finer than the filter o f  neighborhoods of  

+ oc in R+. 

0 is nondecreasing and addit ive on disjoint elements of  N. Moreover  it is 

homogeneous (of degree p). For, if p > 1: 

1 f A O(pg) = lim ~(2pg) 2p+--- 5 
A,~u 2 log A /A 

1 ,~fA d2 
= p P  lim ~(2g)  2p+---- ~ 

a,~u 21ogA /A 

= p P O ( g )  -- lim - -  
A,~/ 

d2 
1 a ~(2g)  2p+----- T . . . .  

2 log A 
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1 [plA d,~ 
. . . .  lim hU(2g) 2 p +~ 

a,~ 2 log A .s l/A 

In this last expression, each integral is less than 

logp u/(2g) 
- - .  sup - -  
2 logA a>0 2 p 

which converges to 0 as A ~ o¢. 

Hence the homogeneity of  0. Note that: 

1 
O(g) = 7-: ed(flg) for each g E ~c and fl > 0. 

It is now a standard exercise to show that g---, O(g) ~/; is a seminorm on 

(see e.g. [K], Proof  of  lemma 2.1). 

Let o~" = { g ~ ~ : O(g) = 0} and E = ~/~4/: this is a normed vector lattice; 

its norm is a Lp norm (i.e. I e I ^ I f l  = 0 ~ 11 e + f 1[ p = [1 e II P, v e , f E E ) ;  its 
bidual E** is therefore a n  Lp space ([LT2], th. 1.b.2). • 

Coming back to the relation (2) we see that there exists h : v ( X ) ~ L p ( v )  

such that: 

Vx X a(x) = II by(x) IIL'(v)' • 

By (1), hv is a I IT  II II T - l  I I - e m b e d d i n g  of X in Lp(v), which proves the 
conclusion of  Theorem 3 in this case. 

3. The case l ~ p < 2 

Consider now a new Musielak-Orlicz function on ~ ,  defined by: 

~(co, A) : E~, ~(o~, & I Y(w')l)  

where Y is a p-stable symmetric  random variable (of Fourier t ransform 
Ee itr = e-i,l~). 

Extend ~ to the space ~ = ~ U {6~} by setting ~(6J, t) = It I p, and P to a 

measure on ~ by giving the weight 1 to the point &. 

Recall that an application f :  X-~  L,  where L is a vector lattice, is said to be 

of  negative type iff: 

Vn,  V(xi),=, ...... C X ,  V(c~)~=~,...,, C R", 
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Ci = 0  ==~ ~ CiCjf(xi - - X j ) ~  -0 .  
i~l i,j=l 

LFMMA 6. I f  lp(X) embeds in L~,, then there exists an application d : X 
L~ ((2) such that: 

(i) d is homogeneous of  degree 1, 

(ii) AP: X---, Lg  is o f  negative type, 

(iii) for all x~, . . . , x ,  in X: 

II T - '  I1-'  II x,  II ~ =~ A(xi )  p < I1 T II II x~ II ~ . 
i 1 i 1 i = 1  

PROOF. Lemma 4 provides now two maps: 

a : X - -  R+, A : X-+Lo 

such that , / t  x being the random probabil i ty distr ibution of  Fourier  t ransform 
^X lto,(t) = e -A(x;c°)pltl~, we have: 

V 2 > 0 ,  k--~lim 'e(2T(bk®x))=E,of~,(og,ltl)d~L(t)+a(x)~,~. 
Let A(x,  o9) = A(x ,  o9) and A(x ,  oa) -= a(x). We have clearly: 

V 2 > 0 ,  V x ~ X :  lim W(2T(bk®X))=vg(2A(x)).  
k ~ c c  

As r(x) = (px, a(x)2P)  we have *i z(xi) = (*,/t  x,, (Xi a(xi)). 2P). Noticing 

that *i/t  ~, has Fourier  t ransform exp( - (X~A(x i )P) l t l  p) we obtain more 

generally, for all x t , . . . ,  x ,  E X: 

V2 > O, lim • • • lim 'T 2 T(bk, ®xj)  = • A(xj) p 
kl~OO k ~  j ~ l  j = l  

which implies in particular the assertion (iii) o f  Lemma 6. 

Assertion (i) is a consequence of  the fact that r ( a .  x)  = a .  r(x).  To check 

assertion (ii) we note that (see (ii) o f  Corollary 2): 

V t, e iT(bk®x)t cr(L~'LO ~ e -A(x)ptp 
k ~  

thus the map x -'- e-A(*)', X -"  Lo~ is posit ive definite (as the w* limit o f  posit ive 

definite functions); i.e. the map x--*A(x)  p is o f  negative type. On the other 

hand (see (iii) o f  Corollary 2) we have: 
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lim lim (2T(bk @x))llT(b~®x)l>M = a(x)P4 p. 
M--co k--co 

As in subsection 2, let us introduce an ultrapower L~, N = L~,/~1/= Lq, and 

the linear operator v: X ~ L ~ ,  x--'(T(b~,®X))k. Consider in L~, the band 

defined by sequences (fk)k of functions in L~, whose support tends to 0 

measure. Let P be the associated band projection. Then the preceding relation 

is interpreted as: 

• (4Pv(x)) = a(x)P4 p ( V x ~ X ,  V2 ~R+).  

Now the same proof as in subsection 2 provides an operator h : Pv ( X ) ~ L p  (v) 
such that a ( x ) =  II hPv(x)liLt(v) ( V x E X ) ;  thus x - - . a (x )  p is a function of 
negative type (see [BDCK]). • 

Note that in the preceding we could obtain a very degenerate Orlicz function 

#~, i.e. ~(o~, t ) =  + ov (Vt  >0 ) .  However it does not happen for a~ in the 

essential union S of the supports of.4(x),  x ~ X .  On S the Musielak-Orlicz 

function ~ is, up to equivalence, p-concave. For we have the following: 

LEMMA 7. Let 1 < p < 2 and Y be a p-stable random variable normalized 
in Lp,~. I f  ~u is a moderate Orlicz function then: 

~(4) = E~,(4Y) ~ 2 p qJ'(u) du 
RP 

(with absolute equivalence constants). 

PROOF OF LEMMA 7. W e  spl i t :  

(3) E~'(2Y) = E~(2Y l l y  I _-<1) + E ~ ( 4 Y  l l r i > l ) .  

The first term is smaller than ~,(2). For the second we have: 

E~(2Yllvl>~) = V(4)P(t Y[ > 1) + ((2) 
with 

£ £ ((2) = P[~(2Y) >_- uldu = P[2Y > ~ t - l ( u ) ] d u  
(~) (~) 

= ~'(t)dt, 

the last equivalence resulting from standard asymptotical estimation of  p- 
stable distribution. 
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On the other hand, as tq/'(t) >= ~u(t) we have: 

£ f; £ < _dt > 2  p ~u(t) dt = 
2 p ~u'(t) t p = t p+l 

Isr. J. Math.  

Thus ((2) >~ ~u(2) (up to a constant factor). • 

So if ¢/(2) < ~ then ~(2)/2 p is equivalent to a decreasing function; it is then 

well known that q/is equivalent to a (not necessarily normalized) p-concave 

Orlicz function, with absolute equivalence constants (see [BDC]). So our 

preceding Musielak-Orlicz space L~ is in fact p-concave. 

END OF THE PROOF OF THEOREM 3. We apply to the (nonlinear, but 

homogeneous) operator ~4: X--L¢,(O) the same argument as in the proof 

of  Krivine's factorization theorem ([LT 2], th. 1.d.ll  or [Kr]) to obtain 

an Ll norm on the lattice .~- generated by the elements A(x) p, x E X  in 

L~, such that: 

v x e x  IIA(x)~ Ill_-< II TIl~llxll  ~, 

1 
v 4: • ~ II ~ II, ->-- - -  II I ~ I l/~ II 

c~(~,), 

where G(~) is the p-concavity constant of the lattice L¢,. Thus 

1 
II d ( x ) ~  II, = c~(~)~ II T - l  II ~ I Ix  II ~ ( V x e X ) .  

As the map x ~ 4 ( x )  p is of negative type (X ---- L~,), the same is true for the 

map x ~  I[ "4(x) p 1If- Thus x---- II x ][P is C p equivalent to a negative type 
function (Cl = C.  cp(~)). By the isomorphic version of a theorem of 

Bretagnolle, Dacunha-Castelle and Krivine (Lemma 8 below) X is Cl-isomor- 

phic to a subspace of Lp. • 

For the sake of completeness, we state the following lemma, which is a slight 

modification of th. 6.1 of [AMM]. 

LEMMA 8. Le t  X be a n o r m e d  space; suppose  that  the m a p  x --+ [[ x [[P is C p 

equivalent  to a negative type f imc t i on  x ~ f ( x ) .  Then  X C-embeds  in Lp. 

PROOF. Note that x ~ e -jlx) is positive definite and that, for all q < p: 
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II x I1 Kq (1 - e fux)) d___L_t 
t q + l  

By [AMM], lemma 4.2, there is a continuous 

X ~ L0(~', ,d', P') such that: 

e - f u x )  = ~ exp(itUx(co'))dP'(eo') 
d O  r 

linear operator U: 

and we obtain: 

(1 - e -  ;<'x)) dt t q+l = Kq .~ ~ I Ux(~o)lqdP'(co ') 

Thus X is C q/p embeddable in Lq, for each q < p. 

III. The c a s e p = 2  

In this case the preceding Musielak-Orlicz functions ~, and ¢t are equivalent. 

For we can suppose ~u(t)/t q decreasing (for a q < or) and thus (G being a 

L2-normalized gaussian random variable) 

=< = ___< 

with Cq = E(IGI v I GI q) and C~ = E(IGI ^ [Glq). 
The proof of §II, subsection 3 works if ~t is 2-concave; then L~, is a subspace 

of L~ (by [BDC]) and this case was already known ([M]). It works as well if ~, is 
2-convex. We obtain therefore: 

PROPOSITION 9. I f  l2(X) is C-finitely representable into a 2-convex Orlicz 
space L,, then X is K.  C2(~o) . C isomorphic to an Hilbert space (C2(fp) being the 
2-convexity constant o f  L,). 

We leave as open the question if this result can be extended to general Orlicz 

spaces. We will only show that X is necessarily of  type 2-  and cotype 2 + (as a 

consequence of Corollary 12 below). 

However we can settle the problem when X is supposed to have 1 .u.st (in the 

sense of [DPR]). 

THEOREM 10. I f  X is a Banach space with local unconditional structure 

such that 12(X) is C-finitely representable into an Orlicz space L~ (not containing 
Co) then X is (isomorphic to) an Hilbert space. 
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PROOF. We will only sketch the proof, which is very similar to that of 

Theorem 3. 
As in [K] we may suppose w.l.o.g, that X has an unconditional basis (f,)~=~. 

If/2(X) embeds in L~,, then (a,; a consequence of Maurey-Khintchine inequali- 
ties, see [LT2], th. 1.d.6) it embeds as a sublattice in L~,(12). Let Y = X~n be the 

(a priori quasi-normed) lattice defined by: 

II Za,,f. lit = II Z la .  11/2f~ II 2. 

Let Y+ be the positive cone of Y (with respect to (f.)2=~) and ( = v/~/2 the 
Musielak-Orlicz function defined by: 

¢ ( t )  = 

We have then clearly an embedding S:  I~+(Y+) ~-~ L¢ + which is positively 

linear (i.e. S(au + fly) = aS(u) + flS(v) for all positive reals a, fl and elements 

u, v of I+(Y+)) and verifies: 

A II T - I l l - ' 1 1  u II --< II Su II =<-B 11 T II II u II 

(Tbeing the given embedding of 12(X) in L~ and constants A, B depending only 
on the q-concavity of L~, for some q < oo). 

To ¢ we associate the space S¢ + of the pairs (/~, f ) ,  where/z is a positive 

random probability distribution verifying ZOO := E j ((I t ] )d/xo,(t) < ~ ,  and 
f a generalized ½-convex Orlicz function satisfying A2 conditions with fixed 

constant K. 
Using an adapted version of Aldous theorem (Proposition 11 below) and 

proceeding as in §II, subsection 1, we see that S induces an application 

Y+ ~ S¢ + which satisfies: 
(i) for all y E Y+, a(y)  is a l-stable element of S f  (i.e. of  the form (dA, a2)), 
(ii) a ( y ) =  limk--~ S(bk ®y)  where (bk)k is a normalized sequence of dis- 

joint blocks in P+, 

(iii) for all y~ . . . . .  y, E Y+, 

AI[T-~[]  -~ IlY, ll ~ * a(y,)  ~ B I I T [ [  [[Y, II. 
i ~ l  i = 1  i = 1  

So we obtain applications A • Y ~ L ~  and a :  Y---- R+ such that: 

[I Y [I ~" II a(y) 11 -~ II A(y)  11¢ + a(y). 

As in §II, subsection 2 we have a(y)  = [] u(y)  IlL, for a certain positively linear 
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operator  u • Y+ ~L~-(v). Thus a • Y+ ~ R +  is a positively linear map. On the 
other  hand we have: 

L0 A(y). Vy E Y+ S(bk ®y) k----~ 

This is a consequence of  the coincidence of  the w.m. and s.m. topologies at 

degenerate random measures (see [A], lemma 2.14). Thus  the map y --- A (y)  is 

positively linear. 

Finally the point  (iii) before can be reformulated as: 

V Yl, • • •, Yn E Y, 

A l J T - ' [ ] - ' ~  IlYilJ Z Y~A(y,) +Ya(Yi)<=BHTJ[ Y~ Ilyil] 
i i ~ i i 

where the central term can be written as: 

Now i f y  = Z~ oe~f ~ Y+, setting Yi = air we obtain: 

IIY Ilr+~ I [ / ( y )  I[~ + a ( y ) - - - Z [ a , ] .  

Thus  Y+ ~ l + and therefore X ~ 12. • 

In the preceding p roof  we made use of  the following proposition. By positive 

probabil i ty distr ibution we mean a probabil i ty on R+. We note 

12 h/2 = f 0  ~ It IL/2d;t(t). 

PROPOSITION 1 1. Let ~ be a class of random positive probability distribu- 
tions such that: 

(i) V / I E ~ ,  El / . t  h / z <  ~ , 

(ii) r£ is closed under operations of scaling and convolution, 
(iii) ~ is w.m. closed, 

w . m .  

(iv) if(12.), c_ ~ a n d ~ t . ~  It then EI~,  1~2 . _ '  EI/~ I~J2. 

Then ~ contains a p-stable positive random probability distribution for some 
½<p__<l. 

PROOF. To each probabil i ty ~ on R+ we associate the probabili ty/~ on R, 
whose Fourier  t ransform is: 



212 Y. R A Y N A U D  Isr. J. Math.  

(4) h(t) = ~9°p(t 2) 

where £Pp is the Laplace transfi~rm ofp .  
Recall that if# is the probability distribution of a random variable X, then 

is the probability distribution of x/2.  X 1/2 ® G, G being a standard gaussian 

variable. 
To ~ is associated a class ~ of random measures on R, which is easily seen 

to be a C-class in Aldous' terminology. 

Thus ~ contains a q- stable random measure 2 = ¢i0; using (4) it is clear that 

P0 is a q/2-stable positive random probability distribution, belonging to ~.  • 

COROLLARY 12. I f  lp(lq) is finitely (crudely) representable in an Orlicz 
space (not containing Co) then p <-_ q <= 2 or ( i f  p > 2) qE{2,  p}. 

We will now make use of lhe following fact, due to J. L. Krivine and 
B. Maurey (see [R] for a proof). 

FACT. l f  E is a stable infinite dimensional Banach space which contains lg 
uniformly, then ( ( ~  ,~=l lg)t, embeds in E (for some 1 < p < oc). 

We refer to [KM] for the definition of stable Banach spaces and recall that 

Orlicz spaces not containing Co are stable ([Ga]). 

COROLLARY 13. Let q > 2. I f  a subspace E of  an Orlicz space (not contain- 
ing Co) contains lg uniformly, then E contains lq. 

For by Corollary 12, if lp(lq), q > 2 is finitely representable in an Orlicz 
space, then p = q. • 

COROLLARY 14. Let E be an infinite dimensional subspace of  an Orlicz 
space (not containing Co); set: 

p(E) = sup { p : E is of  type p} and q(E) = inf(q : E is of  cotype q }. 

Then E contains almost isometrically lp for p ~ { p(E), q(E)} \ (2) (and 12 iJ 
p(E) = q(E) = 2). 

PROOF. By Krivine-Maurey-Pisier 's theorem ([MS], th. 13.2) E contains 

l~(e) and l~"~e) uniformly. Thus E contains ( t~ ) ,~ l  l~(e))l, and ((~)n~__l lq"(e))t,, 
and by Corollary 12 we havep -'~_ p(E) i fp(E)  < 2, and q = q(E) i fq(E)  > 2. • 
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