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ABSTRACT 

We show that Martin's axiom for countable partial orders implies the 
existence of  a countable dense homogeneous Bernstein subset of the reals. 
Using Martin's axiom we derive a characterization of the countable dense 
homogeneous spaces among the separable metric spaces of cardinality less 
than c. Also, we show that Martin's axiom implies the existence of a subset of 
the Cantor set which is 2-dense homogeneous for every 2 < c. 

§1. Introduction 

A separable topological space X is countable dense homogeneous (or CDH) 
provided that for any two countable dense subsets A and B of X there is a 
homeomorphism f :  X ~ X such that f ( A )  = B .  This notion was introduced in 
[Be]. Fitzpatrick and Zhou [FZ] have used the continuum hypothesis to 
construct various kinds of  CDH subspaces of R. Our results are constructions 
of, and characterizations of, CDH spaces (usually subspaces of R) under the 
assumption of  Martin's axiom, or some weak form of Martin's axiom. 

Let us use the notation MA~(F), where x is an infinite cardinal and F is a 
class of  partial orders, to denote the statement that for every partial order P in 
F and every family A of x or fewer dense subsets of  P there is a A-generic filter 

on P. Similarly, let MA(F) be the statement that for every P in F and every 

family A of  fewer than c dense subsets of  P, there is a A-generic filter on P 
(where c denotes the cardinality of the continuum). Thus if F0 is the class of all 

partial orders satisfying the countable chain condition, then MA~(F0) and 

MA(F0) are just the usual versions of Martin's axiom: MA~ and MA. 
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Varying F gives axioms of differing strength. Taking F l to be the class of 
all stationarity-preserving partial orders (which properly includes all 

orders satisfying the c.c.c.), MAn,(F0 is the strong axiom called Martin's 
maximum (because F cannot be taken larger without yielding an axiom 

inconsistent with ZFC), and abbreviated MM, in [FMS]. Conversely, taking F2 

to be the class of all countable partial orders, MA(F2) is the weakening of 

Martin's axiom called MAC in [W]. We shall also consider the axiom MA(F3), 

where F3 is the class of all a-centered partial orders. (A partial order P is 

a-centered i fP  = [..) {P, : n ~ o~ } where, for each n, P, is centered: every finite 
subset of P, has a lower bound in P.) Let us abbreviate MA(F3) by MAa. MAa 
is intermediate in strength between MAC and MA. 

The weakest possible axiom of this form not provable in ZFC is MA~, ({P}), 
where P is the order for adding one Cohen real. We christen this axiom 
Martin's minimum, to be abbreviated Mm. Observe that Mm implies -~ CH, by 

the standard argument (see e.g., [K], p. 54) showing that MA~, implies 7 CH. 

(So Mm is indeed not provable in ZFC.) Also, because every non-trivial 

countable partial order contains a dense subset isomorphic to a dense subset of 

P, MAC is equivalent to MA({P}). So MAC follows from Mm + c = R2, but 
also from CH. 

We shall be using these axioms to construct auto-homeomorphisms of R and 
of the Cantor set. I f f E  V is such an auto-homeomorphism and V[G] is a 
generic extension of the universe, then we shall abuse notation by identifyingf 
with the unique extension o f f  to an auto-homeomorphism in V[G]. We freely 
assume the existence of V-generic filters on various partial orders; the reader 
who is troubled by this is inviLed to replace V[G] by a Boolean-valued model 

where necessary. 
The results of Section 3 are due to the first author. The second author 

formulated the results in Seclion 2 (the proofs are joint). Proposition 4.3 is 

due to the second author, who also accepts the blame for the terminology 
Martin's minimum. 

§2. Construction of a CDH Bernstein set 

In this section we shall use MAC to construct a CDH Bernstein subset of R. 

(A subset X of R is Bernstein if for any non-empty, perfect P _c R, both P N X 
and P - X are non-empty.) Actually, we shall do somewhat more than this. Let 

us say that a linear order (X, < ) is countable dense homogeneous provided 

that X has a countable dense subset, and for any two countable dense subsets A 



Vol. 65, 1989 MARTIN'S AXIOM 155 

and B of X there is an order-preserving (i.e., <-preserving, not just 

_-< -preserving) function f f r o m  X onto X such that f (A ) = B. Clearly such an 

(X, < ) is a CDH space under the order topology. Note, however, that i fX i s  a 

dense subset of  R and is CDH as an ordering, then for any two countable dense 

subsets A and B of X we can in fact find an order-preserving f :  R--- R with 

f (A)  = B. For, every order-preserving function whose domain and range are 

both dense in R extends uniquely to an order-automorphism of R. We shall 

find such a CDH suborder (not just subspace) X of R which is also a 

homogeneous Bernstein set. 

For any countable dense subsets A and B of R, let P(A, B) be the set of all 

finite order-preserving functions p such that dom(p)c_ A and ran(p)c_ B. 

Partially order P(A, B) by reverse inclusion. Clearly P(A, B) is countable, and 

if G is a V-generic filter on P(A, B) then U G is an order-isomorphism from A 

onto B which has a unique extension to an order-isomorphism from R onto R. 

For any group ~ of  auto-homeomorphisms of  R, and any symbol g not 

contained in (~, let (g[g] denote the group freely generated by (9 and g. (I.e., 

the only non-trivial relations in (q[g] are the relations that hold in fg.) For any 

f E  (gig] and any auto-homeomorphism g of R let fg  be the auto-homeomor- 

phism of R obtained by substituting g for every occurrence of  g in f .  

LE~MA 2.1. Let A and B be countable dense subsets of  R, and let X and 
Y be subsets o f  R with A U B c_ X and X • Y =  ~ .  Let ~9 be a group of  

auto-homeomorphisms of  R such that both X and Y are closed under every 
element off#. 

(i) Let G be a V-generic filter (where A, B, X,  Y, (~ ~ V) on P(A, B ), and let g 
be the unique order-automorphism of  R such that g ~ U G. Then for any 

element f o f  the group generated by ~ U {g}, f (X)  A Y = ~ .  
(ii) Let g be a symbol not in (g, and let f E f~[g]. For any x ~ X and y E Y let 

D (x, y, f )  be the set ofallp E P(A, B) such that for every order-automorphism g 
o f R  extending p, fg(x)  v~ y. Then D(x,  y, f )  is dense in P(A, B). 

PROOF. (i) Suppose the contrary, and work in V[G]. There must be a least n 

such that for some x E X  and y ~ Y  there is an f =  h,h,_~.. .h2h~ so that 

f ( x )  = y, where each hi is either g, g -  ~, or an element of  (#. Let x0 = x, and for 

1 < i __< n let x~ = h,h,_ ~. • • h~(x). Note that Xn = Y, and that x0, x ~ , . . . ,  x, are 

distinct, for i f / < j  and xg = xj, then h , . . .  hj+lh~.., h~(x)= y, contradicting 

minimality of  n. Also, as Y is closed under all functions in fg, we must have 

h, = g or h, = g -  1, for otherwise x, _ 1 = hn - ~h, -2" • • hi(x) E Y, again contra- 

dicting minimality of  n. 
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L e t p  E G  decide n, (i : hi = g}, (i : hi = g - l} ,  and the value in fq of  each hi 

not equal to g or g -  1, and let p 1~- "hn hn _ ~. • • hi (x) = y "  (where hi is of  course a 

name for hi). Since x .  = y ~ - Y  and Y A ( A  U B ) = ~ ,  ( x . _ ~ , x . ) q ~ p  and 

(x . ,  x .  _ 1) ~ P. Choose s., t . ,  s,,_ ,, t. _ ~ . . . .  , So, to (in that order), all elements of  

A U B, satisfying: 

(a) si < xi < ti, O < i < n.  

(b) I f / ÷ j  then [si, t,] N [sj, tj] = 25. 

(c) h,+~([si, t~]) ___ (si+~, ti+~), 0 < i < n. 

(d) I fh i+j  = g t h e n  si, t i E A .  

(e) I f  h i + l = g -  1 then s,, ti ~- B. 

( f )  I f h .  = g t h e n p  n ([s._~, t._~] × [s., t . ] ) =  ~ .  

(g) I f h .  = g - l t h e n p  N ([s., t.] X [s._,, t._~]) = ~ .  

Since p is finite, the x;'s are distinct, each hi is a homeomorphism and both A 

and B are dense, this is just a mat ter  of  choosing si and ti sufficiently close to xi. 

Now h. = g or h. = g -  1, both are order-preserving, and s. _ 1 < x ._  1 < t. _ 1, 

so h.(sn _ ,) < xn < hn(tn _ O. Choose z so that  h.(sn _ ~) < z < x . ,  and if  h. = g 

then z E B, whereas i f  h. = g -  1 then z CA.  

Now let 

p ' =  p tO {(si, hi+l(si)): i < n ,  hi+l = g }  

tO { (hi + ~ (s~), si) : i < n,  hi +~ = g -  ~ } 

tO {(t~, hi+~(t~)) : i < n  - 1, hi+ 1 = g }  

tO {(hi-,~(ti), t~): i < n  - 1, h,+l = g - l} .  

As g ( A ) = B ,  p 'C_A  X B .  As p '  is finite, p ' ~  V. As p ' _ g ,  p '  is order- 

preserving, and so p ' ~ P ( A ,  B) .  Clearly p '  < p and 

P '  I~ - "hn - lhn -2""  " h l ( x ) E [ S n - 1 ,  in--l]"" 

I f h .  = g le t  q = p '  U {(t._ 1, z)}, whereas i fh .  = g-1 let q = p '  U {(z, t ._ 0}. 

Then q __C A X B. We claim q is order-preserving. First suppose h. = g. Take 

any (u,  v ) ~ p ' ;  it suffices to show that  u < t._~ i f f v <  z. I f u  ~ [s._~, t ._l]  then 

u < t. _ 1 implies u < s. _ 1, which implies v < h.(sn _ 1), and so v < z, whereas 

t ._l  < u implies h . ( t . _ 0 <  v, which implies z < v. On the other hand, i f  

u~[ s ._~ ,  t . - l ]  then v = h . ( u ) E h . ( [ s . _ l ,  t . - l ] ) -  (s., t.), so (u, v )E  

p '  n ([s. _ 1, t. _ 1] x [s., t. ]). By (f) ,  (u, v) E p '  - p. By (b) and the definition of  

p' ,  (u, v ) =  (s._~, h . (s ._O) .  Thus u < t._~ and v < z .  This proves that  q is 

order-preserving if  h. = g; the proof  when h. = g -  ~ is similar. 

So q E P ( A , B )  (though of  course q q~G), and q < p ' < p .  But 
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q 1~-"hnhn_l-- .hl(X)~[sn, 7.]", so q [k "h. h . _ ~ ' '  " h i ( x ) < y " ,  contradicting 

P Ib " h . h . _ , . . . h , ( x ) = y ' .  
(ii) Fix x, y, f ,  and an arbitrary condition pGP(A,B) .  Let g be the 

canonical name for the order-automorphism added by P(A, B). By part (i) 

{q:q 1~-"fg(x)÷ y ' }  is dense in P(A, B), so there is a q _< p such that 
q [~-"f~(x) ~ y " .  Picking a V-generic filter G on P(A,B)  with q ~ G ,  and 
working in V[G], a construction like the construction o f p '  from p in part (i) 

yields (in V) a q' < q such that q'ED(x,  y, f ) .  Q.E.D. 

LEMMA 2.2. Assume MAC. Let A and B be countable dense subsets of  R, let 
X and Y be subsets of  R of cardinality less than c with A U B c_ X and 
X O Y = ~ ,  and let f¢ be a group ofauto-homeomorphisms of R, ofcardinality 
less than c, such that both X and Y are closed under every element of (¢. Then 
there is an order-automorphism g of R such that g(A)= B and if f is any 
element of  the group generated by (¢ u {g}, then f (X)  n Y = ~ .  Furthermore, 
for any given a CA and b E B  there is such a g also satisfying g(a) = b. 

PROOF. Pick a new symbol g not in ~,  and form f¢[g]. By Lemma 2.1(ii), 

A o = { D ( x , y , f ) :  x E X ,  y E Y ,  fEf#[g]}  is a family of dense subsets of  
P(A, B). For each a CA and b E B let E(a, b) be the set of  all p E P(A, B) such 

that a ~ d o m ( p )  and b Eran(p) .  Since A1 = {E(a, b): a CA, b EB} is coun- 

table and A0 has cardinality less than c, we can apply MAC to get a 
(Ao U At)-generic filter G on P(A, B). Then the unique extension g of UG to an 
order-automorphism of R is clearly as desired. Given a fixed a CA and b E B, 
to get g(a) = b, just replace P(A, B) by { p EP(A,  B) : p(a) = b }. Q.E.D. 

THEOREM 2.3. Assume MAC. Then there is a homogeneous CDH Bern- 
stein suborder of R. 

PROOF. Note that if  X, Y, and f¢ are as in Lemma 2.2, a, b EX,  and Xis  
dense in R, then we can apply the lemma to any countable dense subsets A and 

B of  X with a CA and b E B  to get a g so that g(a) = b and for any f i n  the 

group generated by f~ U {g},f(X) n Y = ~ .  Hence using Lemma 2.2 we can 

inductively construct sequences (X~ : a < c) and ( Y, : a < c) of  dense sets of  
reals, and a sequence (f¢~ : a < c) of  groups of  order-automorphisms of R, all 

three sequences increasing under inclusion, so that: 

(a) IX. l , lY~l , l~ . l  <c .  
(b) Yo= . 
(c) For every g E  f~ ,  g(X~) = X~ and g(Y~) = Y~. 
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(d) For every non-empty perfect P _ R there is an a < c so that X~ n P ~ 
and Y~ n P # ~5. 

(e) For all countable dense A, B _ R if there is an a < c such that A, B _C X, 

then there is a fl < c such that for some g E f#~, g(A) = B. 

( f )  For all a, b ~ R  if there is an a < c so that a, b EX,  then there is aft  < c 

so that for some gEfa~,  g(a)  = b. 

Let X = U {X, : a < c} and fa = U {fa, : a < c}. By (c), for every g ~ (a, 

g(X)  = X.  By (b) and (d) X is Bernstein, and by (e) and ( f )  X is CDH 

and homogeneous. Q.E.D. 

§3. CDH snbspaces of the Cantor set 

Using the techniques of  §2 one can also show that MAC implies there is a 
CDH Bernstein subspace of the Cantor set. However, even stronger results can 
be.obtained for the Cantor set under the assumption of  MAa, and these results 

provide a complete characterization (under MAa) of  all CDH spaces among 

the separable metric spaces of cardinality less than c. (Of course, a characteri- 

zation of such spaces is only of interest when CH fails.) Besides requiring MAa 
rather than MAC, we pay for the extra strength of the results of  this section in 

another way. The auto-homeomorphisms of the Cantor set that we construct 
will not, in general, be order-preserving. That is, we will be able to construct 
CDH subspaces of the Cantor set by these methods, but not CDH suborders. 

The referee informs us that the following lemma is folklore. Results quite 
similar to Lemmas 3.1 and 3.2 have also been obtained by Stepr~ms and 
Watson [SW] for metrizable manifolds of dimension greater than one, rather 

than the Cantor set. 

LEMMA 3.1. Assume MAa. Let C denote the Cantor set. Suppose x < c and 

for each a < x suppose A~ and B~ are countable dense subsets o f  C, so that a < fl 

implies A~ NAp = 25 and lq~ n Bp = ~ .  Then there is a homeomorphism 

f :  C---- C such that f (A,)  = B, for every a < x. Furthermore,for any a EAo and 

b EBo we canfind such an fa l so  satisfyingf(a) = b. 

PROOF. Let A = U { A ~ : a < x }  and B = U ( B ~ : a < x } .  Let Z be the 

collection of all finite partitions o f t  into non-empty clopen sets. Note that Z is 
countable, since there are only countably many clopen subsets of  C. Let P be 

the set of  all quadruples (g, i~, J,  K) satisfying: 
(1) g is a finite, one-to-one function with dom(g) __ A and ran(g) __ B. 

(2) I f x E d o m ( g )  n A~ then g(x)EB~.  
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(3) J,  K E Z .  
(4) h is a one-to-one function from J onto K. 
(5) For every x Edom(g)  and every YEJ ,  x E Y i f fg(x)Eh(Y) .  

Order P by putting (g, h, J, K) < (g', h', J', K') iff 
(a) g'  C g, and 

(b) for every Y ~ J t h e r e  is a Y ' ~ J '  such that Y __. Y' and h(Y) c_ h'(Y'). 
We claim that P is a-centered. Let Q = { g : 3 h, J,  K (g, h, J,  K) E P }, and 

for each o~ < x let Q~ be the set of  all finite, one-one partial functions from A~ to 

B~. Order both Q and Q~ by reverse inclusion. Then Q~, being countable, is 

isomorphic to a dense subset of  the order for adding one Cohen real, and Q is 

the finite-support product of  the Q~. So Q is isomorphic to a dense subset of  the 
order for adding x Cohen reals, and as x < c this order is a-centered. Write Q 
as a disjoint union Q = U {Q~ : n E 09 } where each Q~ is centered. As there are 
only countably many triples (h, J ,  K) such that for some g, (g, h, J, K)EP,  
one can write P as a countable union of sets P, such that (go, h0, J0, Ko), 

(g l ,  hi, J~, K~)EP, implies h0 = hi, J0 -- Jl, K0 = K1, and for some m both g0 and 
g~ belong to Q ' .  Then each Pn will be centered in P. 

(Let us remark that the obvious partial order adding an order-preserving f 

with f(A~) = B, for each a, namely the set of  all finite order-preserving g with 

g(A~,) C_ B~, and g-l(B,,)C_ A,, for each a, fails to satisfy the countable chain 

condition.) 
For each n Eo~ let Do(n) be the set of  all (g, h, J, K )EP  such that every 

element o f J  U Khas diameter less than 2 -".  For each a CA let D~(a) be the set 
of  all (g, h, J, K) GP such that a ~ dom(g). For each b E B  let Dz(b) be the set 
of  all (g, h, J,  K)E  P such that b ~ ran(g). Clearly all of  these sets are dense in 
P, so by MAa there is a filter G on P which meets each of them. Then 
f0 = U {g: 3 h, J, K (g, h, J, K)EG} is a homeomorphism from A onto B 

which extends uniquely to the desired homeomorphism f :  C---- C. (We may 

define f a s  follows. For any x ~C,  

(h(Y) : 3g, h , J , K ( g , h , J , K ) E G  ^ x E Y ~ J }  

is a family of  compact sets of  arbitrarily small diameters, and has the finite 

intersection property. Let f (x)  be the unique element of  the intersection of 
this family.) 

Given a fixed aEAo and bEBo, to get f ( a ) = b  just replace P by 
{(g, h, J, K ) ~ P  : g(a) = b }. Q.E.D. 
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Recall that a subset A of a space X is 2-dense in X (2 a cardinal) iff every 

non-empty open subset of X contains exactly 2 points of A. 

LEMMA 3.2. Assume MAwr. Let C be the Cantor set, suppose x < c, and for 

a < x let 2o be an infinite cardinal less than c. Suppose that for each a < x, A~ 

and B~ are 2,-dense in C, and that a < fl implies A, N A s = ~ and Be N B e = 

;~. Then there is a homeomorphism f :  C ~ C such that f (A,)  = Bo for every 

a < x. Furthermore, for any a EA0 and b EBo we can f ind such an f also 

satisfying f (a  ) = b. 

PROOF. For each a < x, if;t, is uncountable then the 2~-denseness of  A, and 

B, implies that A, and B, can each be partitioned into 2~-many countable dense 

subsets. Now apply Lemma 3.1 to all of  the resulting sets. Q.E.D. 

We shall call a topological space Y compressed if every non-empty open 

subset of  Y has the same cardinality as Y. If  X is any space and x ~ X  

has a compressed neighborhood, we call x a point of  compression of  X. 

Naturally, a space X is called locally compressed if every point of  X is a point 

of  compression. 
Using these ideas one can characterize the CDH separable metric spaces of  

small cardinality, assuming MAa. 

LEMMA 3.3. I f  X is a second-countable CDH space then X & locally 

compressed, and every infinite open subset o f  X is uncountable. 

PROOF. The set of  all points of  compression of  X is dense in X, so ifA is a 

countable dense set of  points of  compression of  X, and x E X were not a point 

of compression, then A could not be mapped onto A U {x} by an auto- 
homeomorphism of X. So X is locally compressed. Hence X has a countable 

basis B of  compressed open sets. If Xhas a countably infinite open subset, then 

B must have a countably infinite member. Let U be the union of  all countably 

infinite members ofB.  Uis countably infinite. Also, x ~ U i f f x  has a countably 

infinite compressed neighborhood, so any auto-homeomorphism of X carries 

Uonto U. Let Cbe a countable dense subset o f X  - U, and pick any u E U. No 

auto-homeomorphism of X can map (U - (u}) U C onto U U C. But X is 

CDH, a contradiction. Q.E.D. 

THEOREM 3.4. Assume MAa. Let X be a separable metric space o f  cardina- 

lity less than c. Then X is CDH i f f  X is locally compressed and every infinite open 

subset o f  X is uncountable. 
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PROOF. Lemma 3.3 establishes one direction of the biconditional; for the 

other assume X is locally compressed, and every infinite open subset of  X is 

uncountable. For each ;t < c let X~ be the set of all points of  X having a 

compressed neighborhood of  cardinality ;t. Then {X~ : ;t < c, X~ 4:~5 } is a 

partition of  X into clopen subsets. 

By assumption X~0 = ~ ,  and as X is Hausdorff X~ = ~ for all finite n ~ 1. 

Xl, being the set of  all isolated points of  X, is discrete and so (if non-empty) is 

CDH. Now fix ;t > R0 such that X~ 4= ~ .  As X~ is a separable metric space of  
cardinality less than c it is clear that X~ is zero-dimensional, and so embeddable 

in the Cantor set C. Hence we may assume that X~ _ C. Let Ybe the closure of  

Xa in C. IfA and B are countable dense subsets of  Xa then X~ - A and X~ - B 

are ;t-dense in Y. But Y is a non-empty perfect subset of C, and so is 

homeomorphic to C, whence by Lemma 3.2 there is a homeomorphism 

f :  Y ~ Y such that f(A ) = B andf(X~ - A ) = X~ - B. Hencef(X~) = X~, which 

shows X~ is CDH. 

As the non-empty X~'s form a clopen partition of  X, and each is CDH, it 

follows easily that X is CDH. Q.E.D. 

Let us say that a space X is ;t-dense homogeneous if for any two X-dense 

subsets A and B of X there is a homeomorphism f :  X--- X such that f (A ) = B. 

We can use Lemma 3.2 to prove a generalization of Theorem 4.2 of  [FZ], 

weakening the hypotheses given there from CH to MAtt, and strengthening the 

conclusion from CDH to ;t-dense homogeneous for any ;t < c. 

THEOREM 3.5. Assume MAa. Then there is a homogeneous Bernstein 

subset o f  the Cantor set which is 2-dense homogeneous for every 2 < c. 

PROOF. Since MA tr implies that 2 <~ = c, there are only e-many pairs of  

2-dense subsets of  C, where 2 ranges over all cardinals less than c. Hence we can 

use Lemma 3.2 to inductively construct increasing sequences (X~:a  <c) ,  
( Y , : a < c ) ,  and ( f a , : a < c ) ,  such that X,, Y,___ C, and (a, is a group of  
auto-homeomorphisms of  C, satisfying: 

(a) If¢~l-5_ IX~I = I L l  = I~1 + l%. 
(b) X , n  Y o = ~ .  
(c) For every g ~ f q , ,  g(X~) = X~ and g(Yo) = Y~. 

(d) For every a < c, X~+l - X~ and Y,+1 - Y~ are ( lal  + R0)-dense in C. 

(e) For every non-empty perfect P _ C there is an a < c so that X, n P 4: 

and Y ~ n P ÷ ~ .  

( f )  For every 2 < c and every pair of  A-dense sets A, B __ C, if there is an 
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a < c so that A, B _c X.~, then there is a fl < c so that, for some g ~ (~,  

g(A ) = B.  

(g) For all a, b E C, if there is an a < c so that a, b ~ X, then there is a fl < c 

so that, for some g E ~ p ,  g(a)  = b. 

Note that (a) and (d) imply that, if co =< a < 7 < c, then both X~ - X, and Y~ 

are 17 I-dense in C. Hence given A, B _C X~, both 2-dense homogeneous for 
some 2 < c, we can indeed use Lemma 3.2 to find a homeomorphism g : C ~ C 

carrying A, B, X~ - (A U B), and Y~ onto B, A, X~ - (A U B), and Y~ respec- 

tively. So we can satisfy ( f )  with fl = 7 + 1 by putting Xp = Xy, Yp = Yy, and 

letting ~p be the group generated by ~y U { g }. Similarly, (a) and (d) also imply 

that we can carry out the induction in such a way that (g) is satisfied. 

Let X = U {X~ : a < c} and ~ = U { ~  : a < c}. By (c), g ( X )  = X for every 

g ~ ~.  By (b) and (e), X is Bernstein. If  A, B _ X are both it-dense for some 

it < c, then (as 2 <` = c implies c is regular) there is an a < c so that A, B _c X~. 

So by ( f )  X is it-dense homogeneous for all it < c. (Note that, being Bernstein, 

Xmus t  be c-dense in C, and so for each it < c Xhas  a it-dense subset.) Finally, 

by (g) X is homogeneous. Q.E.D. 

A similar argument using Steprans' and Watson's results (in [SW]) 

on compact manifolds of  dimension greater than one intead of  Lemma 3.2 

shows that MAa implies that any (homogeneous) such manifold has a (homo- 

geneous) Bernstein subspace which is it-dense homogeneous for every it < c. In 

particular, MAa implies that the n-sphere has such a subspace if n => 2, and 
hence (by removing a point not in the subspace) so does R". This generalizes a 

theorem from [FZ]: CH implies there is a CDH Bernstein subset of  R 2, 

Alternatively, one can prove an analogue of  Lemma 2. l(ii) for Steprans' and 
Watson's partial order adding an auto-homeomorphism of a compact n- 
manifold (n >= 2) which carries one given countable dense subset to another. 

As this partial order has a countable dense subset it follows (similarly to 

Theorem 2.3) that MAC implies any (homogeneous) compact manifold of  

dimension greater than one has a (homogeneous) CDH Bernstein subspace. 

Hence MAC suffices to show the n-sphere and R" (n > 2) have homogeneous 

CDH Bernstein subspaces. 

~4. Some open questions aad remarks 

We conclude with two open questions. 

QUESTION 4. I. Can one prove from ZFC the existence of  a CDH Bern- 

stein subspace of  R? 
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Qt;EsTIoN 4.2. Can one prove from ZFC the existence o f a  CDH subspace 

of  R of  cardinality R~? 

The questions corresponding to 4.1 and 4.2 but regarding suborders rather 

than subspaces of  R are also of  interest. The second author conjectures that if 

ZF is consistent then so is ZFC plus the statement that every uncountable 

CDH suborder of  R contains a perfect subset. By Theorem 2.3 (and the 

observation that CH implies MAC), the truth of  this conjecture would imply 

that the answer to both questions for suborders is no (unless, of  course, ZF is 

inconsistent). Similarly, if it is consistent with ZFC that every uncountable 

CDH subspace of  R contains a perfect subset, then the answers to both of  4.1 

and 4.2 are no. The first author conjectures that the answer to 4.1 is yes. Note 

that it is possible (though we think it would be quite surprizing) that both 

conjectures are true, in which case there would be a model of  ZFC in which 

there is a Bernstein CDH subspace of  R which is not CDH as a suborder of  R. 

The referee points out that PFA implies that every Rrdense  set of  reals is a 

CDH suborder of  R. (This follows, e.g., from the proof  in [Ba] that PFA 
implies all Rl-dense sets of  reals are order-isomorphic.) 

Note, in connection with 4.1, that a natural way to attempt to show that a 

consequence ~0 o fMA + 7CH does not follow from ZFC alone is to try to show 

that 7 ~0 follows from 0. For statements ~0 which are consequences of  MA, the 

natural analogue is to see if ,I, (introduced in [O]) implies 7 ~o. Here 41, is the 
following weakening of  0: 

There is a sequence (A~ : a < co:> so that, for each limit a, A, is 
a cofinal subset of  a, and for every cofinal A __ o91 there is a 
limit a for which A, _ A. 

It is well-known that MA~, implies 7 ,I,. Indeed, MAa~, implies 7 4,. (Let P b e  

the set of all finite partial functions from 091 to 2, and given (A, : a  < o90 let 

A _ 09~ have as its characteristic function the union of  a sufficiently generic 

filter on P; one can easily arrange that As _ A for no limit a.) Yet Shelah 

has shown in [S] that if ZFC is consistent then so is ZFC +, ! ,+  7CH. Thus 

it is possible to show that certain statements are independent of  ZFC 

by showing that they follow from MA + 7 CH, while their negations follow 

from ,I, + 7 CH. One cannot play this game with the results of  §2, however, 

or with any other consequences of  MAC. Recall that MAC follows from 

Mm + c = R2. It's not hard to see that Mm holds in Shelah's model 

of  ,I, + c = R2. 
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PROPOSITION 4.3. I fZF is consistent so is ZFC + 4 , +  Mm + c = R 2. 

PROOF. Let V be a model ofZFC + CH + <>(E), where E = {o~ < m2:cfa = co }. 

For each # < 093 let Pu be the set of all countable functions from/z to 2, ordered 

by reverse inclusion, and let G be a V-genetic filter on P, o3. Note that in V[G], 
2~' > •3. Let Q be the Levy collapse adding a function from o) onto 09~ with 

finite conditions. Suppose H is a V[G]-generic filter on Q. Then clearly 

V[G,H] is a model of c =  R2 ( =  Rv), and Shelah has proved in [S] 

that V[G, H] ~ ,I,. 
It remains to show that V[G, H] ~ Mm. So suppose P is the order for adding 

one Cohen real, and (Do" a <: 09 vtG'm) is a sequence of dense subsets of P in 

V[G, H]. Since Po~ satisfies the R2-c.c., and I Q I =  RI, P,o, * Q satisfies the 

R2-c.c. Hence for each a there is a v < 07  such that Do E V[G n Pv, H]. As 
09 vtG,m < co3 v, there is a # < (z,3 v such that {D~ : a < covt~,nl} C V[G 0 Pu, H]. 
Let r /=  # + 091 v, let Pu, be the set of all countable functions from r / -  # to 2 in 

V, and let P,o~ be the set of all countable functions from 093 v -  t / to  2 in V. 

Then P~,, ~ Pu * Pu, * P,,o,, and as Q E V, 

P,o~*Q ~Pu *Q * Pu, * P~o,3. 

But in V[G n Pu, H], P~,~ is countable, and so forcing with Pu~ adds a 

Cohen real. Thus in V[G, H] there is a V[G n Pu, H]-generic filter on P, and 

we are done. Q.E.D. 

An argument similar to the above shows that if ZF is consistent then so is 

ZFC q- ~, + MAC + c = x, for any uncountable value of x with cf x >_- co~. 
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