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ABSTRACT 

It is shown that if A is a weakly infinite-dimensional subset of a metric space R 
then a G 6 set B of R exists such that A c B and B is weakly infinite-dimensional. 
A similar result holds for a set having strong transfinite inductive dimension. 
As a consequence each weakly infinite-dimensional metric space possesses a 
weakly infinite-dimensional complete metric extension. A similar result holds 
also for a space having strong transfinite inductive dimension. 

1. In this paper all spaces are metrizable. The dimension function used is 

covering dimension dim. 

A space R is called weakly infinite-dimensional (see ]4], [5]) hereafter 

abbreviated w.i.d., if  for every countable family of  pairs (Fi, Gi)i = 1,2,. . .  of  

closed disjoint sets of  R, there exist open sets U~, F~ ~ U~ ~ R - Gi, such that 

nk= 1 Bd U~ = q~ for some number  k. 

A space R has strong transfinite dimension - 1 ,  Ind R = - 1  i f R  = t~. Let ~ be 

an ordinal number. I f  for every pair of  closed disjoint sets F, G of  R an open set U 

exists such t h a t F _ U _ R - G  w i t h I n d  Bd U < ~  we say that R h a s s t r o n g  

transfinite inductive dimension <= ~, Ind R =< ~. Ind R = ~ if Ind  R _-< ~, and 

Ind  R =< fl is not satisfied for any fl < ~. 

A complete extension of  R is a pair (h, R*), where R* is a complete space, and h 

a homeomorphism from R into R* such that h(R) = R*. 

A theorem of Tumarkin ([2],  p. 32) states that each finite-dimensional set of  R 

is contained in a G~ set of  R with the same dimension. 

In this paper  it is shown that an analogue of  this theorem holds for w.i.d. 

sets (Theorem 2). I t  is also shown that i fA is a subset of  R having strong transfinite 
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inductive dimension then a G~ set B of R exists, containing A, such that B has 

strong transfinite inductive dimension as well (Theorem 4), where a simple 

connection exists between Ind A and Ind B (Corollary 1). As a consequence we 

get that every w.i.d, space has a w.i.d, complete extension. A similar result holds 

for a space having strong transfinite inductive dimension. It should be noted that 

in [-4] it is shown that a w.i.d, separable space always has a w.i.d compact 

extension. 

2. In the following let A be a subset of  a metric space R, satisfying 

A-- U,~o  P,. Denote by (I), (II), ( I I I ) the  following properties of the subsets P, :  

(I) P,  are open in A and dim P,  <n ,  n = 0 ,1 ,2 , - . . .  

(II) P,  _ P,+x for n = 0, 1,2, .-- . 

(III)  P~ = U {uJ u is open in A with dim u < n}, n = 0, 1, 2 , . . . .  

Note that (III)  implies (I) and (II). 

LEMMA 1. Let A = Un~176 . be a subset of R satisfying (I). Then there 

exists a Go set B in R which contains A, such that B = Uff= o Q,, where Q, are 

open in B, Q~ ~ A  = P~ and dimQ, = dimP~. 

PROOF. Given in [3] corollary 2. 

LEMMA 2. Let A = U~=oP ~ be a subset of R, where P~ satisfy (I) and (II). 

Then the Go set B = U ~ o Q  . of Lemma 1 can be chosen so that Q, c_ Q,+lfor 

n-~ 0 ,1 ,2 , . . . .  

PROOF. By Lemma 1 a Go set B exists, containing A, such that B = U ~176 n = 0  

~ , , Q ,  open in B, ~ , r  and dim ~ , = d i m  P,.  Let Q~=U~=oQ~ for 

n -- 0 ,1 ,2 , . . . .  It follows that B = U~= oQ, where Q, are open in B, dim Q, = dim ~,  
n n = d i m  P., Q . ~ A =  Ui=0(~iOA)= Ui= 0 Pi P. and] Q.~-Q.+I for 

n -- 0,1,2, . . . .  

LEMMA 3. Let A = U.~ o P, be a subset of R where P. satisfy (III). Then a 

Go set B = U~= o Q. exists such that (i) B contains A (ii) Q. are open in B, with 

dim Q. < n and Q. ~ Q.+ 1 for n = O, 1,2,.. . ,  ( iii) I f  p e B - Q. then each open 

neighborhood up of p satisfies dim (up n A) > n + 1. 

PROOF. The subsets P.  are open in A and satisfy (I) and (II). By Lemma 2 a 

G~ set B* U oo r~* containing A exists such that Q* are open in B* and rt = 0  Y.~tl 

Q~ - Q~+I for n = 0,1, 2,-.- .  

Also: 
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(1) 

Define: 

EMBEDDINGS OF SPACES 

�9 " "  Q * A A = P .  and d i m Q ~ = d i m P . .  

(2)  Mj ---- ( Q j + I  - Q~) - ( P j + I  - ej)g 

7 

By (1): 

(3) M j A A ~_ (Qj+I - Qj) A A - (Pj+ I - Pj) o A  = 

Since each Q]is open in B*, m j  is an F.  in B* ([1] p. 26). 

Hence M = U~~ is an F.  set in B* and M n A  = Z -  Now let B = B * - M ,  

Q . = Q ~ - M .  One easily gets that B is a Go set in R and A _ B .  Also 

B = U~=o Q., where Q. are open in B, Q. A A  = P. and dim Q. = dim P.. From 

Q~ - Q~+I it is clear that Q, _ Q.+~, so (i), (ii) follow. By Q~ _~ Q~+~, (1) and (2) 

we get for n # j :  
* * * * * * 

(4) (Q.+ I - Q.) A M j c_ (0.+1 - O.) t~ (Qj+ I - Qj) = ~ .  

From the definition of M and by (2) (3) and (4): 

(5) 
Q , + I - Q .  = ( Q . + I - Q . )  - ~ M j = ( Q . + I - Q . ) - M .  

j=O 

= (Q.+I - Q.) n ( P . + l  - P.)R. 

By (5) it therefore follows that if p e Q.+I - Q .  then each open neighborhood 

Up of p satisfies: 

(6) up n (P. +1 - P.)  ~ ~ .  

Suppose now that dim(u~ o A ) <  n. From the definition of P .  (see (III)) it is 

clear that (up n A)_c p.,  contradicting (6). Thus dim (up n A) > n + 1. Since 

B = U.~o Q. where Q.~_ Q.+~, it is clear that for p ~ B - Q., and for each open 

neighborhood Up of p, dim ( u p O A ) >  n + 1, which proves (iii). 

3. Following Sklyarenko [4], we introduce: 

DEFINITION 1. [4 ] .  A sequence of points {xil i=1,2....} in a space R is called 

scattering if it has no accumulation point in R. 

DEFINITION 2. [4"]. A countable family of  open sets {P.] .  =o,1....} in a space R 

is called convergent, if for every scattering sequence in R {xili = 1.2 ...} a number no 

exists, such that the set {xil ~=~,2....} - P . o  is finite. 

In [4] Sklyarenko proved the following: 
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THEOREM 1. A space R is w.i.d, i f  and only i f  it possesses a convergent fami ly  

of  open sets {PHI n=o,1,...} with dim Pn < n, such that the subset K = R - Un~=oPn 

is compact and w.i.d.. 

REMARK 1. The subsets P ,  of  Theorem 1 can be assumed to be P,  = 

u {ulu is open in R with dim u < n} ([2] p. 178). 

We can now prove: 

THEOREM 2. Let A be a w.i.d, subset of a metric space R. Then a G6 set B 

of R exists such that A ~ B, and B is w.i.d. 

PROOF. By Theorem 1 and Remark 1 the family of open subsets Pn = 

U {U 1U is open in A with dim u<n} converges in A so that K = A -  U,=oPn is 

compact and w.i.d. U~=oP n is therefore contained in the open set R - K  and 

satisfies the assumptions of Lemma 3. Hence a subset B* exists such that: ( i )  B*  is 

a G6 set o f R  - K, and thus a G6 set of  R, containing Uff=o P,. (ii) B* = U~=oQ,  

where Q, is open in B with dim Q~ = dimP~, Qn c_ Qn+l, (iii) for each p ~ B* - Qn 

* of p: and for each open neighborhood up 

(7) dim (u* ca A) > n + 1. 

Put B = K UB*  = K U u ~ 0 Q  n. It is clear that B contains A, and that B is 

a G~ set of  R (being the union of a compact set and a G6 set). It remains to prove 

that B is w.i.d. By their definitions K and B* = U~=oQ~ are disjoint and since K 

is compact B* is open in B. The subsets Q, are thus open in B and finite-dimensional. 

It suffices to show that the family (Q,I ,=o.1,...} converges in B. 

Suppose, to the contrary, that a scattering sequence (xi] 1= 2,2 ...} exists in B 

(hence in B*) such that (xil i = 1,2, ...} - Q, is infinite for each n. A scattering 

subsequence (x~l n = 0,1,2, . . .} can be selected satisfying: xneB* - Qn for 

n = 0,1, 2 . . . .  By lemma 1 [4], a locally finite family of  open (in B) neighborhoods 

{Ox, I n = 0,1,2, . . .  } exists such that: 

(8) 0~, ca Ox~ = ~ for i ~ j. 

Denoting D, = 0~. ca A we get by (7) and by the way the points x~ were selected 

that dim D~ > n + 1. Since (0~.] ,=o,1,...} is locally finite in B, (Dn[ ~=o,1,...} is 

locally finite in A. Since b~___ O~ n A  it follows by (8) tha t /3~r3 /3~=  q~ for 

i # j .  The sets (b~l n = 0, 1, ... } form a locally finite family of  closed pairwise 
- . 4 .  ao - A  �9 

disjoint sets with dim D~ > n. By lemma 2 [4], D = Un=oDn IS not w.i.d. On the 

other hand, the local finitness of  {D,l,=o, 1 ...} implies that 
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A 
D ~j/3,41 ~o 

= n = UD, 
n = O  n = O  

D is thus a closed subset of the w.i.d, set A, and therefore w.i.d, as well, which is a 

contradiction. Hence {Qnln=o.1...} converges in B = K  u U ~ o Q ,  and by 

Theorem 1, B is w.i.d. 

THEOREM 3. Let R be a w.i.d, metric space, then R has a w.i.d, complete 

metric extension. 

PROOF. Let (h, R*) denote a complete metric extension of R. By Theorem 2, R 

is topologically contained in a w.i.d. G6 set B of R*. Being a G~ in the complete 

space R*, B is homeomorphic to a complete space. 

THEOREM 4. Suppose that A c_ R, and that A has strong transfinite inductive 

dimension. Then a G~ set B of R exists such that A c_ B, and B has strong 

transfinite inductive dimension. 

PROOF. As shown by Smirnov [-5] (see also [-2] p. 177) A is w.i.d., and so by 

Theorem 1 has a decomposition A = K U U ~ 0  Pn, where K is compact and 

clearly has strong transfinite inductive dimension. By the proof of Theorem 2 a 

w.i.d. G~ set B of R exists such that A __B and B =  K u U ~ o Q  .. Another 

theorem of Smirnov ([2] p. 182) then asserts that B itself has strong transfinite 

dimension. 
Using the mapping fl(~) introduced by Smirnov ([-2] p. 181) we get: 

COROLLARY 1. Let A, B be as in Theorem 4 and let Ind K = Ind (A - U~= oPt) = ~. 

By Theorem 3 [5], Ind A _< fl(~). The G6 set B in Theorem 4 satisfies IndB < fl(~) 

as well. 

By Theorem 4 we also get: 

THEOREM 5. Let R be a metric space having strong transfinite inductive 

dimension. Then R has a complete metric extension having strong transfinite 

inductive dimension. 
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