SOME EMBEDDINGS OF INFINITE-DIMENSIONAL SPACES

BY

ZAHAVA SHMUELY

ABSTRACT

It is shown that if A is a weakly infinite-dimensional subset of a metric space R then a G_{δ} set B of R exists such that $A \subseteq B$ and B is weakly infinite-dimensional. A similar result holds for a set having strong transfinite inductive dimension. As a consequence each weakly infinite-dimensional metric space possesses a weakly infinite-dimensional complete metric extension. A similar result holds also for a space having strong transfinite inductive dimension.

1. In this paper all spaces are metrizable. The dimension function used is covering dimension dim.

A space R is called *weakly infinite-dimensional* (see [4], [5]) hereafter abbreviated w.i.d., if for every countable family of pairs (F_i, G_i) $i = 1, 2, \cdots$ of closed disjoint sets of R, there exist open sets U_i , $F_i \subseteq U_i \subseteq R - G_i$, such that $\bigcap_{i=1}^{k} \operatorname{Bd} U_i = \phi$ for some number k.

A space R has strong transfinite dimension -1, Ind R = -1 if $R = \phi$. Let α be an ordinal number. If for every pair of closed disjoint sets F, G of R an open set U exists such that $F \subseteq U \subseteq R - G$ with Ind Bd $U < \alpha$ we say that R has strong transfinite inductive dimension $\leq \alpha$, Ind $R \leq \alpha$. Ind $R = \alpha$ if Ind $R \leq \alpha$, and Ind $R \leq \beta$ is not satisfied for any $\beta < \alpha$.

A complete extension of R is a pair (h, R^*) , where R^* is a complete space, and h a homeomorphism from R into R^* such that $\overline{h(R)} = R^*$.

A theorem of Tumarkin ([2], p. 32) states that each finite-dimensional set of R is contained in a G_{δ} set of R with the same dimension.

In this paper it is shown that an analogue of this theorem holds for w.i.d. sets (Theorem 2). It is also shown that if A is a subset of R having strong transfinite

Received September 5, 1971

Z. SHMUELY

inductive dimension then a G_{δ} set B of R exists, containing A, such that B has strong transfinite inductive dimension as well (Theorem 4), where a simple connection exists between Ind A and Ind B (Corollary 1). As a consequence we get that every w.i.d. space has a w.i.d. complete extension. A similar result holds for a space having strong transfinite inductive dimension. It should be noted that in [4] it is shown that a w.i.d. separable space always has a w.i.d compact extension.

2. In the following let A be a subset of a metric space R, satisfying $A = \bigcup_{n=0}^{\infty} P_n$. Denote by (I), (II), (III) the following properties of the subsets P_n :

(I) P_n are open in A and dim $P_n \leq n, n = 0, 1, 2, \cdots$.

(II) $P_n \subseteq P_{n+1}$ for $n = 0, 1, 2, \cdots$.

(III) $P_n = \bigcup \{u \mid u \text{ is open in } A \text{ with dim } u \leq n\}, n = 0, 1, 2, \cdots$.

Note that (III) implies (I) and (II).

LEMMA 1. Let $A = \bigcup_{n=0}^{\infty} P_n$ be a subset of R satisfying (I). Then there exists a G_{δ} set B in R which contains A, such that $B = \bigcup_{n=0}^{\infty} Q_n$, where Q_n are open in B, $Q_n \cap A = P_n$ and dim $Q_n = \dim P_n$.

PROOF. Given in [3] corollary 2.

LEMMA 2. Let $A = \bigcup_{n=0}^{\infty} P_n$ be a subset of R, where P_n satisfy (I) and (II). Then the G_{δ} set $B = \bigcup_{n=0}^{\infty} Q_n$ of Lemma 1 can be chosen so that $Q_n \subseteq Q_{n+1}$ for $n = 0, 1, 2, \cdots$.

PROOF. By Lemma 1 a G_{δ} set B exists, containing A, such that $B = \bigcup_{n=0}^{\infty} \hat{Q}_n$, \hat{Q}_n open in B, $\hat{Q}_n \cap A = P_n$ and dim $\hat{Q}_n = \dim P_n$. Let $Q_n = \bigcup_{i=0}^n \hat{Q}_i$ for $n = 0, 1, 2, \cdots$. It follows that $B = \bigcup_{n=0}^{\infty} Q_n$ where Q_n are open in B, dim $Q_n = \dim \hat{Q}_n$ $= \dim P_n$, $Q_n \cap A = \bigcup_{i=0}^n (\hat{Q}_i \cap A) = \bigcup_{i=0}^n P_i = P_n$ and $Q_n \subseteq Q_{n+1}$ for $n = 0, 1, 2, \cdots$.

LEMMA 3. Let $A = \bigcup_{n=0}^{\infty} P_n$ be a subset of R where P_n satisfy (III). Then a G_{δ} set $B = \bigcup_{n=0}^{\infty} Q_n$ exists such that (i) B contains A (ii) Q_n are open in B, with dim $Q_n \leq n$ and $Q_n \leq Q_{n+1}$ for $n = 0, 1, 2, \cdots$, (iii) If $p \in B - Q_n$ then each open neighborhood u_p^* of p satisfies dim $(u_p^* \cap A) \geq n + 1$.

PROOF. The subsets P_n are open in A and satisfy (I) and (II). By Lemma 2 a G_{δ} set $B^* = \bigcup_{n=0}^{\infty} Q_n^*$ containing A exists such that Q_n^* are open in B^* and $Q_n^* \subseteq Q_{n+1}^*$ for $n = 0, 1, 2, \cdots$.

Also:

Vol. 12, 1972

(1)

 $\cdots Q_n^* \cap A = P_n$ and dim $Q_n^* = \dim P_n$.

Define:

(2)
$$M_{j} = (Q_{j+1}^{*} - Q_{j}^{*}) - \overline{(P_{j+1} - P_{j})}^{R}$$

By (1):

(3)
$$M_j \cap A \subseteq (Q_{j+1}^* - Q_j^*) \cap A - (P_{j+1} - P_j) \cap A = \emptyset$$

Since each Q_i^* is open in B^* , M_i is an F_{σ} in B^* ([1] p. 26).

Hence $M = \bigcup_{j=0}^{\infty} M_j$ is an F_{σ} set in B^* and $M \cap A = \emptyset$. Now let $B = B^* - M$, $Q_n = Q_n^* - M$. One easily gets that B is a G_{δ} set in R and $A \subseteq B$. Also $B = \bigcup_{n=0}^{\infty} Q_n$, where Q_n are open in B, $Q_n \cap A = P_n$ and dim $Q_n = \dim P_n$. From $Q_n^* \subseteq Q_{n+1}^*$ it is clear that $Q_n \subseteq Q_{n+1}$, so (i), (ii) follow. By $Q_n^* \subseteq Q_{n+1}^*$, (1) and (2) we get for $n \neq j$:

(4)
$$(Q_{n+1}^* - Q_n^*) \cap M_j \subseteq (Q_{n+1}^* - Q_n^*) \cap (Q_{j+1}^* - Q_j^*) = \emptyset.$$

From the definition of M and by (2)(3) and (4):

(5)
$$Q_{n+1} - Q_n = (Q_{n+1}^* - Q_n^*) - \bigcup_{\substack{j=0\\j=0}}^{\infty} M_j = (Q_{n+1}^* - Q_n^*) - M_n$$
$$= (Q_{n+1}^* - Q_n^*) \cap (\overline{P_{n+1} - P_n})^R.$$

By (5) it therefore follows that if $p \in Q_{n+1} - Q_n$ then each open neighborhood u_p^* of p satisfies:

(6)
$$u_p^* \cap (P_{n+1} - P_n) \neq \emptyset.$$

Suppose now that $\dim(u_p^* \cap A) \leq n$. From the definition of P_n (see (III)) it is clear that $(u_p^* \cap A) \subseteq P_n$, contradicting (6). Thus dim $(u_p^* \cap A) \geq n + 1$. Since $B = \bigcup_{n=0}^{\infty} Q_n$ where $Q_n \subseteq Q_{n+1}$, it is clear that for $p \in B - Q_n$, and for each open neighborhood u_p^* of p, dim $(u_p^* \cap A) \geq n + 1$, which proves (iii).

3. Following Sklyarenko [4], we introduce:

DEFINITION 1. [4]. A sequence of points $\{x_i | i=1,2,...\}$ in a space R is called *scattering* if it has no accumulation point in R.

DEFINITION 2. [4]. A countable family of open sets $\{P_n|_{n=0,1,...}\}$ in a space R is called *convergent*, if for every scattering sequence in $R\{x_i|_{i=1,2...}\}$ a number n_0 exists, such that the set $\{x_i|_{i=1,2...}\} - P_{n_0}$ is finite.

In [4] Sklyarenko proved the following:

Z. SHMUELY

THEOREM 1. A space R is w.i.d. if and only if it possesses a convergent family of open sets $\{P_n|_{n=0,1,\ldots}\}$ with dim $P_n \leq n$, such that the subset $K = R - \bigcup_{n=0}^{\infty} P_n$ is compact and w.i.d..

REMARK 1. The subsets P_n of Theorem 1 can be assumed to be $P_n = \bigcup \{u \mid u \text{ is open in } R \text{ with dim } u \leq n\}$ ([2] p. 178).

We can now prove:

THEOREM 2. Let A be a w.i.d. subset of a metric space R. Then a G_{δ} set B of R exists such that $A \subseteq B$, and B is w.i.d.

PROOF. By Theorem 1 and Remark 1 the family of open subsets $P_n = \bigcup \{u \mid u \text{ is open in } A \text{ with } \dim u \leq n\}$ converges in A so that $K = A - \bigcup_{n=0} P_n$ is compact and w.i.d. $\bigcup_{n=0}^{\infty} P_n$ is therefore contained in the open set R - K and satisfies the assumptions of Lemma 3. Hence a subset B^* exists such that: (i) B^* is a G_{δ} set of R - K, and thus a G_{δ} set of R, containing $\bigcup_{n=0}^{\infty} P_n$. (ii) $B^* = \bigcup_{n=0}^{\infty} Q_n$ where Q_n is open in B with dim $Q_n = \dim P_n$, $Q_n \subseteq Q_{n+1}$, (iii) for each $p \in B^* - Q_n$ and for each open neighborhood u_p^* of p:

(7)
$$\dim (u_p^* \cap A) \ge n+1.$$

Put $B = K \cup B^* = K \cup \bigcup_{n=0}^{\infty} Q_n$. It is clear that B contains A, and that B is a G_{δ} set of R (being the union of a compact set and a G_{δ} set). It remains to prove that B is w.i.d. By their definitions K and $B^* = \bigcup_{n=0}^{\infty} Q_n$ are disjoint and since K is compact B^* is open in B. The subsets Q_n are thus open in B and finite-dimensional. It suffices to show that the family $\{Q_n|_{n=0,1,\ldots}\}$ converges in B.

Suppose, to the contrary, that a scattering sequence $\{x_i|_{i=1,2\dots}\}$ exists in B (hence in B*) such that $\{x_i|i=1,2,\dots\} - Q_n$ is infinite for each n. A scattering subsequence $\{x_n|n=0,1,2,\dots\}$ can be selected satisfying: $x_n \in B^* - Q_n$ for $n = 0, 1, 2 \cdots$. By lemma 1 [4], a locally finite family of open (in B) neighborhoods $\{O_{x_n}|n=0,1,2,\dots\}$ exists such that:

(8)
$$O_{x_i}^B \cap O_{x_j}^B = \phi \text{ for } i \neq j.$$

Denoting $D_n = O_{x_n} \cap A$ we get by (7) and by the way the points x_n were selected that dim $D_n \ge n + 1$. Since $\{O_{x_n}|_{n=0,1,...}\}$ is locally finite in B, $\{D_n|_{n=0,1,...}\}$ is locally finite in A. Since $\overline{D}_n^A \subseteq O_{x_n}^B \cap A$ it follows by (8) that $\overline{D}_i^A \cap \overline{D}_j^A = \phi$ for $i \ne j$. The sets $\{\overline{D}_n^A| n = 0, 1, \cdots\}$ form a locally finite family of closed pairwise disjoint sets with dim $\overline{D}_n^A \ge n$. By lemma 2 [4], $D = \bigcup_{n=0}^{\infty} \overline{D}_n^A$ is not w.i.d. On the other hand, the local finitness of $\{D_n|_{n=0,1,...}\}$ implies that Vol. 12, 1972

D is thus a closed subset of the w.i.d. set *A*, and therefore w.i.d. as well, which is a contradiction. Hence $\{Q_n|_{n=0,1\dots}\}$ converges in $B = K \cup \bigcup_{n=0}^{\infty} Q_n$ and by Theorem 1, *B* is w.i.d.

THEOREM 3. Let R be a w.i.d. metric space, then R has a w.i.d. complete metric extension.

PROOF. Let (h, R^*) denote a complete metric extension of R. By Theorem 2, R is topologically contained in a w.i.d. G_{δ} set B of R^* . Being a G_{δ} in the complete space R^* , B is homeomorphic to a complete space.

THEOREM 4. Suppose that $A \subseteq R$, and that A has strong transfinite inductive dimension. Then a G_{δ} set B of R exists such that $A \subseteq B$, and B has strong transfinite inductive dimension.

PROOF. As shown by Smirnov [5] (see also [2] p. 177) A is w.i.d., and so by Theorem 1 has a decomposition $A = K \cup \bigcup_{n=0}^{\infty} P_n$, where K is compact and clearly has strong transfinite inductive dimension. By the proof of Theorem 2 a w.i.d. G_{δ} set B of R exists such that $A \subseteq B$ and $B = K \cup \bigcup_{n=0}^{\infty} Q_n$. Another theorem of Smirnov ([2] p. 182) then asserts that B itself has strong transfinite dimension.

Using the mapping $\beta(\alpha)$ introduced by Smirnov ([2] p. 181) we get:

COROLLARY 1. Let A, B be as in Theorem 4 and let $\operatorname{Ind} K = \operatorname{Ind} (A - \bigcup_{n=0}^{\infty} P_n) = \alpha$. By Theorem 3 [5], $\operatorname{Ind} A \leq \beta(\alpha)$. The G_{δ} set B in Theorem 4 satisfies $\operatorname{Ind} B \leq \beta(\alpha)$ as well.

By Theorem 4 we also get:

THEOREM 5. Let R be a metric space having strong transfinite inductive dimension. Then R has a complete metric extension having strong transfinite inductive dimension.

ACKNOWLEDGEMENTS

This paper is partially based on a M.Sc. Thesis directed by Professor M. Reichaw. The author wishes to thank Professor Reichaw for his help in the preparation of this paper.

References

1. C. KURATOWSKI, Topologie 1, 1958.

2. J.I. NAGATA, Modern Dimension Theory, 1965.

3. Z. SHMUELY, On strongly countable-dimensional sets, Duke Math. J. 38 (1971), 169-173.

4. E.G. SKLYARENKO, On dimensional properties of infinite dimensional spaces, Amer. Math. Soc. Transl. 21 (1962), 35-50.

5. YU. M. SMIRNOV, Some remarks on transfinite-dimension, Soviet Math. Dokl. 2 (1961), 1572–1575.

TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA