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ABSTRACT 

A sequence (z0, z~, z 2 . . . . . .  zn, zn+t) of points from p = z0 to q = z~+~ in a 
metric space X is said to be sequentially equidistant if d(z~_ ~, zi) = d(zi, zi + 1) 
for I __< i _< n. If there is path in Xfrom p to q (or ifa certain weaker condition 
holds), then such a sequence exists, with all points distinct, for every choice of 
n, while if X is compact and connected, then such a sequence exists at least for 
n = 2. An example is given of a dense connected subspace S of R m, m > 2, 
and an uncountable dense subset E disjoint from S for which there is no 
sequentially equidistant sequence of distinct points (n > 2) in S U E between 
any two points of E. Techniques of dimension theory are utilized in the 
construction of these examples, as well as in the proofs of some of the positive 
results. 

F ix  d i s t inc t  p o i n t s  p a n d  q in  a c o n n e c t e d  me t r i c  space (X, d). The  

I n t e r m e d i a t e  Va lue  T h e o r e m  shows tha t  there  exists  a p o i n t  z in  X which  is 

e q u i d i s t a n t  f rom p a n d  q. G e n e r a l i z i n g  this,  we def ine  a s equence  

(Zo, Zl, z2, • • •,  zn, z,  ÷ l ) f r o m  p = Zo to q = z, +1to  be  sequentially equidistant i f  

d(2i- l ,  zi) = d(gi, 2i+ 1) for 1 < i < n ,  a n d  we ask w h e n  such a s equence  exists. 

I f  n is even,  t hen  there  is a t r iv ia l  so lu t i on  p - - - z2  = z 4  . . . . .  z , ,  zl = 

z3 . . . . .  z , _  i = q. O u r  m a i n  in te res t  is the case o f  sequences  o f  d i s t i nc t  

po in ts .  In  p a t h - c o n n e c t e d  spaces, such sequences  a lways exist. 

THEOREM 1.1. Let  p and  q be distinct points in a metric space (X, d). I f  

there is a path in X from p to q, then for any n there is a sequentially equidistant 

sequence (Zo, Zl, . • . ,  z , ,  zn ÷ ~) o f  distinct points in X f rom p = Zo to q = zn + ,. 
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Theorem 1.1 has long been known to geometers [M l], [S], [B]. Applying 

Theorem 1.1 to a sequence of path-connected approximations to a compact 

connected space yields easily 

COROLLARY 1.2. Let p and q be two distinct points in a compact connected 

metric space X. Then there exists a sequentially equidistant sequence 

(Zo, zt, z2, z3) of  distinct points in X from p = Zo to q = z3. 

We do not know whether Corollary 1.2 is true for longer sequences, even for 

the case n = 3. A means for eliminating possible degeneracies that may arise 

when attempting to generalize the proof of Corollary 1.2 eludes us. However, 

Theorem 1.1 is true under a weaker hypothesis than path-connectedness of X, 

and in §2, we extend it to a larger class of spaces, which we call the 

approximately arc-connected spaces. This class contains many spaces which 

are not path-connected, such as all pseudo-arcs (in fact, all chainable conti- 

nua), but does not contain all 1-dimensional continua. All path-connected 

spaces are approximately arc-connected, so Theorem I. 1 follows from the 

more general case, but we include a slightly modernized version of Schoen- 

berg's proof for the path-connected case because it is short, transparent, and 

introduces the main ideas used in §2. 

In contrast to these positive results, sequentially equidistant points may fail 

to exist for noncompact spaces. Sequences of  not-necessarily-distinct points 
(chains) in metric spaces were studied by Klee [K], who constructed examples 

of connected subsets of  the plane which do not contain chains satisfying 

certain conditions. Our modification of his construction, given as Proposition 

4.2, yields as a special case the following examples. 

COROLLARY 4.6. For each m >= 2, there exist a connected dense subset 
S c_ R m and a dense subset E c_ R m disjoint from S and ofcardinality 2 ~o such 

that for no pair of  points e and e' in E is there a sequentially equidistant 

sequence o f  4 or more distinct points in S u E starting at e and ending at e'. 

We show that many of our examples must have dimension 1 1 in particular, 

all spaces S U E as in Corollary 4.6 1 but the dimension theory of  the more 

general examples in §4 is not fully understood. A more extensive introduction 

to the content of  §4 is given at its beginning. 

We thank Professor R. Freese of St. Louis University for bringing this topic 
to our attention, and we acknowledge the work ofV. Klee [K] as an inspiration 
and source of  ideas exploited in our §4. 
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1. Proofs of Theorem 1.1 and Corollary 1.2 

Theorem 1.1 appears in [M 1 ], and the first satisfactory proof  appears to have 

been given by Schoenberg [S]. We present here a modernized version, to be 

generalized in §2. 

PROOF OF THEOREM 1.1. Choose a path 7: I - - X  from 7(0) = p to 7(1) -- 

q. By Theorems 3-30 and 3-15 of  [H-Y], we may assume that  ~, is an 

imbedding. 

Define tr_C R ~to be the set { ( t ~ , t : , . . . , t ~ ) 1 0  <t~_-< t2_-< - - -  < tn < 1}. For  

l < = i < n  + l, let v i E R  ~ be the point ( 0 , 0 , . . . , 0 ,  l, 1 , . . . ,  l) having i -  1 

initial zeros (so v, = (1, 1 , . . . ,  l) and V,+l = (0, 0 . . . .  ,0)); then tr is the 

n-simplex spanned by the v~ (because 

(tl, t2 . . . .  , tn) = tlVt + (t2 - tt)v2 + . . .  + (t~ - t~_~)t;~ + (1 - t~)v~ +~). 

Let R~ +~ be the set of  points (.)CI, X2, . . .  , X n + l )  in R ~÷' with all coordinates 

nonnegative. Define iF" tr --- R~. ÷ 1 by the formula 

tF (h ,  t2 . . . . .  t~) = ( d ( p ,  7 ( tO) ,  d ( y ( t O ,  7(t2)),  . . . , 

d ( 7 ( t ~ _ , ) ,  y ( t~)) ,  d(~,( tn) ,  q ) ) .  

The faces o f  tr are its intersections with the (n - 1)-planes t~ = 0, t~ = t2, 

t2 = / 3 , . . . ,  in-1 =tn, and tn = 1. The image of  the face tl = 0 lies in the 

n-plane x~ = 0 in R~. ÷1, the image of  each face ti = t~÷~ lies in the n-plane 

x~+l = 0, and the image of  the face tn = 1 lies in the n-plane x~ +~= 0. 

Moreover, since p ~ q, the image of  *F does not contain the origin. 

Let A be the set of  points R~_ ÷ t with all coordinates equal, and let ~," dtr --* 

R~_÷ l _ A denote the restriction of  ~F. We claim that  ~, represents a nonzero 

element of  the homotopy group 1in _ ~(R~- ÷ ~ - A). To see this, let tr0 denote the 

n-simplex spanned by the standard unit  vectors e~ --- (0 . . . . .  0, 1, 0 . . . .  ,0)  in 

R~_+ i (with 1 in the i th  place), and define a retraction r : R~. + ~ - {0} --* a0 by the 

formula r (x j, x2, • . . ,  x~ ÷ i) = ( 1/h )(x l, x2 . . . . .  xn ÷ 1) where h -- Z ~__+l I x,. Then, 

is linearly homotopic  in R~_ + 1 - A to r o ~u : Otr --, Otro. Now r o ~u takes the 

(n - l)-dimensional  faces o f  a bijectively to the (n - 1)-dimensional faces o f  

tr0. But any degree-zero map between (n - 1)-spheres must  take some pair of  

antipodal points to the same point (see for example exercise 7 on p. 124 of  

[K2]), hence r o ~g has nonzero degree. Since Otto is a deformat ion retract of  

R~_+ i _ A, the claim is proved. Because ~F represents a nul lhomotopy of  ~,  

there must  be a point s = (Sl, s2 . . . . .  sn) in the interior of t r  with ~F(s) ~A,  and 
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by definition of  ~I' the sequence (p, 7(&), 7(s2) . . . . .  7(sn), q) is sequentially 

equidistant. Since s is in the interior of  a, we have 0 <s~ <s2 < • • • <sn < 1, 

hence the images y(0) = p, y(&), y(s~) . . . . .  7(sn), 7(1) = q under the imbed- 

ding ~, are distinct. This completes the proof of  Theorem 1.1. 

For use in the proof of Corollary 1.2, we note that the sequence of  points 

obtained in the proof of  Theorem 1.1 has increasing parameter on the 

imbedded path from p to q. 

PROOF OF COROLLARY 1.2. By rescaling, we may assume that d(p, q) = 1. 
By the Eilenberg-Wojdyslawski Theorem (p. 81 of  [H]), there is an isometric 

imbedding of(X, d) into a Banach space L; the e-balls in L are path connected. 

For each positive integer m, define 

Xm = [.J B(x, 1/m), 
x ~ X  

X'., = X,,, U B(p, ¼) U B(q, ¼). 

Each X" is path-connected, and (]  ~ ' m =1 Xm = X U B(p, ~) U B(q, ~). 
In each X~,, choose a path ~'m from p to q which is an imbedding; moreover 

choose 7m so that the preimages of  B(p, ~) and B(q, ~) are connected. By 

Theorem 1. l, on each ?., there is a pair of  points z~, m, z2.,. so that the sequence 

(p, zt,,., z2,,., q) is sequentially equidistant; as remarked after the proof of  

Theorem I. l, they may be chosen to have increasing parameter on ~,,.. The 

distance from p to z L m is at least ], so z,  ,. cannot lie in B(p, ~). Since the 

parameter of  z2,,. on 7m is greater than that of  zl,,. and 7,. does not reenter 

B(p, ~) after leaving it, z2..1 cannot lie in B(p, ~). Similarly, zt, ,. and z2.., cannot 

lie in B(q, ~). In particular, zl,,. and z2,,,, lie within distance 1/m of  X. 

Since X is compact, we may choose convergent subsequences and assume 

that the z~,,. converge to zt in X for i = l, 2. The sequence (p, z~, z2, q) is 

sequentially equidistant. Since no z~, ,. is within distance ~ o fp  or q, these four 

points are distinct. This completes the proof of Corollary 1.2. 

2. A generalization 

In this section, we generalize Theorem 1.1 to a larger class of  metric spaces. 

By a compactum we mean a compact metric space. A continuum is a connected 

compactum, and an e-map is a map such that the preimage of  each point has 

diameter less than e. A map f :  K----D, where D is an m-cell, is essential if the 

restriction of  f to f-~(OD) does not extend to a map from K to OD. 
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We say that a metric space Xcontaining distinct points p and q is approxima- 

tely arc-connected with respect to the points p and q if, for each e > 0, there 

exists a continuum Y C X such that each ofp  and q lies within distance e from 

Y, and Y admits an e-map onto the closed interval I = [0, 1]. Then, X is 

approximately arc-connected if it is approximately arc-connected with respect 

to each pair of distinct points. 

THEOREM 2.1. Let p and q be distinct points in a metric space (X, d). I f  X is 

approximately arc-connected with respect to p and q, then for any n there is a 

sequentially equidistant sequence (Zo, z l , . . . ,  z,, zn + 1) o f  distinct points in X 

from p =z0 to q = zn + l. 

The proof of Theorem 2.1 occupies the rest of  this section. By rescaling, we 

shall assume that d(p, q) = 1. We begin with a lemma which gives a conve- 

nient reformulation of  the definition of  approximately arc-connected. 

LEMMA 2.2. A metric space X is approximately arc-connected with respect 

to p and q i f  and only i f  for each e > 0 there exist a continuum Y c_ X and an 

e-map rc : Y u { p, q} ~ I such that re(p) = O, re(q) = 1, and re(Y) = I. 

PROOF. Sufficiency is clear. For the necessity, fix e > 0 and choose d > 0 so 

that d(p, q) > 4dand ~ < e/2. By definition, there is a continuum Yo __c_ X, with 

p and q in a ~-neighborhood of Yo, admitting a 3-map 0: Yo ~ I. Since Yo is 

connected, 0 is essential. 

Choose points Po, qoE Yo such that d(po, p) < (~ and d(qo, q) < ~. If p ~ Yo, 

take Po = P, and ifq ~ Yo, take qo = q. Put a = O(Po) and b = 0(qo). Then a 4: b 
because diam(0-t(a)  U {p}) < 2c~, diam(0-~(b) u {q}) < 2c~, and d(p, q) > 
43. We may assume a < b. Extend 0 : I10-" I to 0 : Y0 U { p, q } ---- I by setting 
O(p) = a and O(q) = b. 

Now the restriction/t = 010-1([a, b]) : O-l([a, b])---- [a, b] is essential by 

Theorem 1.9 of  [KI]. Let a : [a, b] ~ I  be an order-preserving homeomor- 

phism. By Theorem 3.1 of [K1], aolt:O-'([a,b])--- 'I  is essential. Using 
Proposition 2.2 of  [K1 ], we obtain a component Y of  8-~[a, b] intersecting 

both (a o/t) - 1(0) and (a o/t ) - 1( 1 ). It is easily verified that the restriction of a o/~ 

to Y U {p, q} satisfies the conditions stated in Lemma 2.2. This completes the 

proof. 

Now fix n and let or, ao, v~, e,, R~_ ÷ 1, A, and rbe  as in the proof of Theorem 1.1. 

Choose a continuum Y and an e-map n : Y U { p, q } ---- I satisfying the proper- 

ties stated in Lemma 2.2. Consider the product 17 rc:(Y U {p, q})n ~ I  n. By 
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Theorem 2.3 of[K1] (which requires compactness of Y), rI n is essential. Let Z 

be the inverse image of a, and let f :  Z -~ a be the restriction of II n. By 
Theorem 1.9 of [KI], f i s  also essential. 

Define ~P" Z --- R~.  + 1 by 

~F(zl, z2 . . . .  , z , )  --  ( d ( p ,  Zl), d ( z l ,  zz),  . . . , d ( Z , _ l ,  z , ) ,  d ( z , ,  q)) .  

Consider a k-dimensional face (V,o, v~.,. . . ,  vik) of  a, where i0 < il < • • • < ik. 

CLAIM. B y  c h o o s i n g  e su f f i c i en t l y  s m a l l ,  t he  i m a g e  o f f  - 1( ( V~o, vi . . . . . .  v~k )) 

u n d e r  r o ~F can  be  m a d e  to l ie  in an  a r b i t r a r y  n e i g h b o r h o o d  o f  t h e  f a c e  

(e,  o, e~, . . . .  , e~k) Of  ao. 

PROOF. If f ( z l ,  z2 . . . . .  z , )~(V~o,  Vi . . . . . .  V~), then f ( z l ,  z2 . . . . .  z , ) =  
Y~]-o sjv~j. So in coordinates in R", writing cl = Y]_0 sj, we have 

f ( z l ,  z2 . . . . .  z , )  

= ( 0 , 0  . . . . .  O, co, Co . . . . .  Co, Cl, . . . , Cl, C2, . . . , Ck-I ,  1, 1 . . . . .  1) 

where the initial zeros occupy the first i 0 -  1 places, the c0's occupy the next 

il - io places, and in general the c[s occupy it+ 1 - il places. Writing z0 forp and 

z, + l for q, we have n ( z j _  1) = n ( z j )  except when j  is one of i0, i~ , . . . ,  ik. Since n 

is an t-map, it follows that the distance from zj_, to zj is less than e except for 

those values of j .  Therefore the j th  coordinate of W(zl, z2 . . . .  , z,) is less than e 

except when j  is one of i0, il,. • •, ik. Since the coordinates of~F(Zl . . . . .  z,) add 
up to at least 1 (the distance from p to q), the map r does not increase the size of 
coordinates. Thus the coefficient ofej in r o ~F(Zl, z~ , . . . ,  z,) is less than e unless 

j is one of i0, i , , . . . ,  ik. This proves the claim. 

Let h be the linear homeomorphism from ao to a determined by the vertex 

map that sends e~ to v~. Let g = h o r o LF : Z --* a and let go and f0 denote the 

restrictions of g and f ,  respectively, to f - ~ ( O a )  (taken as maps to a). For 

sufficiently small e, the claim shows that go carries the preimage of each face of 

a to within a small distance of  that face. If H denotes the linear homotopy 

(which exists since a is convex) from g to f ,  it follows that the restriction H0 of  
H to f - l ( O a )  gives a homotopy from go to f0 which has image in a small 

neighborhood of Oa. 

Let b be the barycenter of  a, and let R be a self-map of a that retracts a 

neighborhood of Oa containing the image of  H0 to Oa, but is the identity on a 

neighborhood of  b (and maps no other points to this neighborhood). Now 

R oH0 gives a homotopy in Oa from R °go to f0. Since f i s  essential, and the 
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homotopy R oH maps f-l(Otr) to &r at each level, Proposition 1.1 of [K1] 

shows that R .  g is essential and hence also surjective. It follows that the image 

of W must intersect A. (Otherwise, the image im(r o ~F) would not contain the 

barycenter b0 of tr0. In turn, i m ( g ) =  im(h o r o q~) would not contain the 

barycenter b = h(bo) of a, and finally, b = R(b) would not be in the image of 
R og.) 

Let z =(z~ . . . . .  zn) be a point with W(z)~A. By definition of  W, the 

sequence (p, z~ . . . .  , zn, q) is sequentially equidistant. Now f(z)  is not in Otr, 

since we have shown that r o • maps f -  1(00) close to 0tr0. Therefore the points 

n ( p ) = 0 ,  n(zt), n(z2) . . . . .  n(z,), r t (q)= 1 are distinct points of  I, hence 

p, z~, z2 , . . . ,  z,, q are distinct. This completes the proof of Theorem 2.1. 

Not all continua are approximately arc-connected. We present an example 

of a planar 1-dimensional continuum X containing points p and q such that X 

is not approximately arc-connected with respect to p and q. 

EXAMPLE 2.3. Denote by J the union of  the half-open intervals [ -  1, 0) 

and (0, 1 ]. Let k : J --" R 2 be the map defined by 

Let X0 denote the unit circle in R 2 and let X~ denote the image of k, so that 

X = X0 U X, is the closure of X~. The Borsuk-Ulam theorem (see Theorem 12, 

p. 109 of [K2]) implies that for no e < 2 does there exist an e-map from X0 into 
[0, 1]. But for sufficiently small e, if Y _ Xis a subcontinuum with k( - l) and 
k(l)  in the e-neighborhood of  Y, then it is clear that X0 _C Y. Hence for 

sufficiently small e there cannot be an e-map from Y to [0, 1]. 

3. Connected subsets of  R m 

In this section, we give some criteria for a subset of  R m to be connected. 

LEMMA 3.1. Let K be a closed subset o f  S '~, m > 2, which separates two 

points a and b o f  Sm. Then some component o f  K separates a and b in Sm. 

PROOF. Let U be the component of S m - K containing a and let M be the 

closure of U. Then M is closed and connected, and M __. U U K. Hence there is 

a component C of S m - M containing b. Let Co be the component of S m - K 

such that b E Co __- C. 
By Property II (The Brouwer Property) on p. 47 of [W], the boundary bd(C) 
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is a closed and connected subset of Sm. Clearly, b d ( C ) _  K, so bd(C) is 

contained in a component L of K. Now bd(C) separates U and Co, and 

bd(C) _ L, while L N Uand L N Co are empty. Therefore S m - L has at least 

two components FI and 172, where U c_ F~ and C o -  F2. This completes the 

proof. 

Recall from [H-W] that a compact m-dimensional metric space, m >_- l, is 

called an m-dimensional Cantor manifold if it cannot be disconnected by a 

subset of dimension _-< m - 2. In particular, an m-cell is such a space. 

The following is an easy consequence of Theorem VII l of  [H-W]. 

LEMMA 3.2. I f  C is a compact minimal separator o f  two points in S m+l, 

then C is an m-dimensional Cantor manifold. 

LEMMA 3.3. I f  D is a compact minimal separator o f  a pair of  opposite faces 

A and B o f  I" + 1, then D is an m-dimensional Cantor manifold. 

PROOF. Regard S m + 1 as the double of I" + 1 along OIm + 1. Then the double 

D* of  D has as its set of components the doubled components of D (i.e. the 

subspaces resulting from doubling the components of D along their intersec- 
tions with OIm + 1). 

Let a E A  and b E B .  Then D* separates a and b in S "+1. By Lemma 3.1, 

some component of D*, say the double of the component K of  D, separates a 

and b in S m + ~. It is clear that K separates a and b in I m + t. Since A and B are 

connected and K fq A and K A B are empty, it follows that K separates A and B 

in I" ÷ ~. Since D was minimal, we must have D = K and hence D is connected. 

Since the double D* of  D is a compact minimal separator of  two points in 

S"  + l, Lemma 3.2 shows it is an m-dimensional Cantor manifold. If a closed 

subset of D separates D, then its double separates D*. This proves that D is an 

m-dimensional Cantor manifold, completing the proof of Lemma 3.3. 

For m > 1, regard R m as R × R m- ~. Each subspace of  the form (x)  × R m - 1 

will be called a verticalflat. 

PROPOSmON 3.4. Let S be a subset o fR m, m > 1. Suppose that S intersects 

each vertical flat, and each (m - 1)-dimensional continuum in R" that is a 

Cantor manifold which is not contained in some vertical flat. Then S is 

connected and dense in R". 

PROOF. The density is obvious. For m = 1, S must equal R, so we assume 

m => 2. Suppose for contradiction that S is not connected, and let A, B form a 

separation of S. Let U and V be disjoint open subsets of R" with A _ U and 
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B _c V. Denote R m - -  ( U  U Is') by C, and for each vertical flat F,  let CF = 

C (1 F. We claim that F - CF is entirely contained either in U or in V. For if 

not, let u ~ ( F - C F ) N  U and r E ( F - C F ) N  V. Choose a PL arc a__ F 

running from u to v. Choose a regular neighborhood N'  of  a in F of  the form 
Im-2x  I in such a way that N6 = I'~-2 × (0} c_ U a n d  N~ = Ira-2 X {1} _ V. 

Let I, = [x - e, x + e], where F = (x} × R r~-2. For sufficiently small e, N = 

I, × N'  is a regular neighborhood of  a in R m such that No = I, × NO __ U and 

Ni = I, × N~ __ V. No vertical flat separates No from N 2 in N. Now C M Nmust  

separate No from N~ in N. By Lemma 3.3, a minimal closed connected subset of  

K which separates them must be an (m - l)-dimensional Cantor manifold. It 

cannot lie in a vertical flat, so must contain a point of  S, a contradiction. We 

conclude that F - CF is entirely contained either in Uor  in V. Since this is true 

for all vertical flats, the images of  Uand Vunder the projection from R × R m - 

to R are disjoint open subsets of  R. Therefore there is a point p that is not in 

their image, so the vertical flat {p) × R"-~ lies in C. This is a contradiction, 

since every vertical flat contains a point of S. This completes the proof. 

It seems worth noting the following special case of  Proposition 3.4. 

COROLLARY 3.5. Let S be a subset o f R " .  I f  S intersects each (m - 1)- 

dimensional continuum in R '~, or even each ( m -  1 l-dimensional Cantor 

manifold, then S is connected and dense in R".  

4. Spaces without equidistant sequences 

The examples we construct in this section are the umon X = S U E of two 

disjoint dense subsets o f R  m. The set Sand  hence also Xwill be connected, and 

E will have cardinality 2~0. We may choose X to contain no sequentially 

equidistant sequence of four or more distinct points with both endpoints in E. 

More generally, Xcan be constructed so as to contain no sequences of  distinct 

points (actually, no sequences in which each three successive points are 

distinct) with endpoints in E for which the successive distances are in an 

arbitrarily selected set of  fewer than 2~o ratios (see the paragraph before 

Proposition 4.2 for precise definitions). 

The constructions are based on an inductive selection procedure developed 

in Proposition 4.2. At each step, one must avoid selecting a point which would 

create a "bad" sequence; the sets of  points that must be avoided for S and E are 

described in Lemma 4.3. On the other hand, one wants be sure to select enough 

points to make sure that S satisfies the connectedness criterion given in 
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Proposition 3.4. This is posible because of a simple yet remarkable property of  

algebraic sets, given in Lemma 4.1. An additional complication in Proposition 

4.2 is that for a fixed k with 1 < k < rn, the set S is to be selected so that it 

contains exactly one point from each subset of  the form (x} × R m-k _ R k × 

R m - k = R m. This shows that S can be taken to be the graph of  a function from 
R k to R m -k .  

The sets X have interesting dimension-theoretic properties. Being con- 

nected, they must have dimension at least 1, and the constructions may always 

be performed to make certain that X has dimension equal to 1. In fact we show 

that if even one of the avoided ratios involves sequences of 4 points or of  5 

points, as opposed to longer sequences, then the dimension of  X cannot exceed 

1; in particular, this applies to the examples containing no sequentially 

equidistant sequences. We also show that the construction we use to prove 

Proposition 4.2 always yields X of dimension at most 2. But the general 

question of whether an example which excludes all sequences with distances in 

a given ratio must have dimension l remains open. 

It will be convenient to use "small inductive dimension," the dimension 

theory in [H-W]. Since all our spaces will be separable and metrizable, this 
agrees with all other definitions of topological dimension. 

We call a subset K c_ R m algebraic if it is the set of  common zeros of a 

collection of nonzero polynomials. In most of  our applications, the algebraic 

sets will be hyperplanes or round spheres of dimension m - 1 or m - 2. 
Algebraic sets have the following property. 

LEMMA 4.1. Every open subset o f  R m contains an arc that intersects each 

algebraic subset o f  R "  in at most  f initely many  points.  

PROOF. We will construct an arc that intersects every algebraic subset of  
R m in at most finitely many points. Translating any segment of  this into the 

given open subset will then prove the lemma. 

It is enough to find an arc that intersects the set of  zeros of each nonzero 

polynomial in at most finitely many points. Choose real numbers 

k,, k2 , . . . ,  km which are linearly independent over the rationals, and let 
a(t)  = ( e  k,t, e k:t . . . . .  e kd ) .  Let 

f ( x b  X2, • • •, Xm) = 
N 
E qxf,.,xf~.,.., x,~., 

j=l  

be any nonzero polynomial in m variables, written so that all cj ~ 0 and no two 
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of  the m-tuples  (nl,j, • • . ,  nmj) are equal. Now f o  a maps  R to R, and the 

preimage of  zero is the set o f  t such that a( t)  lies in the zero set o f f .  Write 

N 

f o a ( t )  = Y, cjel/. 
j = l  

Since the/ j  are distinct linear combinat ions  o f  the ki with integral coefficients, 

they are distinct. We may reorder so that l~ < l~ < • • • < ls. N o w  

N-- I  cj 
e -~g foa ( t )  = 1 + E e (6-~t 

cN j=l cN 

so the set o f  zeros o f f °  a is bounded  above. Similarly, it is bounded  below. 

S ince fo  a is nonzero and analytic, its zeros form a discrete closed set, so there 

are only finitely many o f  them. Therefore the image o f  a intersects any 
algebraic set in R m in at most  finitely many points. This completes  the proof  of  

Lemma 4.1. 

A sequence z = (Zo, z,, z2 . . . . .  z,, Zn+l) of  points in a space X, with n > 2, is 

said to be nondegenerate i f  z~ 4= zi + ~ for 0 < i < n and z~ ÷ zi + 2 for 0 ~ i < n. 

In particular, any sequence of  four or more  distinct points is nondegenerate.  

Given a nondegenerate sequence z = (z0, Zm, z2,. • •, z,, z. + l) in a metric space 

with metric d, let c~, = d(z~_ l, z~) and let 5o = E;-+I ~ t~i. Following Klee [K] we 

will define the ratio sequence o f z  to be the point  r(z) in the s tandard n-simplex 

tr, which has barycentric coordinates  (c~/c~0, 52/50 . . . . .  5, ÷ ~/c~0). Since no two 

consecutive points are equal, r(z) lies in the interior o f  a. .  

PROPOSITION 4.2. Let m > 2 and let ~ = (r~ } be a set o f  cardinality less 

than 2 ~o, with each r~ a point in the interior o f  the standard simplex o f  dimension 

n~ > 2. Let k be an integer with 1 < k < m - I, and let ~ be the collection o f  all 

subsets o f R  m = R k × R m-k o f  the form {x} × R m-k. Then there exist disjoint 

sets S and E in R m with the following properties. 

(a) I f k  > 2 then S intersects each ('m - 1)-dimensional continuum in R m. I f  

k = 1, then S intersects each (m - 1)-dimensional continuum in R m that 

is a Cantor manifold not contained in some element o f  3 f  . 

(b) S intersects each element o f  ~t " in exactly one point. 

(c) E has cardinality 2 ~o and E is dense in R m. 

(d) I f  X = S U E, then for no nondegenerate sequence z = 

(z0, Zl, z 2 , . . . ,  Z,+l) in X with z o, z ,+~EE is the ratio sequence r(z)  an 

element o f  ~ .  

Moreover, X may be chosen so that dim(X) < 1. 
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PROOF. We begin by fixing some convenient notation. Let S and E be 

subspaces of R ' ,  for some m > 2. Define seq(S, E) to be the set of  all 

nondegenerate (finite) sequences in S U E whose first and last points are in E. 

A pair (S, E) is said to be admissible if it satisfies the following: 

(1) the cardinality of S U E is less than 2~0, 

(2) S n E is empty, 

(3) for no z ~seq(S, E) is r(z)E ~ .  

The sets S and E of the theorem will be constructed simultaneously by 

transfinite induction. The inductive step is based on the following lemma: 

LEMMA 4.3. Suppose (S, E) is admissible. 

(a) The set o f  all x in R" such that (S U {x }, E) is not admissible is contained 

in the union X,, _ 2 o f  a collection o f  fewer than 2 ~o round ( m - 2)-spheres 
in R".  

(b) The set o f  all x in R" such that (S, E U {x }) is not admissible is contained 

in the union Xm -l o f  a collection o f  fewer than 2 ~o round (m - 1)-spheres 
in R m. 

(In (a) and (b) and all future statements about spheres, the spheres may have 

radius 0.) 

PROOF. We will adopt some notation from [K]. For distinct points p and q 
in R m, and a positive number s, define 

F(p, q; s) = {x ~ R "  I d(p,  x) = sd(x, q)}. 

It is easily seen that i fs  ~ 1, then F(p, q; s) is a round (m - 1)-sphere whose 
center lies on the straight line containing p and q, but is not equal to either p or 
q. We note for later use that i f s  < 1, then F(p, q; s) bounds an m-ball in R" 
which contains p in its interior, and the diameter of  this ball approaches 0 as s 

approaches 0. I f s  = 1, then F(p, q; s) is an (m - 1)-dimensional hyperplane, 

while i fs  > 1, then r (p ,  q; s) is an (m - 1)-sphere enclosing q. Now define 

= ( o }  u (s, ,  

u I (Sl, 
I_ s i 

s2 . . . .  , s .+O~ ~1} 

s2 . . . . .  s .+OE ~1 t , 

~ = ( t d ( p , q ) I t ~  and p, q E S U E } ,  
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Y,.- i  = {Z I Z i s  an (m - 1)-sphere in R m 

with center in S U E and radius in ~} ,  

Z',.-i = {F(p,  q; s) l p ,  q ~ S  to E,  s ~ -  (0}),  

Xm-2 = (& n & * &}. 

Define X,,_ 1 to be the union o f S  U E and all elements OfZm - 1 and define X,, _ 2 

to be the union o f  S tO E and all elements of  Zm- 2. 

SUBLEMMA 4.4. Let  (z0, & , . . . ,  z ,+l)  be a nondegenerate sequence with 

ratio sequence (sl, s2 . . . .  , s, + 1)~ 0,. Then 

(a) For each i with 0 <-_ i < n - 1, z, lies on the sphere with center z, +1 and  

radius (s, +/s,  + 2)d(z, + 1, z, + 2). 
(b) For each i with 2 < i < n + 1, z~ lies on the sphere with center z i -  1 and  

radius (s /s ,_  0d(zi_2, z,_ 1)- 

(c) For each i with 1 < i <-_ n, z~ lies on the sphere F(z,_l,  z,+l; sJs,+l). 

PROOF. These are immedia te  from the fact that 

d(z~_l, z j ) =  sj 

d(zj, zj+l) sj+l ' 

where j is respectively i + 1, i - 1, and i in the three cases. 

We can now prove Lemma 4.3. For (b), suppose that (S, E O {x}) is not 

admissible. Obviously,  part (1) o f  the definition o f  admissibili ty cannot  fail. I f  

(2) fails, then x E X,. _. since S tO E _ X,, _ 1. Suppose that condit ion (3) fails. 

Then there exists a sequence z = (z0, z l , . . . ,  z , + 0  in seq(S, E tO {x}), having 

ratio sequence r ( z ) E  ~1. Since (S, E)  was admissible, x must  appear  at least 

once in this sequence, and then Sublemma 4.4(a) or 4.4(b) implies that 

x EX, ,_  1. This proves (b). For (a), suppose that (S tO {x}, E)  is not admissible. 

Again, condit ions (1) and (2) cannot  fail. I f  (3) fails, then there exists 

z E seq(S tO {x }, E)  with ratio sequence r(z)  ~ ~l. Since (S, E)  was admissible, 

x must appear  at least once in this sequence, say x = &. Since z0 and z, + 1 are in 

E,  both z , - i  and Z,+l are defined. Since n > 2, at least one o f  z,_2 or  z~+2 is 

defined. By Sublemma 4.4(a) or (b), x must  lie in a sphere in Z,,_ 1 centered at 

z~-i or z,+l. By Sublemma 4.4(c), x must  lie on the sphere (or hyperplane) 

F(z,_l, z~+l;sils,+O in Z ' - l .  Since F(zi- i ,  zi+l;si/si+O in Z ' - i  cannot  be a 

sphere centered at zi_ i or z, + 1, x lies in an element of  £ , , -2  and hence lies in 

X,,-2. This completes the p roof  of  Lemma 4.3. 
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We will now begin the construction of the sets S and E satisfying Proposition 
4.2. I fk  > 2, let ~ denote the set of all (m - 1)-dimensional continua M i n  R",  
while if k = 1, let ~ denote the set of all (m - 1)-dimensional continua in R" 
that are Cantor manifolds not contained in any element of :~f'. Let ~ denote 
the set of all closed rn-balls in R m of positive radius. Let R be well-ordered so 
that for each a ~ R, the cardinality of {fl ~ R[f l  < a} is less than 2~0. Addition- 
ally, assume that 0 is the minimal  element. Choose one-to-one correspon- 
dences of R with M, ~q, and o~(', denoting by B~, Ca, a n d / ~  the respective 
elements of 2 ,  ~g, and ~ corresponding to a ~ R .  

Choose any point s ~B0. I f s  EK0, put s = s'. Otherwise, choose any s'~Ko. 
Let So = {s, s'}. Now, use Lemma 4.3(b) to choose e ~ B o -  {s, s'} so that if 
E0 = (e} then (So, E0) is an admissible pair (for example, on any straight line 
segment in B0 are points not in the set X,,_ ~ of Lemma 4.3(b)). 

Suppose inductively that for each fl < a there has been constructed a pair 
(Sp, Ep) which is admissible and additionally satisfies the following for all 

=<//: 

(4) Sy c_ Sp and Ey _ Ep, with proper containment if 7 < fl, 
(5) Sy n Cy is nonempty,  
(6) Ey n By is nonempty,  

and moreover 
(7) Ky n Sp consists of exactly one point. 

We shall construct an admissible pair (S~, E,) satisfying (4), (5), (6), and (7) for 
7 =< fl --< a. Let S* = Up <~ Sp and E* -- Up <, E B. Then it is clear that (S~*, E~*) 
is admissible, and meets each Ky with ? < a in exactly one point. 

We wish to select a point x ~ C~ with the following properties: 
(a) x ~ Ua <~ Kp, and 
(b) (S* U {x }, E*) is admissible. 

Suppose first that k > 2. Since C~ is (m - l)-dimensional, by [M] or [$2] there 
exists an (m - 1)-dimensional coordinate plane P in R" such that the projec- 

t ion of C~ to P has dimension m - 1. By Theorem IV3 of [H-W], there must  be 
a nonempty open (in P) set Uin  this projection. Consider the projection of  the 
set Xm-2 from Lemma 4.3(a) to P. The image of the projection of any 
(m - 2)-sphere in R" to P is either an (m - 2)-dimensional ellipse, or a flat 
( m -  2)-dimensional cell (or a point, if the radius is zero). Therefore the 
projection of X,,-2 is contained in a union of  fewer than 2~0 algebraic sets and 
points. Each Ky for y < a is a hyperplane of dimension m - k; since k >_- 2 its 
projection to P is an alebraic subset (if k were 1, its image might be all of  P). 
Apply Lemma 4.1 to get an arc in the open set U. This arc must  contain a point 
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x* which is not in the projected image of X,, -2 U (UT<~ K.~). Any point x in Ca 

that projects to x* in P will satisfy (a) and (b). If S* U {x} contains a point of  

K~, put x ' =  x. Otherwise, observe that the intersection of Xm-2 with K~ 

consists of  a collection of fewer than 2~0 algebraic subsets that are proper 

subsets of K~; therefore, an application of Lemma 4.1 in K~ leads to a point x '  

in K~ which is not in the set Xm -2 of Lemma 4.3(a), so that (S* U {x, x'}, E*) is 

admissible. This pair now satisfies (5) and (7). Now, use Lemma 4.3(b) to 

choose w ~ B ~ - ( S *  U { x , x ' }  U E'~) so that (S* U { x , x ' } , E *  U {w}) is 

admissible (for example, choose w on a straight line segment in B,). This pair 

now satisfies (5) and (7) as well, so the inductive construction is complete for 

k > 2 .  
Suppose now that k = 1. Then C~ is an (m - 1)-dimensional Cantor mani- 

fold not contained in any set of  the form {x} X R m-l. Consequently, its 
projection to the first factor of  R m is connected and contains more than one 

point, so is 1-dimensional. We can now apply the following result, a special 

case of Theorem 4.9 of  IS1]. 

TrIEOREM. Let W be a compact (m - 1)-dimensional Cantor manifold in 

R X R m - 1. Iftheprojection o f  W to thefirst factor is 1-dimensional, then there is 

an (m - 2)-dimensional coordinate hyperplane P' c_ R m -i such that the projec- 

tion of  W to R × P' is (m - 1)-dimensional. 

Since the projection of C~ to this coordinate plane P = R ×  P'  is 
(m - 1)-dimensional, it has interior (by Theorem VI 3 of  [H-W]). Since P 

contains the first factor, the projection of each element of  J,( to P is a proper 
subset of P. The rest of  the selection process now proceeds exactly as in the 

case k > 2. 
Finally, let S = U,eB S~ and E = U~_R E~. By (2), E c R '~ - S. By (7), S 

intersects each element of~c  in exactly one point. By (5), we obtain statement 
(a) of  Proposition 4.2. By (6), E is dense, and by (4), E has cardinality 2~0. By 

(3), no z ~ seq(S, E) has r(z) E ~1. This completes the proof of  all statements in 

Proposition 4.2 except the remark about the dimension of X. 

In order to force the construction to yield a set X o f  dimension < 1, let {Ai } 

be a countable basis of  round open balls in R m. For each i, let {B]} be a 

countable basis for the topology ofOA, consisting of  the intersections of  round 

balls in R" with OA~, so that the boundaries of the B1 are round (m - 2 ) -  

spheres. Let Ym- 1 = UOAj, and let Ym-2 = UOBf. In the construction of X, 

choose So and E o to lie in the complement of  Ym- t, and in all steps where the 

sets Xm - 1 and Xm _ 2 of Lemma 4.3 are used, use instead the sets X,. _ ~ U Y,. _ 
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and X,,_2 tA Ym-2. The construction will then yield a space X for which X is 

disjoint from Y,, -2, and any such Xmust  have dimension _-< 1. This completes 

the proof of Proposition 4.2. 

Combining our results will now yield the examples. If f :  Rk-- ,R m-k is  a 

function, let Sy _ R k × R m- k denote its graph. 

THEOREM 4.5. Let k and m be integers with 1 <= k < m, and let ~ = {rv} 

be a set of  cardinality less than 2~0, with each rv a point in the interior o f  the 

standard simplex of  dimension nv >= 2. Then there exist a function f :  R k ~ R m -k 

and a set E c_ R m disjoint from the graph Syof f with the following properties. 

(a) Syis connected. 
(b) E has cardinality 2 ~0 and E is dense in R m . 

(c) I f  X = Sy U E, then for no nondegenerate sequence z = 

(z0, z~, z2 , . . . ,  Zn+l) in X with Zo, Z ,+lEE is the ratio sequence r(z) an 

element of  ~t. 

Moreover, f may be chosen so that dim(X) < 1. 

PROOF. The set S constructed in Proposition 4.2 is the graph of a function 

from R k to R m-k, because of condition (b) there. Because of condition (a) there, 

Proposition 3.4 implies that S is connected. 

Taking 9t = {barycenter(a,)l n >= 2}, we have as an immediate conse- 

quence the case of interest: 

COROLLARY 4.6. For each m > 2, there exist a connected dense subset 
S c_ R m and a dense subset E c_ R m disjoint from S and ofcardinality 2 ~o such 

that for no pair o f  points e and e' in E is there a sequentially equidistant 

sequence of  4 or more distinct points o f  S U E starting at e and ending at e'. 

The next theorem shows that many of our examples - -  in particular, all the 

examples in Corollary 4.6 - -  will have dimension 1. 

THEOREM 4.7. Let X be a dense subset o fR  m, containing a dense subset E. 

Let r be a point in the interior o f  the standard 2-dimensional simplex, or in the 

interior o f  the standard 3-simplex. I f  dim(X) > 2, then there is a sequence of  

distinct points of  X, with endpoints in E, whose ratio sequence is r. 

The proof will use the following lemma. 

LEMMA 4.8. Let X be a dense subset o f  R m, containing a dense subset E. 

Assume that the dimension o f  X is at least 2. Then there is a point z E X with the 

following property. Given any two positive numbers s and t, there exists a 
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positive number e with the property that i f  e is any point of  E with d(e, z) < e, 
then there are infinite sets (x~} c_ X and (ei} c E of  distinct points with the 
property that for each i, d(z, x~) --- sd(e, z) and d(x~, el) = td(e, z). 

PROOF. By definition of inductive dimension, there exists a point z in X 

with the following property. Writing Y~ for the (m - 1)-sphere of  radius 6 

centered at z, there is an ez > 0 such that for each positive 6 < e~, there exists a 

point y ~ X O Y.~ such that all sufficiently small neighborhoods of y in X n Z6 

have nonempty boundary. 
Let e = e~/s, and suppose that e is any point o r E  with d(e, z ) < e .  Denote 

d(e, z) by d~, and let d2 = sdl and d3 = tdl. Since sdt < e~, there exists y ~Zd~ 

such that arbitrarily small neighborhoods of y in X N Ed~ have nonempty 

boundary. Conceivably, y may equal e. 
Consider the ray starting at z and passing through y. Let p be the point on 

this ray, at distance d3 past y. For points p'  on this ray at distance less than d3 

past y but sufficiently close to p, the intersection of  the sphere of  radius d3 

centered at p '  with the set X N Ed~ is the boundary of a small neighborhood o fy  

in X n Ed~. Choosing an el ~ E extremely close to such a p' (and distinct from e) 

the intersection of the sphere of radius d3 centered at el with X n Ea2 is the 

boundary of  a small neighborhood of  y in X n Zd2, hence is nonempty. 

Choosing x~ in this intersection, we have d(z, xl) = d2 and d(xt, el) -- d3, giving 
the desired ratio sequence. Infinitely many more pairs may be obtained by 

varying the choice of et. 

PROOF OF THEOREM 4.7. Assume first that r = (q, rE, r3) (in barycentric 
coordinates) is a point in the interior of  the standard 2-simplex. Applying 

Lemma 4.8 using s = r2/r~ and t = ra/rl yields a sequence (e, z, Xl, e~)with ratio 

sequence r. Now suppose r = (rl, rE, r3, r4) is in the interior of the standard 

3-simplex. Apply Lemma 4.8 twice, obtaining two sequences (e, z, xl, el) and 

(e, z, x2, e2), with xl, x2, el, and e2 distinct, such that d(xl, z ) =  r2d(e, z), 

d(xl, el) = rid(e, x), d(z, x2) = r3d(e, z), and d(x2, e2) = r4d(e, z). The se- 
quence (et, x~, z, x2, e2) has ratio sequence r. This completes the proof of  

Theorem 4.7. 

REMARK 4.9. The question of  whether any example as in Theorem 4.5 can 

have dimension greater than l remains open. Certainly X cannot contain any 

open subset of  R m, so X has dimension at most m - I. In particular, when 

m = 2, X must be 1-dimensional. The construction used to prove Proposition 

4.2 must always yield a set Xofdimension  =< 2 (when ;~ is nonempty). To see 
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this, first note that since E is dense in R m, the number 0 is a limit point of  the 

set ~ defined in the proof of  Lemma 4.3. Let x ~ X and e > 0. Choose ~ ~ 

with 0 < ~ < e. Let Z~ be the round (m - 1)-sphere in R m centered at x and 

having radius ~. Suppose that y U X  n Xr; let el > 0 .  For sufficiently small 

3~ E ~ ,  the sphere Fr, = F(y, x; alL) is the boundary of  an m-ball containing y in 

its interior and contained in the ball of radius e~ centered at y. Now the point y 

lies in S~ U E~ for some a ~ R. The number ~ occurs by applying Lemma 4.3 to 

some (Sp, Ep) and ~ occurs similarly for some (S~, Er). Let/~ = max{a,/~, ~,}. 

Then E n X, c_ E~ and S n (X~ n F~,) _ S~, since all remaining selections in 

the construction prohibit the choice of  more points of  E in Z6 or more points of  

S in X, n F~,. Thus 

x n n r6) c (E n X,) u (S n (X6 n 1"6)) c u 

so X n (X 6 n F~,) has cardinality less than 2~0. This shows that there are 

arbitrarily small neighborhoods of  y in X n X6 with boundaries of  dimension 

_-< 0. Since 3 < e, x has arbitrarily small neighborhoods in Xwhose boundaries 

have dimension < 1. Therefore X has dimension _-< 2. 

REMARK 4.10. We do not know whether the construction in Proposition 

4.2 (when ~ is nonempty) can ever yield a set Xofd imens ion  2; in fact, we do 
not know whether any set X = S U E as in the statement of  Proposition 4.2 can 

have dimension greater than 1. 

REMARK 4. I 1. With minor modifications all arguments and constructions 

in sections 3 and 4 apply when R m is replaced by any open convex subset o f R  m. 

In particular, there are examples of  bounded sets S and E with the property in 

Corollary 4.6. 

REFERENCES 

[B] L. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, 
1953. 

[H-Y] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Massachusetts, 
1961. 

[H] S.-T. Hu, Theory of Retracts, Wayne State University Press, Detroit, Michigan, 1965. 
[H-W] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 

Princeton, N.J., 1941. 
[K2] J. W. Keesee, An Introduction to Algebraic Topology, Wadsworth Publishing Company, 

Inc., Belmont, California, 1970. 
[K] V. Klee, Ratio-sequences of chains in connected metric spaces, in The Geometry of Metric 

and Linear Spaces (L. M. Kelly, ed.), Springer-Verlag, Berlin, 1975, pp. 134-146. 



Vol. 69, 1990 EQUIDISTANT POINTS 93 

[KI] J. Krasinkiewicz, Essential mappings onto products of manifolds, in Geometric and 
Algebraic Topology, Banach Center Publications 18, Polish Scientific Publishers, Warsaw, 1986, 
pp. 377-406. 

[M] S. Marde~i~, Compact subsets ofR n and dimension of their projections, Proc. Am. Math. 
Soc. 41 (1973), 631-633. 

[M 1 ] K. Menger, Untersuchungen fiber allgemeine Metrik. Vierte Untersuchung. Zur Metrik 
der Kurven, Math. Ann. 103 (1930), 466-501. 

[S] I. Schoenberg, On metric arcs of vanishing Menger curvature, Ann. of Math. 41 (1940), 
715-726. 

[S 1 ] Y. Sternfeld, Uniformly separating families of functions, Isr. J. Math. 29 (1978), 61-91. 
[$2] Y. Sternfeld, On the dimension of projections of compact subsets of R m, Proc. Am. Math. 

Soc. 88 (1983), 735-742. 
[W] R. Wilder, Topology of Manifolds, American Math. Soc. Colloquium Publ. XXXII, 

Providence, 1963. 


