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Introduction 

The motivation for this paper arises from a result of Bourgain [2] (see also [14]) 

which characterizes the U.M.D. property of a Banach function space in terms of 

a version .&4 of the Hardy-Litt lewood maximal function. 

If X is a Banach space of functions on a given measure space ~ and if we view 

a function f :  R n ~ X as a function of two variables f ( x ,w) ,x  E R" ,w  • ~2, .A4 

is just the ordinary Hardy-Litt lewood maximal operator acting on the variable 

x. Then Bourgaln's characterization says that X is U.M.D. if and only if .A4 is 

bounded in L ~ ( R " )  and also in L ~ , ( R  n) for some p, 1 < p < oo, where p' is the 

exponent conjugate to p and X '  is the function space dual. 

We can also view .hd as a supremum of averages, but a supremum in the lattice. 

We adopt this point of view and we study those Banach lattices X for which A4 

is bounded in L~c(R" ) for some p, 1 < p < oo. 

We call this property the Hardy-Littlewood (H.L.) property. Actually since 

we consider general lattices, our definition is slightly more complicated because 

we are forced to consider suprema of finite families only. 

The main idea is that the operator .A4 has a smooth version that can be viewed 

as a vector-valued singular integral. In section 1 we use the general theory of 

vector-valued singular integrals (as in [15]) to obtain characterizations of the H.L. 

property in terms of the boundedness of A4 in different function spaces associated 

to the lattice X. In section 2 we present several examples of lattices having or 

not having the H.L. property. It turns out that both t °o and co have the property 

H.L. while ~1 does not have it. We also see that some convexity is necessary in 

order to have the H.L. property. 

In section 3 we use the operator Ad (or its smooth version) to define new Hardy 

spaces and also a B.M.O. associated to the lattice X and we study the relation 

between the new spaces and the standard ones. 

Finally in section 4 we take up several questions which are meaningful when 

one works in the toms instead of R" .  For example we see that even though L 1 

does not have the H.L. property, however A4 is bounded from L[~ (T)  to L~,  (T)  

for 1 < p < oo and 0 < (~ < 1. This extends a result of Bourgain for the Hilbert 

transform (see [41). 

We want to thank Felipe Zo for many interesting conversations concerning 

section 4. 
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1. M a i n  r e s u l t s  

By a B a n a c h  la t t ice  we shall mean a Banach space X over the field R of the 

real numbers, together with an order relation < on X, satisfying the following 

properties: 

(i) x _< y implies x + z _< y + z for every x, y, z E X. 

(ii) ax >_ 0 for every x >_ 0 in X and every a > 0 in R. 

(iii) for every x, y E X, there exists the least upper bound sup{x, y} and also 

the greatest lower bound inf{x, y}, and 

(iv) if Ix] is defined as Izl = sup{x, -x} ,  then the order relation Ixl < lY[ implies 

the inequality between the norms Ilxll _< Ilyll. 

Whenever it is important to distinguish between the norms in different Banach 

spaces, we shall denote the norm in X by II IIx. 

Definition 1.1: Let X be a Banach lattice mid let J be a finite subset of the 

set Q+ of the positive rational numbers. Given a locally integrable function 

f :  R"  --+ X (this means, of course, a strongly measurable f such that the scalar 

function ~, , IIf(y)llx is locally integrable) we define: 

.M jr(z) = sup 1 f~ If(u)ldy 
~eJ IB(x,r)l (~,~) 

where IB(z, r)] = Cur" is the Lebesgue measure of the ball B(z, r). | 

We shall always denote the Lebesgue measure of a set E by [El- 

Notice that the sup in definition 1.1 is a sup in the lattice X. This accounts for 

the need to take just a finite collection of radii J .  This difficulty will disappear 

when we deal with the most relevant examples, which will turn out to be order 

complete (see the remark below). 

The family {.h4j} where J ranges over all finite subsets of Q+, will be our 

main object of study. We shall investigate the boundedness of A4 j and related 

operators in the Bochner-Lebesgue spaces L~c(R"), 1 < p < oo, the Lorentz 

space weak-L~c(Rn), the Hardy space H~:(R") and the space B.M.O.x(Rn).  

For the definitions of these spaces, we refer the reader to [15], where one can 

find a complete account of the theory of vector-valued singular integrals, which 

will be the basic tool in what follows. Sometimes we shall need to consider the 

analogues of the spaces listed above for the case of finite measure, i.e. for T" ,  the 

n-dimensional torus. We shall also have to deal with the weighted spaces L~ (w) 
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where w is a weight in the class Aoo of Muckenhoupt. These spaces appear also 

in [15] and the theory of Muckenhoupt weights caz~ be seen in [6] and [10]. 

Detinition 1.2: We shall say that a Banach lattice X satisfies the Hardy-Little- 

wood (H.L.) property if there exists some P0, 1 < P0 < oo such that the operators 

.A42 are uniformly bounded in L~(Rn) ,  that is, the inequality: 

[[MdfllL~c0(a- ) ~ CllfllL~O(g.) 
holds with C independent of J.  I 

Remark 1.3: The H.L. property does not depend on the dimension n. 

One can dominate A4j (in the lattice order) by an average over a hemisphere 

of the corresponding one dimensional operators in different directions, exactly as 

one does in the method of rotations (see [8], p. 79 or [10], p. 223). That way we 

prove that if X has the H.L. property with n = 1, then it has it also with any 

other n. 

The converse is even easier, perhaps passing through the corresponding prop- 

erty in finite measure (T"),  which turns out to be equivalent as well. We shall 

keep n fixed with the understanding that its particular value is irrelevant, l 

Remark 1.4: Let (f~,~"~,IL) be a complete a-finite measure space. A Banach 

space X consisting of equivalence classes, modulo equality alnmst everywhere 

(a.e.), of locally integrable, real valued functions on f / i s  called a KSthe function 

space if the following two conditions hold: 

(1) If If(w)l < Ig(w)l a.e. on D with f measurable azld g E X, then f E X and 

Ilfll _< 11911. 
(2) For every E E ~ with #(E) < c~, the dmracteristic hnc t ion  ,¥E of E 

belongs to X. 

For the main facts on Banach lattices and Banach function spaces, we refer the 

reader to [13], whose terminology azld notation we shall adopt. Another useful 

reference is [1]. 

Every KSthe function space is a Bazmch lattice with the obvious order ( f  > 0 

if f (w)  >_ 0 for a.e. w). 

If X is a KSthe function space and f :  R"  --* X is a locally integrable function, 

it is clear that .A4sf(x) is a function of w given by: 

 jf(x)( )=sup 1 [ If(y,w)ldy 
reJ IB(x,r)l as(,,~) 



Vol. 83, 1993 THE HARDY-LITTLEWOOD PROPERTY OF BANACH LATTICES 181 

where sup is now the sup in the order of R. In this situation we can see f and 

.M j f  as functions on R "  x fL 

Moreover, in this case we can define the operator A4 given by: 

(1.5) .k4f(z,w) = sup 1 /8 If(y,w)ldy. 
r~q+ In(x , , ) l  (, , ,)  

We recall that a K6the function space is said to have the Fatou property (see 

[13]) if everytime we have a sequence of funct ions/n E X, such t h a t / n @ )  _> 0 

for a.e. w, fn(w) T/(w) for a.e. w and also sup,, II/~ll < oo, then we have f E X 

and  Ilfll = l iml l f . l l .  
It is a simple consequence of Lebesgue's monotone convergence theorem for 

scalar functions that the space L~:°(R ") has the Fatou property provided X has 

it. Therefore, a KSthe function space having the Fatou property satisfies the H.L. 

property if and only if there ezists some po, 1 < po < oo such that .A4 is bounded 

in L~¢° (R"). I 

We shall need to consider as auxiliary operators, smooth versions of .Mj  and 

.&4 which we define next: 

Definition 1.6: Let ~o: [0, oo[--, R be a smooth function such that 

Xlo,x](t) < ~,(t) < Xlo,2](t) 

for every t > O. 

Let 2" be a Banach lattice, J a finite subset of Q+ and y: l:t" --* X locally 

integrable. We define 

= ~ f ( y ) ~ y ,  
rEJ 

x ~ R", where co = fan ~(Izl)d~. 
If X is a K6the space of functions on fl, we call also define: 

./t,4~f(z,w)= sup 1 ~ ( ~ ) f ( y , w ) d y  
rEq+ ~ " ~ 

In the definition of the . ~ ¢ , / s ,  the sup and the [ [ are those in X,  while in the 

definition of A4¢ they are the corresponding ones in R. I 

The theory of vector-valued singular integrals can be applied to obtain the 

following list of different characterizations of the H.L. property. 
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THEOREM 1.7: Given a Banach lattice X and a function ~ as in the previous 
definition, the following conditions are equiva/ent: 

(1) X has the tt.L. property. 

(2) There exists some po, 1 < po < oo, such that 

[[./b4~,JfilL~o(R.) ~ CpoIIfIIL~o(~L.). 

(3) For every p, 1 < p < oo 

(4) For every p, 1 < p < ov 

iIJ~,JfO[LPx(R~) ~_ Cpi[fiinPx(R~). 

C 
(5) ifx ~ R": i i~J / (x) l lx  > ~}J <_ -~ fR. IIf(x)ilxdx. 

C 
(6) I(x ~ R": IIM~,J/(x)lix > ~}I < -~ fR. II/(z)iixdx. 
(7) IIM~,J/IiLI,(R") --< CII/IIH~,(R.). 
(8) [[./b~¢,JfllB.M.O.x(g~ ) ~_ CiIfIIL~(R~ ). 
(9) If W iS an Aoo weight in R n and 0 < p < oo, 

£ .  HM,p,jf(x)[[Pxw(z)dx (_ Cp(w) ~ (M(liflix)(x))'w(x)dx, 

where M is the Hardy-Littlewood maxima/operator  in R", which is applied 

to the sca/ar function x,  , Ilf(x)ilx. 
(10) For every cube Q (with sides parallel to the coordinate axes, as we shall 

a/ways assume) and every function f E L ~ ( R  n) having support contained 
in Q (supp f c Q) we have: 

Q iiJl~,J f ( x )ilx dx ~- cIOfO[L~ [QI. 

The constants C, Cp, C,(w) (not the same at each occurrence) depend on 

X,~ ,p  or w, but do not depend on J.  

Proof: Observe that for every r > 0, we have: 

XB(z.r)(y)~_~o(]-x-~ - ~ )  ~ XB(,,2r)(Y); x, y E R  n 
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and, consequently, if f:  R"  ---} X is a positive function: 

XB(x,r)(y)f(y) <_ ~ ( ~ )  f(Y) < XB(x,2r)(Y)f(y) 

so that we get: 

and 

C0 
.A~jf(x) < --Ad~,gf(x), x E R" 

Cn 

2 " c , . ,  , . ,  , 

. / ~ , J f ( X )  < ./vl2Jf[Z), X E R " .  
co 

These inequalities, together with the fact that, for any function f: R n ---* X, 

we h a v e  

I I I f (x ) l f lx  = I I f (x ) l l x  

immediately yield (1) ¢=~ (2), (3) ¢=~ (4) and (5) ¢=~ (6). 

Next we shall prove that (2) =} (6). 

We just need to consider one fixed J and see that the boundechless of .&4,,j in 

L~ implies that it is bounded from L~¢ to weak-L~ with a constant depending 

only on its norm as an operator bounded in L~.  

In order to do that, we shall consider an operator Tj sending X-valued func- 

tions into functions taking values in the Banach space X(J),  consisting of the 

sequences (Xr)rEJ of elements xr e X with I[(xr)rEJIlx(g) = li sup Ixrlllx. 

For f: R"  ~ X locally integrable, we define: 

This is to be viewed as a linearization of the operator A4~,j. Since 

I I T j f ( x ) l l x ( J )  = IIM~,Jf(x)llx 

the boundedness of .M~,j in L~r°(R ") is equivalent to the boundedness of Tj  

from L~(Rn)  to L~(j)(Rn).  

But Tj is a linear operator given by convolution with a kernel Kj(x) E 
Z.(X, X(J))  (bounded linear operators from X to X(J)) namely: 

v ; 
rEJ 

v 6 X ,  
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IIKJ(x)llr.~x,x~j)) --- sup c - - ~  
rEJ 

The smoothness of ~ guarantees that K j  satisfies the so-called standard esti- 

mates for Calder6n-Zygmund kernels, that is: 

and 

IIKJ(z)ll _< Clx l - "  

I IKj(x)  - K j ( x ' ) l  I < C[x - x'llx] - n - z .  

Note that these estimates are uniform in J, i.e., the constant C does not depend 

on J. Now the theory of vector-valued Calder6n-Zygmund operators, as given 

in [15] can be applied to T j  to obtain 

(1.8) [{x e R": [[Tjf(x)llx(J) > A}] _< ~- ~ [[f(x)llxdx 

But this is precisely (6) 
Our next step is to see that (6) =~ (9). 

Given J fixed we consider the X(J)-valued operators 

= ¢p f ( y ) d y  , ~ > 0 
--y[>e rEJ 

and the corresponding maximal operator 

T ~ f ( x )  = sup I lTj ,~f(x) l lx( j) .  
e>o 

Now for this operator we have the following Cotlar's inequality: 

(1.9) T ~ f ( x )  < C6{(M(l lTJ f l l6x( j ) ) ( z ) )  '/~ + M ( l l f l l x ) ( x ) }  

valid for 0 < 8 <_ 1. 

Inequality (1.9) is obtained exactly as in [11], p. 56, by using just the weak 

type (1.1) of Tj, (that is, (1.8) which is equivalent to (6)) plus the standard 

estimates. 

Now it is a simple consequence of (1.8) mad Kohnogorov's inequality (see [11], 

p. 5 or [10], p. 485) that the operator f ,  , (M(IITJflI6x(j))) 1/6 for 0 < 6 < 1 is 

bounded from L~(R")  to weak-Ll(R"). Therefore, (1.9)implies that: 

(1.10) I{x E Rn: T j f ( x )  > A}[ < -~ . Ilf(x)llxdz. 



"Col. 83, 1993 THE HARDY-LITTLEWOOD PROPERTY OF BANACH LATTICES 

Now from (1.10) we derive, just as in [6] the good-A inequality 

for w E Aeo. 

inequality: 

185 

w({x E R": T~S(z) > 2,~ and M(llfllx)(x) <_ 7A}) 

< cTSw({x e Rn: T~rf(x) > ,~}) 

This good-A inequality produces, in the usual way (see [6]) the 

(1.11) /R,, (T~f(x))Pw(x)dx < C fR,, (M(llfllx)(~))Pw(x)dx 

for w E Aoo and 0 < p < oo. Of course C depends on p and w, C = Cp(w). In 
order to obtain 9) from (1.11) we just need to observe that 

IITJ,.f(z) - TJf(z)l lx( J> 

___/,,. IIgJ(z - y),¥mx,,)(y)f(u)llx(j)dy 

= sup qa Itf(u)llxXa(x,.)(u)du 
n r E J  

c f~  IIf(u)lldu --, 0, ~ --, 0 
< (min J ) "  (~,,) 

so that we cart use Fatou's lemma to obtain: 

R. II'/t%'Jf(z)llPxw(x)dz = f i{ .  IIT"f(x)llPx(j)w(z)a~ 

<_ fR (Ty, f(~))"w(x)d~ <_ c fRn(M(llfllx)(x)Fw(x)dx 

and we get (9). 

It is immediate that (9) implies (4). We just need to take w = 1 and use the 

boundedness of M in Lp for p > 1. 

Since (4) trivially implies (2), we have obtained the equivalence of (1), (2), (3), 

(4), (5), (6) and (9). It is rather simple to obtain (10) from (2). 

Let f be a function in L~' with supp f C Q. Then 

1 Iql/q IIM~,JS(x)llMx </I--~l/q II~"ff(~)ll'~dx/'/~° 

< C (~ql /Q IIf(~)ll~?d~) '/'° _ < ClIflIL~'. 
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Now, assuming (10), we shall derive (8). 

Let f E L~'. Given a cube Q with center x0, we consider the cube ~) with the 

same center and diameter twice that of Q, and decompose f = f l  + f~ where 

.fl = f X  O. Then we have 

1101 f o  IIM~,,Jf(z) - A4~,,sf2(xo)llxdx 

< -~1 {ITsf(x) - Tsf2(xo)l lx(s)dx 

l fq l fQ ~ HYJfl(x)tlx(j)dz + ~{ ]{Yjf2(z) - Yjf2(zo)llx(s)dz. 

The first term in this sum is handled by using (10): 

1/o 1/o IQI IlTsfa(x)llx(s)dx = -~1 IIM~,,sfl(x)llxdx 

< IQ--~I IIM~,,sfa(x)llxdz < CIIflIL~. 

For the second term we just need to use the standard estimates for Ks.  We 

get: 

R Ix - x 0  I 
{tTJf2(x) - TJf2(xo)llxcs) < C ,, Ix - x01n~-~q--~ - x01 ''+1 IIf(u)llxdu 

< CttfIIL ~ .  

That  way we obtain (8). 

We have actually found that Tj  is bounded from L ~  to B.M.O. x(s) .  

Now from (8) one can obtain (7). We just need to take an atom a ~ H~ and 

show that: 

IIM~,salIL~x(R,, ) = IlTsaltL~x~j)(rt,, ) < C. 

That  a is an atom means that a: R n ~ X is supported in a cube Q, with 

center x0, say; a has also average 0 mad it satisfies II"(~)llx <- UIQI  a.e. For 

x ¢ Q, the doubled cube, we have: 

Tja (x )  = / o  K j ( x  - y)a(v)dy 

= [ ( g s ( x  - y) - K s ( x  - zo))a(y)dy 
.]Q 
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which, together with the standard estimates, gives: 

? 

I I~,~,J~(~) l lx  = IITJ~(~)llx(.,~ ___ Cl~ - =o1- " - '  Jo ly - =ollla(v)llxdu 

< Clql ' /" l  z - =ol . . . .  1 

and, consequently, 

/R IIM~,Ja(x)llxdx < C. 
,, \ Q  

On (~ we can use (8) which tells us that 

In particular 

I I -~,JalIB.M.O.,,  --< CIQI-'. 

! ~ IIM~,ja(x) - (M~,Ja)OIIxdx < ClOt-'. 
i01 0 

But note also that if Q* is a cube adjacent to Q and with the same size 

I I ( ~ , J a ) o  - (.M~,,ja)Q. IIx < C IQ I - '  

as one sees by adding and substracting the average on the smallest cuhe contain- 

ing both Q and Q*. 

Also, since Q* c R "  \ 

so that, actually, 

and 

We get finally 

I I ( ~ , J ~ ) Q "  tlx -< C IQ I - ' ,  

I I (M~,Ja)o l l x  < C IQ I - ' ,  

That (7) implies (10) is almost immediate. We just need to go from f to an 

atom 

a(x) = (2lJfllL ~, ]Ql ) - ' ( f (x )  - fQ). 

n n \ Q  
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We have 

L HM~,,jf(x)llxdx <_ L IlM~,J(f  - fQ)(x)lLxdx 

+ IQI" Ilfqllx ~ 21lfllL~ IQIIIM~,JalILk 
+ IQI" IIIIIL~ -< CIIflIL~ 101. 

We have thus shown that (7), (8) and (10) axe equivalent. On the other hand 

they imply (2). This is obtained by interpolation. Indeed, from (10) we get, after 

fixing J ,  that the linear operator Tj  is bounded from H }  to Lx(j)I and also from 

L ~  to B.M.O.x(j) .  Interpolation can be applied in tiffs setting to get (2). This 

finishes the proof of the theorem. I 

2. Examples  of  lattices having and not  having the  H a r d y - L i t t l e w o o d  

property  

A large class of examples is provided by those Kgthe function spaces satisfying 

the condition known as U.M.D. (from "unconditional martingale differences"). 

Recall that a Banach space X is said to be U.M.D. if it satisfies an inequality 

II ~kdkllL" <-- C,,Xll ~ dkllL~, 
k = l  k = l  

for all n E N, ek = +1 and for all X-valued martingale differences {dk}k>_l, 

where p is some exponent such that 1 < p < c~ (see [5]). 

It is a result of Bourgain [2] (see also [14]) that a Kgthe function space X is 

U.M.D. if and only if the operator .M defined in (1.5) is bounded in L~ and in 

L~,, where 1 < p < c~, p~ is the conjugate exponent and X ~ is the function space 

dual of X. As a consequence of Bourgain's result we get, in our temfinology, the 

following. 

PROPOSITION 2.1: For a Kgthe fimction space X with the Fatou property, the 

following conditions are equivalent: 

(a) X is U.M.D. 

(b) Both X and X '  satisfy the H.L. property. 

For a general K6the function space, still (a) implies (b). 

If, with the notation of remark 1.4, the underlying measure space fl is the set 

of positive integers N, with p the counting measure, we have, for 

f (x)  = (fj(x))i,  M f ( x )  = (Uf j (x ) )  i. 
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Let us examine in this case, the behaviour of different sequence spaces with 

respect to the H.L. property. 

We know that £P is U.M.D. provided 1 < p < ~ .  Thus, for this range £v is 

H.L. 

This fact follows from the inequality 

oo oo 

( 2 . 2 )  II(~-~ IMfJlP)I/PlIL'(R n) <-- Cp,qll(~-~ IfJlP)I/PlILq(Rn)" 
i=I j=1 

We just need this inequality for some q, 1 < q < oo. Then theorem 1.7 tells us 

that it is valid for any q, 1 < q < co. 

When q < p, (2.2) is simply a consequence of the fact that M is linearizahle 

and positive (see [I0], p. 482). For general q the inequality was obtained by 

Fefferman and Stein [9]. Actually (2.2) is true even for p = ~ ,  in the sense that 

(2.3) 11 sUP MfilIL'(R") < Cp,oo[I sup Ifi[ IIL'(R")" 
2 J 

This inequality is simply a consequence of the boundedness of M in Lq(R")  

since 

supMfj(x) <_ M(sup Ifil). 
J J 

As a matter  of fact, the way to obtain (2.2) in [10] for q < p, is to interpolate 

in p between p = q and p = co (i.e. (2.3)), interpolation being possible because 

M is linearizable. 

Now (2.3) tells us that/?oo has the tLL. property. It also implies that co has the 

tLL. property . Indeed we just need to observe that the subspace ~" consisting of 

those f = ( f i ) i  • Lg0(Rn) such that all but a finite number of the components 

f j  vanish almost everywhere, is dense in L~q0(R" ) and is obviously mapped into 

itself by 54, so that (2.3) implies 

1154 fllL',o(a,) < Cp,oollfllL',o(R,). 

Note that co does not have the Fatou property, while e °° does. The Fatou 

property is equivalent to having X "  = X (see [13], p. 30) and we have cg = e °°. 

PROPOSITION 2 . 4 : ~ 1  does not satisfy the H.L. property. 

Proof: We shall prove that 54 is not bounded in L~ (R), 1 < p < oo. According 

to remark 1.4 this is all that we need since e I is a Khthe function space with 
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Fatou property. Let rn be a fixed natural number and consider the function 
Fro: R --' t 1 given by: 

Fm(,) = ( f , (x ) , f2 ( , ) ,  ..., fm(~), 0, 0, ...) 

where fj(x) = ,~_~,~](x), 
Then 

and 

l < _ j < m .  

ITI 

IIFm(x)ll,, = ~ L(x)  = ~i0.,l(x) 
j=! 

IIFmllL~,(rt) = 1. 

On the other  hand if j < k and x e [k - l i ra ,  k /m] ,  then 

Therefore: 

rt Jl.M Fm ( z )JlP t, dz • 

1 
"**" l J t x ) > k - j + I" 

m 

R ( E  M f i (x ) ) 'dx  
- -  j = l  

- \ j = ~  

> ~ - ~ 1  I 
- ,,Z k - j + 1  

k----1 j----1 

~ 1  ( 1 + 1  k )  p 
m 2 + ' " +  

k----1 1 (1 
> - -  1+ + + 

k----I 1( m l) 
= 1 + ~  1 -  +" '+--m 1 --m =Am. 

But Am --' oo (note Am > C~j~=1(1/j)) and the proof is complete. | 

Deiqnition 2.5: A Banach lattice X is said to be p-convex 1 < p < ~o, if the 
following inequality holds: 
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i l l  m 

I1(~ I~jl')'/'llx <- c , ( ~  II~illgc)'/, 
j= l  j= l  

wi th a constant Cp independent of m .  I 

When X is a lattice of functions or, more generally, when X is order continuous, 
m the concrete representation of the lattice allows us to define (~']j=l Ix/[P) 1/p in 

the obvious way. However, for a general lattice, these expressions need to be 

defined (see [13] 1.d). By combining theorems 1.f.12 and 1.f.7 of [13], we obtain 

the following useful result. 

PROPOSITION 2.6: Suppose X is a Banach lattice which is not p-convex for 

any p > 1. Then, for every ~ > 0 and every positive integer m, there exists a 

sequence { ei }'ff=l of pairwise disjoint elements in X (pairwise disjoint means that 

inf{le~l, levi} = o, i ¢ j )  such ~hat: 

(2.7) ( 1 -  e))--:~ la, I < II )--:~ a~ l lx  < lail 
i :1  i=1 i :1  

t'or every choice of scaJars {ai }. 

With the help of this proposition, we shall prove the following 

THEOREM 2.8: If  a Banach lattice X satisties the property H.L., then X is p- 

convex for some p > 1. 

Proof: Assume that X satisfies H.L. and also that X is not p-convex for any 

p > 1. From this we shall be able to show that ga satisfies H.L. But this is a 

contradiction that proves the theorem. Let us see the details. 

Let e > 0 and f ( x )  = (fi(x))i  be a positive function f E L~ .  According to 

proposition 2.6, given m there exists a family {ei } im=l of pairwise disjoint elements 

in X satisfying (2.7). 

Let us consider Fro(x) = ( f l (x) ,  ..., fro(x), 0,0, ...). We shall make use of the 

following fact: 

If x l , . . . , X m  are positive pairwise disjoint elements in X, then ~im=l xi = 

sup {xi}. 
l_~i_~m 

If we just have two elements a and b this follows from: 

0 = inf{a, b} = - sup{-a ,  -b} 

= - ( s u p { - a  + a + b , - b  + a + b} - (a + b)) 

= a + b - sup{a, b}. 



192 J. GARCIA-CUERVA ET AL. Isr. J. Math. 

For the general case we use induction: 

~ X i  = ( ~ l x i )  "{-Xm--~ sup  {Xi}+Xm 
i=l  \ i=l  l<i<_m-1 

m sup  {Xi'q-Xm} = sup  {sup{xi,gm}} 
l< i<m-- I  l < i < m - 1  

-~ s a p  {Xi}. 
l<i_<m 

In the same fashion one can prove that  for pairwise disjoint elements e i and 

scalars a i ,  I~im_-i aieil = ~,'~=1 [ai[lei[, so that  in (2.7) we can assume that  the 

elements ei are positive. 

Since 
m 

E f , ( x ) e  i = sup {f i (x)ei} ,  
i=l  1 <i<m 

we have 
m 

M J ( E  f iei)(x)  = M j f i ( z ) e j  
i=1 i=1 

where we have written My for the operator .Ad j corresponding to the lattice R.  

This and (2.7) allow us to relate the operators M j of e 1 and X,  as follows: 

" " i = 1  

I n  

1 /R II ~MJk(~)~IlPx & 
<~ (1 - g ) P  " i=1 

I l i  

- ~ / R  IIM,(~--~ fie,l(xlllPx dz 
(1 g)P n i=1 

m 

<- -(i- ~;c(x'P) f•. II ~ fi(x)e, llPx 

_< g - ~  . s,(x) ex 

c(x,p) 

~1 has the H.L. property, which is a By letting m ~ ~ we would get that  

contradiction. | 
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Remark 2.9: It has to be noted that .M is in general unbounded in L ~ .  We shall 

give an example with X = t2. Let f (x )  = (fj(z))~= 1 where f i  = X[z-~,2-J+tl, 

1 _< j < c~. Then ][f(x)l[v = Xl0,1](x) and consequently f E L ~ .  But if 

x E [0,2-N],0 < j _< N, then Mfj(x)  >_ 1/2. Therefore 

N 

II,~tf(x)llt~ > ( E ( M  fj(x))2)l/2 > (1/2)N '/2 
j=l 

so that .Mf  ~ L~. II 

Remark 2.10: It is a very simple fact that if we have a linear and positive 

operator T bounded from Y to Z, both Banach lattices, then the vector extension 

of T satisfies: 

(2.11) 
m I l l  

I1()--~ ITuilP)1/PlIz < IITIIII()--~ lyIIF)I/PlIY 
j=l j=l 

for every n and 1 < p < co. 

(See [13], 1.d.9 for the proof, and also [121). 

The fact that t I does not have the H.L. property can be used to show that 

(2.11) may fall for an operator which is only sublinear but still positive. For 

p = 1 the counterexample is simply T = M with Y = Z = Lq(Rn), q > 1. 

For a given p > 1, we can take T(f)  = (M([fIP))1/P which is bounded in 

Lq(R'*) if q > p. However (2.11) fails with Y = Z = L q because, in this case, 

the left hand side of (2.11) is II )"]~=a M(IfilP)II~L/,~, and in tim right hand side we 

have ]] :~'~;=1 IfJ]P]]L/~P, so that (2.11) would be equivalent to the boundedness of 

.bt in Lq{ p, which does not hold. II 

3. Some Hardy space theory 

Definition 3.1: Given a Banach lattice X and a number p such that 1 _< p < oo, 

we define 7"/~(R") to be the space consisting of those f E L ~ ( R " )  such that  for 

every finite set J C Q+, . M , , j f  E L ~ ( R  n) and sup ][./VI~,,JfIIL~(R,,) < o,:,. 
J 

We endow this space with the norm: 

[[fl[~CR n) = [[f[[L~:(m') + sup [[.M~,Jf[[L~(R-). 
J 
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Definition 3.2: Given a Banach lattice X and a locally integrable function 

f :  R n --, X,  we define the "lattice sharp maximal function" as 

.M#f(z) --- Q~=sup I__[Q[/Q If(y) - fQldy 

where fQ is the vector l/[Q[ fQ f(y)dy. 
Of course the sup is in X and does not have to exist for all points x. We say 

that f is in B..A4.0.x(R n) if A4#f  E L~(Rn) .  This implies, in particular, that 

the sup exists for a.e. z and we define the "norm" in this space as 

II 

THEOREM 3.3: 

IlflIB.M.O.x(R-) ~ - - I I~# f l lL~( I t - ) .  

For a Banach lattice X, the following conditions are equivalent: 

(1) X satisfies the property H.L. 
(2) 7 /P (R  ") -- L ~ ( R " )  1 < p < oo. 

(3) = 

Proof: By definition: 

7 /~(R")  C L~(R" ) .  

Moreover, it is well known (see [3]) that for any Banach space E, the atomic 

Hardy space H ~ ( R " )  coincides with the maximal Hardy space defined as the set 

of those functions f E L~(R" )  such that sup liar * f(z)llE belongs to L : (R" ) ,  
r>0 

where ~r is the approximate identity associated to ~ smooth with compact sup- 

port, as, for example, the one in definition 1.6. 

Since 

we get 

sup * f( )llx ][  ,jf(x)llx 
rEJ 

c 

On the other hand, if X satisfies property H.L., by using property (4) in 

theorem 1.7, we see that 

L~c(a") C 7~¢(R"), 1 < p < co 

and, if we use (7) in the same theorem, we get: 
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That way we have seen that (1) implies both (2) and (3). 

For the converse implications, observe that (2) implies that property (2) in 

theorem 1.7 holds; but this is equivalent to H.L. Analogously (3) implies that 

property (7) in Theorem 1.7 holds. This is again equivalent to H.L. II 

The following example gives an idea of the size of ~/~: when X fails to have 

the H.L. property. Of course the example is for X = gl. 

Example 3.4: For a natural number N let g~v be the space of finite sequences 

(aj)N=l of real numbers, which we view as a finite dimensional subspace of e I by 

completing each vector in g~v with infinitely many zeroes. Then 

N_>I 

Indeed, the second inclusion is proper because gl does not satisfy H.L. 

As for the first one, let a = (aj)N=l be an atom in H ~ .  Then each of the 

componenet functions aj is a scalar atom, and, consequently: 

so that H~k C ~I , .  

More concisely: H~k = ~I~ C ~ , .  

Now to give an example of an f e ~ with infinitely many non-vanishing 

components, we simply have to take a scalar atom a: R" --, R and define f(x) = 

(2-Ja(x))j. It is clear that f G ~ :  since 

II.A4~f(x)llt , = I [ {M~(2-Ja) (x)}¢ l l  
o o  

= ~--~ 2 -¢ lM, , (a ) (x ) l  = IM~a(x) l .  
j=l 

Recall that 

(L~(Rn)) * = L~.(R") ,  1 _< p < co and (H~(R"))* = B.M.O.x.(Rn) 

if and only if X* satisfies the Radon-Nikodym property (see [7] and [3]). There- 

fore, the following theorem is true: 
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THEOREM 3.5: For a Banach lattice X, the fol]owing statements are equivalent: 

(1) X satisfies the H.L. property and X* satisfies the Radon-Nikodym property. 

(2) (U~c(Rn)) * = L ~ . ( R " ) ,  1 < p < oo. 

(3) (~/}(R"))* = B . M . O . x . ( R " ) .  

The next example shows that, even for such good a lattice as t2, the space 

B..A4.0. is too small. 

Example 3.6: L ~ ( R  n) ~t B.M.O.v(R") and if we define e~v in a sinfilar way 

to ek in example 3.4, we have 

U B'M'O't~ C# 8.M.O.v C# B.M.O.v. 
N>_~ 

Let f(x) = (fj(x))~=, be the function considered in remark 2.9. It is easy 

to see that for x • [0,2 -N] we have H.M#f(x)llt, >_ CN 1/2 and, consequently 

. M # f  • L ~  or, in other words: f ¢ B.M.O.t,. 

Thus L¢~ ~ B.M.O.v. 

Now if f • B.M.O.t~(R"), let f(x) = (fj(x))N=l. Then 

dx. 

But 

l z 1= , qgx ~ I//(Y) - (fJ)qldY 

N 

_< ~ l l f f l l L ~  <- Y l l f # l l L  ~ .  
j = l  

1/2 

On the other hand, if we have a scalar flmction g E B.M.O.(R"), the function 

f :  R n __, ~2 given by 

f (x)  : i=, 

belongs to B..M.O.v(Rn),  but obviously not to any B.M.O.t~. 
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Suppose now that f ( x )  = (h (x ) ) j  is in B.Ad.O.t,(R"). Then: 

oo 

{ Z ( f t  (,))2 } 112 = 

./--1 
{~(~u~ ~ I h ( v )  - (h) ,~ ld~)2}  ' /~ 

. i=l  Q~ 

= IIM#f(~)lb,  _< IIM#IIIL~. 

sup II/(v) - fQIIt, dv 

( fo )'" _< sup llf(u) - fQll~,dy 
Qgz 

f#(~) = 

= sup Ih(u) - (h)Q?dy 
Qax .= 

<_ c sup ( f f  (vl )2dv 
Q~x .= 

<_ CI]M# fIIL~. 

Thus 

llfll~.M.O.: = llf#lloo --- Cll./t4#fIIL~ = Cllflls.:,.o.:. 

Observe that an important step in the proof has been the Fefferman-Stein 

inequality f o  [gl 2 _< CfQ [g#l 2 applied to tile functions g = f j  - (fi)Q (see [10] 

or [11]). This can be done for sequence spaces or, in general, for KSthe function 

spaces. 

4. T h e  c o m p a c t  case 

In this section our basic space will be, instead of R n, the torus group T,  which 

we shall identify in the usual way, with the compact interval [0,1]. Then Haar 

measure is just the ordinary Lebesgue measure in [0,1]. The hmcion spaces L p, 

B.M.O., etc. will be those associated with our basic measure space T = [0, 1]. 

We shall be considering some non-locally-convex spaces. Recall that if 0 < r < 

1, to say that F is an r-Banach space means that we have a quasi-norm [] Ill 

(i.e., a functional satisfying ][Af][f = [A]llfHf for every f • r azld every scalar A 

and also 

llf 4- gllF ~ K(llfllF 4- IIglIF) 
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for every f ,  g G F)  such that II II} satisfies the triangle inequality 

(i.e. IIf -4- gll~ ~< Ilfll~ -4- Ilgll~') 

and F is also complete as a metric space with the distance induced by ii I1~. 
Typical examples are the Lebesgue spaces L r and the Hardy spaces H r, 0 < 

r < l .  

For r = 1, r-Banach space means, of course, Banach space 

Definition 4.1: Let B be a Banach space, mad F an r-Banach space, 0 < r < 1. 

W shall say that an operator T: B ---} F is sublinear if: 

(a) IIT(Af)IIF = IAIIIT(f)IIF for every / e B and every scalar A, and 

(b) IIT(f + g)ll,~ < IIT(f)ll~ + lIT(g)ll~. 
This notion extends the more restrictive, applicable to the casse when F is an 

r-Banach function space, which requires instead of a) and b): 

(a') IT(A/)(z)I -- IAIIT(f)(z)I for a.e. x, every f ~ B and every scalar A, and 

(h') IT( f  + g)(z)l < IT(f)(z)l + IT(g)(x)l for a.e. x and every f , g  E B. | 

Given an r-Banach function space F,  we consider the space L~ = L~([0, 1]) 

which is the space of the functions f :  [0,1] ---} F strongly naeasurable, with the 

topology of convergence in measure (see. [10] p. 529). 

We have the following version of the Nikishin-Stein tlaeorem. 

THEOREM 4.2: Let B be a Banach space consisting of fimctions defined on the 

torus with values in some Banach space. Suppose that B is inwariant under trans- 

lations (i.e. translations are isometrics in B).  Let F be an r-Banach space, and 

T: B ~ L°r an operator sublinear, continuous and invariant under translations. 

Then T is bounded from B to weak-Lk 

Proof." We just need to verify that Theorems 1.7, 2.4 mad Corollaries 2.7 and 

2.8 in chapter VI, of [10] continue to hold when we replace L ° by L~. The proofs 

go through without significant changes. | 

We shall apply this theorem to the analogne for the toms of the operator A4 

defined by (1.5), analogue which we shall also denote by Ad. We obtain the 

following result: 

THEOREM 4.3: Let 0 < a, fl < 1. Then 

(1) is bounded fro,= to 
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(2) .A4 is bounded from Lit, to weak-Lito. 

Proof: Like in Remark 1.4, when we view .&4 as an operator acting on functions 

defined in T x T, Ad is just the ordinary Hardy-Littlewood maximal operator 

M acting in the first coordinate, that is: 

.Adf(z,~) = M{f(.,t~))(z). 

But, in the case of the torus, which has finite measure, the weak type (1,1) of 

M is equivalent to the fact that M is bounded from L 1 to L ~ for every a such 

that 0 < a < 1 (Kolmogorov's inequality, see [10], p. 485). Thus, for any such a 

fixed, we have: 

~o 1 ]].M f(z)]]~odz = /o 1/o'(./tdf(z,~))ad~dz 

/o'I' = ( M { f ( . , ~ o ) I ( x ) ) " d x ~  

(I' )° < c I I f (x ) l lL ,dx  , 

i.e. Ad is bounded from Lit, to L~o. This implies that Ad is hounded from Lit, 

to L~o. Indeed: 

Ilx e [0, 1]: IlMf(x)llL° > A}I < X'g II~f(z) l l~-dx 

C 
< X-g]lfllL~, 

(see [10], p. 528 for a discussion about L ° boundedness). 

Now we can apply Theorem 4.2 to the operator Ad obtaining that it is bounded 

from Lit, to weak-Lito, which is precisely (2). Then (1) is obtained from (2) by 

using Kolmogorov's inequality, mm 

Now if we start with the boundedness Ad: Lit~ ~ weak-Lito and apply the 

techniques developed in the proof of Theorem 1.7, we obtain: 

COROLLARY 4.4: For 0 < a < 1 < p < ¢0 Ad is bounded from Lrt~ to LPLo and 
also ./t4~ is bounded from Hit, to L1Lo and from LL~ to B.M.O.Lo. 
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Remark 4.5: As one would expect, the behaviour of A4 continues to be bad 

in L ~0. Indeed: A~ is not bounded from LL~ to LL°°~, as the following example 

proves: 

For N a fixed positive integer, consider the intervals 

I~= ~'2-~-~ and Ji= 

and the function 

Then 

l ~ i , j < N ,  

N 

f~(x,,,,) = ~ NX,, (,)Xj~ (,,,). 
j = l  

][FNI[L~(,.)(a=) ~- ess sup f' 
N 

=esssup ~ X,,(x) = 1. 
z j = l  

On the other hand 

N 

.MFN(x,w) = E N(MX, j (x))Xj~ (w). 
j = l  

As in Remark 2.9, we observe that 

MXIj(z)>_I/4 i f l _ < j _ < N  and x6[0 ,2 -N] .  

Therefore 
or l/a 

I I .MFNIILro  = ess  sup N(MXIj (x))Xjj (w) dw 
t j = l  

= e s ~ u p  ~ • N"(MXsj (x))"Xj, 
z j.---I 

N 1 
= ess sup( E g"- '  (MX, i (x))") '/'' >_ iN. 

z j = l  

Theorem 4.3 and Corollary 4.4 are new for A4. The corresponding results for 

the conjugate function have been proved by Bourgain (see [4]) with a different 

method. 
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