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ABSTRACT 

The Cauchy problem du/dt -]- Au + B (t,u) ~ O, u(O) = u o is studied in a 
separable Hilbert space setting, when A is a multivalued maximal monotone 
operator, and B is a multivalued operator which is measurable with respect to 
the time variable and upper semi-continuous with respect to the space variable. 
Under some boundedness conditions on B, an existence theorem is proved, with 
the extra assumption, in the infinite dimensional case that A is the subdifferen- 
tial of a proper lower semi-continuous inf-compact convex function. A theorem 
of dependence upon the initial condition is also given. 

Given a maximal monotone operator A and a multivalued upper  semi-con- 

tinuous operator B of a Hilbert space H, we give sufficient conditions for the 

existence of solutions of  the Cauchy problem: 

du /dt  + A u  + Bu 3 f  ; u(O) = Uo 

w h e r e f i s  in some LP(0, T ;  H). 

We use standard results on the solutions of  evolution equations associated with 

monotone operators in Hilbert spaces, particularly recent results of  Ph. Benilan 

and H. Brezis (see [1] and [5]) and obtain results closely related to those of  

A. Lasota and Z. Opial [18], Ch. Castaing and M. Valadier [11], and M. Valadier 

[23]. These results are related, when A is the subdifferential of  a 1.s.c. convex 

function on H,  to some equations of  econometrics (see C. Henry, [13] and [14-1). 

The first section gives preliminary results and definitions; sections two and three 

deal with the finite dimensional case when B is, respectively, single-valued and 

multi-valued; in section four we consider the case of  a separable Hilbert space 
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with some examples of application. 

We are grateful to Prof. H. Brezis for his help and guidance. We are also 

indebted to ProL P. Benilan for improvements of some demonstrations and 

stimulating discussions. 

I. Preliminary results and definitions 

Let H be a real Hilbert space, in which I" 1 and (., .) are the norm and scalar 

product. 

1) Recall that a maximal monotone operator A on H is a multi-valued ap- 

plication from H into H satisfying 

V[x~, Yi] ~ A (i = 1,2) (Yl - -  Y2, Xl  - -  X 2 )  ~ 0 

and 

R(I + A) = H 

We set D(A) = (x ~ H; Ax ~ ~ }  (Domain of A). It is known that D(A) is convex. 

(1.1) DEFINITION. Given f in L l (0, T; H), u is a strong solution of du/dt 

+ Au 9 f  whenever u is in C([0, T],H), u is absolutely continuous on every 

compact subset of (0, T) (hence almost everywhere differentiable) and such that 

a.e. on (0, T): 

u(O ~ D(A) and du ~dr (0 + Au(O ~ f(O. 

Recall the following two fundamental results: 

(1.2) THEOREM (Benilan-Brezis, see El] and [5]). Let H be finite dimensional, 

A maximal monotone, f i n  D(O, T; H), Uo in D(A). There exists a unique strong 

solution u to the equation du /dt + Au ~ f with u(O) = Uo. Furthermore 

a) At every Lebesgue point t o f f ,  u has a derivative from the right d+u/dt, 

u(t) belongs to D(A), and d+u(t)/dt = (f(t) - Au(t))~ * 

fl) The following inequalities hold: I f  f (resp. g) is in D (0, T; H) and u(resp. 

v) is a corresponding strong solution, we have 

]du] _-__ CE(X + T+ITI , . , )O +lul,. )+lu(O)l (i) Vto,t]u = - - ~  g, 

where C is a constant depending only upon A (Vto,r~ is the total variation on 

[0, T]). 

* If C is a nonempty closed convex set in H, we denote by C ~ the projection of O on C. If 
A is maximal monotone, recall that Ax is closed convex. 
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V O < s < _ t < T  

l u(t)-v(t)l--<1 u(s)-v(s)l + IS(<,)-g(o')ld<, 

(iii) In particular, V rx, y] cA  VO < s __- t < T 

f; + If(<,)-yld<, 
Recall that if l is a 1.s.c. proper convex function on H (i.e. with values in 

( -  0% + oo], and �9 ~ + ~ )  its subdifferential a~ is maximal monotone (it is 

defined by: z ~ a~(x)c~,Vy E H ~(y) -t~(x) > (z, y - x)). 

(1.3) THEOREM (Brezis [5] and [6]): Let H be a 9eneral real Hilbert space. 

Given the subdiflerential A of a proper l.s.c, convex function t~ on H, f in 

L2(0, T ; H )  and Uo in D(A), there exists a unique strong solution of du/dt 

+ Au ~f; u(O)= Uo. In addition 

a) (i) ~ du/dt c L2(0, T ; H), t ~r is absolutely continuous on every 

compact subset of (0, T], and ]du/dtl z + d~(u)/dt = (f, du/dt) a.e. on (0, T). 

(ii) If  u(O)~D(~), �9 > O, then du/dtEL2(O,T; H), I du/dtl~2 < x /~  (u(0)) 

+ [ Srolf(t) 12dt] and �9 (u(t)) is absolutely continuous on [0, T]. 

/7) I f ~  is the indicator function I c of a closed convex set C (Ic = 0 on C, + co 

outside of C) and i f feLP(0,  T,H,) with 1 < p < + ~ then du/dt~Lv(O, T; H). 

We shall denote F , o ( f ) =  u, the unique solution of du/dt + Au ~f; u(O)= uo 

(u o E D(A)). By (1.2) (ii), Fuo is continuous from LI(0, T; H) into c~([0, T];  n) .  

2) We recall the following definition (see [2]). 

DEFINmON. Let X and Y be two topological spaces. A multi-valued operator 

B from X into Y is said to be upper semi-continuous (u.s.c.) when 

- -  Vx EX, Bx is a compact subset of  Y; 

- -  Vx ~ X, for every neighborhood V in Y of the subset Bx of Y, there is a 

neighborhood U of x in X, such that 

y ~ U ~ B y  ~ V. 

The domain of  B is D(B) = {x ~X;  Bx ~ ~} .  Recall that if R(B) is compact 

Hausdorff, B is u.s.c, if and only if B is closed as a subset of X • Y (closed graph 

property). 

3) A few notations. Let I be an interval of the type [0, T] ( T <  + oo) or 

[0, + oo). It will often be referred to as the time set. As usual, L,~ (I; H) (resp. 

L~c(I)) denotes the space of H-valued (resp. R-valued) measurable functions on I 
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such that their restriction to every compact subset of I is of pth power integrable 

(if p = + 0% then essentially bounded). We shall denote by w - LP(I; H), the 

space LP(I; H) with its weak topology for finite p and with its weak-* topology 

for p = + oo (i.e., for the duality with 12(1; H)). 

We shall say that B(t,x) is a time dependent multi-valued operator on H 

whenever for (almost) all t in I, B(t, �9 ) is a multi-valued operator of H. Let us 

end this section with the following definition: 

DEFINITION. Let A be maximal monotone on H, B be a time-dependent multi- 

valued operator on H, Uo belong to D(A). A function u is a solution of the initial 

value problem. 

(P): du 
d--t- + Au + B( . ,  u) ~ 0; u(0) = Uo 

if and only if 

- -  u is in ~(I ;  H) and u(0) = Uo 

- -  u is absolutely continuous on every compact subset of interior of I (hence 

almost everywhere differentiable) 

- -  for almost all t in I, the following holds: 

du 
u(t) ~D(A); --d{-(t) + Au(t) + B(t,u(t))~ O. 

II. Case  o f  B s ingle-valued cont inuous  

We assume in this section that H is finite dimensional. We shall prove the 

following: 

(2.1) THEOREM. Let A be maximal  monotone on the finite dimensional 

Hilbert space H. Let B be a measurable mapping f rom I x D(A) into H, which 

for  almost all t in I is continuous on D(A) and such that there exist two functions 

and ~ in L~oc(I) with 

I B(t,x) I <= 7(t)[ x I 4- ~(t) 

for  all x in D(A) and almost all t in I. Then there exists at least one solution u 

for  (P). Furthermore, for  almost all t in I, u is right-differentiable and d+u/dt  

= - (B ( t , u ( t ) )4 -  Au(t)) ~ I f B  is continuous in both t and x, then for  every t o f  

interior of I, u is right-differentiable and d+u/dt  = - (B( t , u ( t ) )4 -  Au(t)) ~ 

PROOF. The proof is in three parts. 
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1) We first assume I -- [0, T] and ~ - 0. Put 

G: LI(0, T; H) -~ ~([0, T]; H) with G(u) = F,o( - B ( ' , u ( . ) ) .  

G is defined on E = [u ~U(0, T; H); u(t) tO(A)  a.e. in t}. We shall prove that G 

has a fixed point (which obviously will be a solution of (P)). 

(2.2) PROPOSITION. G is continuous from E (with L 1 topology) into ~([0, T]; H) 

and its range is included in a compact convex set of  E. 

PROOF of (2.2). Let Un ~ u in E, v, = G(u,), v~= G(u). From (1.2) (ii) we have 

Iv,-  vl _-<IB( ",Un)-- 8(',u)J L,. 

Let uv be a subsequence of u n such that u v converges to u almost everywhere on 

(0, T). 

B(",uv) converges to B( ' ,u) almost everywhere. Since B is dominated by 5 

which is in LI(0, T), we have, by Lebesgue's theorem, that B( ", u,) converges to 

B(-,u) in L ~ (0, T; H) so that ]vv - vl~ converges to 0. This implies that the full 

sequence v, converges to v in ~([0, T]; H). 

We use the following lemma for the result concerning the range of G. 

(2.3) LEMMA. Fuo is a compact operator from LI(O, T; H) into LP(O, T; H) 

for  1 < p < + oo (i.e. the images by F,o of  bounded sets are conditionally 

compact sets) (in the case dim. H < oo ). 

PROOF OF THE LEMMA. Let SM = {f~L~(O,T; H);If[L1 _--< M}. By (1.2) iii) 

with s = 0, we find a constant CI(M)such that for all f i n  SM) I F,o(f) loo < CI(M). 

By (1.2) i) we find a constant C2(M) such that for all f in S~ V[o,~](F~o(f)) < C2(M). 

Then Fuo(SM) c E(M) where 

E(M) = {u e~(0, T; H): I u] oo <= CI(M), V[o.Tl(u) _--< C2(M), u(t) e D(A) 

for all t in [0, T]}. By Frechet-Kolmogorov's theorem (see [24], pp. 275-277), 

]E(M) is compact in LP(0, T; H) (1 _< p < + oo) and is convex because D(A) is 

convex. (E(M) denotes the closure of E(M) in LI(0, T; H).) 

We now return to the proof of Theorem (2.1). Let us consider E(M) with 

M = [51L,(O,T ). It is a compact convex subset of LI(0, T; H) and G maps E(M) 

into E(M). By Schauder's fixed point theorem, G has a fixed point u in 

E(M) c rd([0, T]; H). 

Since t ~ B(t, u(t)) is in LI(0, T; H), then by Theorem (1.2), d+u/dt(t) + (Au(t) 

+ B(t, u(t)) ~ = 0 almost everywhere in (0, 7'). If B is continuous in both t and x, 
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then t~B(t ,u(O) is continuous and d+u/dt + (Au +B(t,u(t))~ 0 for all t in 

(0, T). This completes the proof  in the case ! = 1,0, T], ~ = 0. 

2) We now show the existence of local solutions in the general case, using the 

following result due to R. T. Rockafellar (see 1-20] for the proof). 

(2.4) THEOREM. I f  A x and A 2 a r e  two maximal monotone operators on a 

general real Hilbert space H and if (intD(A~))f~D(A2) is not empty, then 

A,. q-A 2 is again maximal monotone. 

Let V be a bounded closed convex neighborhood of Uo in H, let ~b v be the 

indicator function of V; then since (int V ) n  D(A)~ ~ ,  A + O~v is maximal 

monotone. We use part 1 of the proof  of  Theorem (2.1) to get a solution u for the 

problem 
du 
dt + (A + O~v)u + B(.,  u) ~ 0; u(0) = u o 

on any compact interval 1,0, To] of I. Indeed for any y in D(A) n V, we have 

t B(t, Y)I bounded by v(t). sup {I x l ;  x e V} + ~5(t) which is in LI(0, To). 

Since u is continuous there is a T1 with 0 < T 1 < To such that for every t in 

1,0, T1), u(t) belongs to int V; but then we have d~bv u(t) = (0} for t e [0, T1). Hence 

u is solution of  

du 
d--t- + Au + B( ", u) e 0; u(0) = Uo on 1,0, T1). 

3) We now prove that a maximal solution of  (P) is everywhere defined on 1. 

Let u be a maximal solution of (P), let [0, T1) be its domain; assume 711 is 

finite. We shall show that lim, tr~u(t) exists; since this limit will be in D(A) it will 

be possible to extend u locally to the right of  T~ by using step two of the proof, 

thus getting a contradiction. 

Put fl(t) = - B(t,u(O); u is solution on 1,0, T1) of  du/dt + Au~fl; u(O) = Uo 

(2.5) I fl(t) < ~(t) I u(t)[ + ~5(t) a.e. with r and 6 in LI(0, T1). 

Using estimate (1.2) iii) we get for any I-x, y] in A: 

I u(t) - x I < I Uo - x I + (I Yl +1 ~(~)1) d~ 

s s ~(a)ldtr + ~(tr) lu(trll da z lUo-xl  + lyl + 

fo, fo' < lUo-X l  + lYl +6(tr)+lxl~(tr))dtr + 7(tr)lu(tr)-xldtr 
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Clearly/Uo - x[ + f~([ Yl + 6(a) + Ix I V(a))da is bounded when t tends to T1, SO 

In(t) - x I <= k + fo?(O)l u(a) - xldo. This classically implies I n ( t ) -  x I < 
k+f~y(a)[ u(o) - x I do <= k exp (f~y(a)do). Hence [u(t)l is bounded when 
t~ T~. By (2.5)/~ belongs to L t (0, 7"1; H) so that by estimate (1.2) i): 

Vto.oU < C[(1 + 7"1 + ] fl]L,(o.r, ;m) (1 + supto r,~ I u l) + ] Uo ]z] vt �9 [0, Td.  

Thus u is of  bounded variation as t t  7"1 so that limsups.ttr, I u(s ) -u ( t ) l=0 .  
Finally, this shows that limtTr~U(t) exists, which completes the proof of (2.1). 

Using theorem (1.3), we get the following regularity result: 

(2.6) THEOREM. Under the hypotheses of Theorem (2.1), and if  A is the 

subdifferential of a proper l.s.c, convex function~, ? and 6 are in L~oc(I), then the 
derivative of the solution u of(P) satisfies: 

x/t __d_{-du �9 L2to~(i ; H) (resp. -d-{du �9 L2to~(i ; H) when uo �9 D(cb) ). 

Furthermore, if ~ is the indicator function ~ of a closed convex set C of  H, 

and 6 are in LlPo~(I), (1 < p < + oz), then the derivative of u is in L~o~(I; H). 

REMARK. If in the hypotheses of Theorem (2.1), ? and 6 are in D(0, + 00) and 

Int A - l ( 0 ) #  ~ then by the same proof as in part 3, one can prove that u(t) has 
a limit as t tends to infinity. 

III. Case of B multi-valued upper semi-continuous 

We first give the following definition: 

(3.1) DEFINITION. A multi-valued mapping B from I x D(A) into H will be 

said to satisfy condition Rp whenever 

(a) for almost all t of I, B(t, �9 ) is multi-valued upper semi-continuous defined 

on D(A) with non-empty convex compact values in H. 

(b) for all ~ in H, and all X in D(A), the function bx.r t--> sup {(y, 3); Y �9 B(t, x)) 

is measurable on 1. 

(c) there exist two functions ~ and 6 in Lteoc(I) such that for almost all t in [, and 

for all x of D(A), the following holds: supyeB(t.~)] y] < ~(t)] x] + 6(0. 

We recall (see C. Castaing [10], corollary 6.1) that condition (b), when H is 

separable, is equivalent to: 

(b') For all x in D(A), the mapping t ~ B(t, x) is multi-valued measurable in 

the following sense: for every closed set F of  H, the set Ex = It ~ I ;  B(t, x) ~ F ~ ~ }  

is measurable in I. 
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We now prove the following: 

(3.2) THEOREM. Let H be a finite dimensional Hilbert space. I f  B satisfies 

condition R1, then problem (P) (du/dt  + Au + B( . ,  u)~ 0; u(O) = uo ~ D(A)) has 

at least one solution u on I. More precisely: 

i) there exists a measurable section fl: I ~ H  such that fl(t)~ B(t,u(t)) almost 

everywhere on I, 

ii) u is the stron9 solution of  du ~dr + Au + fl9 0; u (0 )=  u 0. 

REMARK. Using ii) above and Theorem (1.3), one obtains regularity results 

similar to those of (2.6). 

The proof  of Theorem (3.2) is, like that of Theorem (2.1), in three steps. We 

leave it to the reader to complete the last two steps. Here is a proof  of  the first 

step, i.e., 1 = [-0, T] and y = 0. 

In order to use a fixed-point method in a functional framework, we introduce 

the following multi-valued operator: 

(3.3) DEFINITION. [B v is defined by its graph in the following manner 

Bp = {[u, v] ~ (LP(0, T; H))2; almost everywhere on (0, T): u(t) e D(A) and 

v(O ~ B(t, u(t))} 

(3.4) PROPOSITION. Bp is demi-closed in LP(O, T; H) (i.e., its graph is closed in 

L v x w - L  p) for  l < p <  +oo w h e n H  is separable. 

PROOF OF (3.4). By condition Rvc), B v takes its values in the set X~ 

= {f~ LV(0, T; H); If(t)] _-< 6(t) almost everywhere}. 

It is clear that Xffis bounded closed convex in LP(0, T; H) so that for p # 1 it is 

compact in w - LP(0, T; H). For p = 1, if H is finite dimensional, applying the 

Dunford-Pettis criterion of weak conditional compactness in U(0, T) (see [12], 

p. 292) we find that X~ is still weakly compact, t Since LP(0, T; H) is separable 

(for p # + oo ), the weak topology on the weakly compact set X~ of LP(0, T; H) is 

metrizable (see [12], p. 434). For p -- + oo, it is clear that the weak-* topology on 

the weak-* compact set X~ of L~(0, T; H) is metrizable since L~(0, T; H) is 

separable. Thus, it is enough to show the demi-closedness of 3v on sequences. The 

result for p -- + oo is a consequence of the result for p finite that we now show. 

5" This is still true when H is not finite-dimensional; see C. Castaing, Theorem 3 of Proxi- 
mit~ et mesurabilit~, un thdordme de compacitd faible, Colloque sur l'optimisation, Bruxelles 
1969. 
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w - L  p LP Let Un~U, Vn e IBpun and v n > v. We can assume without loss of  generality that 

u~ converges almost everywhere on (0,T) to u. Since v~ converges weakly to v in 

L p, for any integer m, we can find gin, a finite convex combination of the v / s  with 

n > m and such that I g in -  v lr p< 1/m (use the weakly convergent sequence 

(Vn+m)~N). The sequence gn so defined converges strongly to v in LP(0, T; H), so 

that there exists a subsequence gnk which converges almost everywhere on (0, T) 

to v. Thus on a set E, whose complement in (0, T) is a null set, we have for all t 

in E: 

un( t ) - -~  u(t), g~k(t)--~ v(t), Un(t) e D(A), v~(t) e B(t, Un(t)), 
I1"-~ o0 k"~ oo 

x ~ B(t,x) is upper semi-continuous. 

Fixing t in E, we shall show that v(t) belongs to B(t, u(t); this will complete the 

proof  of (3.4). Since B(t," ) is u.s.c., for every neighborhood V of B(t, u(t)) there 

is a neighborhood U of u(t) such that for all x in U, B(t, x) c V. Since un(t) 

converges to u(t) there exists an N such that n > N implies Vn(t ) ~ V; thus g~(0 

belongs to the convex hull Cony V. Hence lim g,~(t) belongs to Cony V for every 

neighborhood V of B(t, u(t)). The latter being convex compact is the intersection 

of its closed convex neighborhoods so that v(t)eB(t,u(t)). 

The question of whether •p is non-empty is answered by the following 

(3.5) PROPOSITION. [~p is an upper semi-continuous multi-valued operator with 

convex compact values f rom LP(O T; H) into w - LP(O, T; H) for  1 < p < + oo 

when H is separable. Furthermore, Bpu is nonempty whenever u is in LP(O, T; 

H) and u(t) in D(A) a.e. 

PROOF OF (3.5). It is clear that: a) Bp is convex-valued since B(t,x) is so for 

almost all t. b) Bp is weakly-conditionally-compact-valued since it takes values in 

Xff. By (3.4) it is, in fact, weakly closed-valued so that it is weakly-compact-valued. 

Since the graph of Bp is closed in L p x w - L p by (3.4) we conclude by (1.4) that 

Bp is upper semi-continuous from LP(0, T; H) into w -  LP(0, T; H). 

Let u be a measurable step function on [0, T] with values xl,  ...,x~ distinct in 

D(A). Consider the multi-valued mapping F: t ~ F(t) = B(t, u(t)) defined (almost 

everywhere) on (0, T). We show that F is multi-valued measurable. Let E be a 

closed set of H, by condition Rp b'), the set Ei = {t e(0, T); B(t, xi) n E  # ~f} is 

measurable. This is also true of E~ N u-l(xi)  and of  

(_.J E, ~ u -  l(xi) = {t e (0, T): B(t, u(t)) ~ E ~ ~ } ,  
t = 1  
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so that F is measurable. By theorem 5.1 of  [10] due to C. Castaing, F(t) has a 

measurable section, which being dominated by 6 in LP(0, T; H) is in B~u. 

Now let u be in LP(0, T; H) with values in D(A) (for almost all t). Let u, be a 

sequence of step functions with values in D(A) converging to u in L~(0, T; H) (for p 

finite). Let v, be in Bpu, (we have just shown that such v,'s exist); since v n is in 

X~ which is weakly compact, (v,) has weak cluster points in X~ as n tends to 

infinity; by the demi-closedness of Bp, any such weak cluster point is in Bpu which, 

therefore, is not empty. The previous result for p finite obviously implies that 

(3.5) holds also for p = + oo. 

We now turn to some properties of the operator Fuo when H is finite dimensional. 

(3.6) PROPOSITION. Let A be maximal  monotone on H finite dimensional, u o 

in D(A), and p in [1, + oo), then F~o is continuous f rom X ~ (with the w -  L~(O,T ;H) 

topolo#y) to Lq(O,T;H) for  all q in [ 1 , +  oo) 

The following proof  of  (3.6) stems from an idea of  P. Benilan. It is enough to 

show the result when p = 1. We can always assume that 6 > 1 on (0, T). 
_W - - Z  1 . 

Let J , - - ~ J ,  u, = Fuofn, u = F~of. Fix r > 1. 

Put g, =f~ 6 (~/r)-I and g = f 6 ~  9, and # belong to E'(0, T; H) and are 

bounded above by 6 ~/" which belongs to L'(0, T). 

Put v, = Fuo# ~, o = F~o#. By Theorem 1.2.iii) the u, 's are uniformely bounded 

on ]-0, T], therefore their convergence to u in any if(0, T; H) will be implied by 

their convergence almost everywhere. We shall show that, in fact, u,(t) converges 

to u(t) for all t in [0, T]. Indeed, we have 

] u,(t) - u(t)] <1 Un(t ) -- v,(t)] +] v,(t) -- v(t) l +1 v(t) - u(t)]. 

By (1.2), ii), one gets 

f/ fo  a(1 fo l u.(t) - v.(t)l <= If .  - g,,lda < - 6( ' / ' ) - ' )da <= (1 - 6('/ ')-~)da 

and also 

~ T  

]u(t) - v(t)] < | 8(1 -- 6 (x /r ) - l )do  -. 
d 0 

Given a positive e, one can find r > I such that 

f 8(1 - 8 (1'')- 1)da < ~ (by Lebesgue's theorem). 
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With such an r, we have ] Un(t ) -- u(t)l < 25 +]  V.(0 -- v(t)] and we now show 

that v.(t) converges to v(t) for all t of  [0, T-I. 

Since v. and v are locally absolutely continuous, g~ - dr./dt  ~ A vn(t) for almost 

all t in [0, T]. The same holds between g and v. Applying the monotonicity of  A, 

one obtains 

11 i (3.7) 2 '  vn(t) - v(t)] 2 < (g.(a) - g(a), v.(a) - v(a))da. 

Put Wn =V.--V. By Lemma (2.3), {w~} is conditionally comPact in any/2(0, T; H), 

1 < s < + o% in particular for 1/s + 1/r = 1. Hence there is a subsequence 

wnk converging to a w in LS(0, T; H) and with w in L~176 T, H) (since the w.'s are 

uniformly bounded in U~ T; H)). We then get 

fo' fo' Vn(t)--V(t)] 2 _--< wn-wld  + 

i' 
--- l ign-gl l , -I lw.-wll , ,  + 

Therefore, for all t in [0, T], 

lim ] v,~(t) - v(0] 2 = 0, since [ w,k - w ],s ~ 0, 
k ~ + o o  

and since 

.f,~ --*f in w - / .1(0,  T; H) and 6 (11~ w e L~176 T; H). 

Since limk-, + oo]W,~(t) l = 0 for all t in [0, T], we find that w = 0 in I2(0, T; H). 

Thus w~ converges to 0 in I2(0, T; H) i.e., v, converges to v in U(0, T; H). Then 

using (3.7), we find that Vn(t) converges to v(t) for all t of [0, r ] .  This shows that 

un(0 converges to u(t) for all t in [0, i/']. 

REMARK. Using a demi-closedness property for (F~o)-1 and Lemma (2.3), one 

can actually show that for p > 1, F,o is continuous from the whole of w -  LP(O,T; H) 

to Lq(O, T; H) for all q in [1, + oo). 

One can give a more precise continuity result in the following case. 

(3.8) PROI'OSITIOn. Under the asumptions of  (3.6), and i f  D(A) is closed and 

A ~ is bounded on every compact subset of D(A) t, then F,o is continuous from 

Xt~ (with the w - LP(0, T; H) topology) to cr T];  H). 

t This is true, in particular, of the case of the subdifferential of the indicator function of a 
closed convex set of H. 
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PROOF. As before it is enough to show this for p = 1. Let f~ converge to f in 

w - LI(0, T; H). Put un = F,of, and u = Fuo f. By (1.2), iii), where x = u,(s), 

y = A~ (which exists since D(A) is closed) one obtains 

fs t I ( u n ( t )  - un(s)l = IA(a) - A~ a for 0 ~ s _< t ~ T. 

Since the set {un(t); t �9 [0, T], n �9 N} is bounded in D(A), it is conditionally com- 

pact. Thus there exists an M such that for all t � 9  T], for all n � 9  

] a~ <= M. Therefore] u~(t) - u~(s)l < [.~(a)&r + M(t  - s) for 0 < s < t < T. 

By Ascoli's theorem, the family {u~} is conditionally compact in cg([0, T-I; H). 

This, together with Proposition 3.6 implies that the sequence un converges to u in 

T]; H). 

PROOF OF THEOREM (3.2). (Recall that V = 0 and I = [0, T].) To solve du/dt  

+ Au + B( ", u)~ 0, u(0) = Uo, we interpret the problem as follows: There exists 

fl in ~l(U) such that u = Fuo(-fl). The classical Kakutani, Ky-Fan, Tychonof 

fixed point theorem for multivalued u.s.c, mappings does not apply to the equation 

u �9 Fuo(- Blu) (it is not convex valued), but as was noticed by F. Browder, it does 

apply to the equation f l �9  ). 

Using (3.5) and (3.6), we find that fl -~ BI(F~o ( -  fl)) is u.s.c, from X~ into itself 

(X~ with the w - D topology), and nonempty convex compact valued. Thus, it 

has a fixed point fl which, together with u = F~o ( -  fl), satisfies the conclusions of 

Theorem (3.2). 

IV. Infinite dimensional case 

In this section H will be a separable real Hilbert space and q~ a proper convex 

l.s.c, function on H;  A = t~b. 

We shall prove the following 

(4.1) THEOREM. Let H be a separable real Hilbert space, dp be a proper ].s.c. 

convex on H such that for  all real M the set C(M) = {x �9 H ; l x] < M, ~(x) < M} 

is (convex) compact in H t. Also let B be a time dependent multivalued operator 

on H satisfying condition R2 (P = 2) (cf (3.1)). 

Then the problem (P) has a solution u on I. More precisely: 

t This is clearly equivalent to: for all M � 9  R {X�9 q5 (x)-b Ix] 2 <M)  is convex compact 
in H. 
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i) There exists a measurable section fl: ! - o  H such that fl(0 ~B(t, u(t)) almost 

everywhere on I. 

ii) u is the strong solution of du ~dr + aqb(u) + fl ~ O, u(O) = Uo. (Uo ~ D(dp)). 

PROOF. We first show that we can take ~b bounded below. Indeed since q~ is 

1.s.c. proper convex on H, it is bounded below by some affine functional 

(a, x) + b. If  we replace q~ by q5 - (a, �9 ) and B by B + a (the subdifferential of  

q5 - (a, �9 ) is 0~b - a), condition R2 is still satisfied and all we have to show is 

that the sets {Ixl < M,(o(x) - (a,x) < M} are still compact in H. But they are 

closed and included in C(M(1 + I a I))" From here on, we assume that q~ is bounded 

below on H. We use the same method as in Theorem (3.2), with y = 0 and 

1 = [0, T]. Thus all we have to show, in view of (3.5), is the following: 

(4.2) PROPOSITION. The operator F,, o is continuous from X z (with w - L  2 

topology) to cg([0, T] ; H). 

PROOF. t We first take Uo in D(qS). 

Let f . - - . f  (in X~) and put u. = F.of. ,  u = F.o f By Theorem (1.3), e), ii) 

]du./dt [L 2 is bounded uniformly in n; therefore {u.} is equicontinuous on [0, T] 

and uniformly bounded. Moreover, from (1.3), e), i) we also get that ?p(u.(t)) is 

absolutely continuous on [0, T] and (d/dt)(~(u.(t))<(f.,(du.[dt)). Therefore, 

V0 < t <  T ?P(Un(t))<~ qS(Uo)+ I f .  [L~I du./dt IL2. Therefore, the set {u . ( t ) ; te  [0, T], 

n e N} is included in some C(M), which is compact. By Ascoli's theorem, the fam- 

ily {u.} is conditionally compact in (g([0, T] ;  H). 

Let u.~ converge uniformly to a cluster point v. 

We have 

1 u,~(t) - u(t)l < (f,~(o) -f(~r), u,k(a ) - u(a))dcr. 2 

Letting k go to infinity we get u,~(t) ~ u(0 for all t in [0, T]. Therefore v equals 

u and the whole u n converges to u in (g([0, T] ;  H). 

Take now Uo in D(~). Let Uo.m be in D(~b) and converge to Uo. It is enough to 

show that v..,. = F.o,,,f . (resp. V m = Fuo,mf) converge uniformly in n to u.=F.of .  

(resp. u = F.of), when m tends to infinity, By the monotony of d~b we have 

Iv. ,,(t) - u.(t)[ < [ V.,m(0) - u.(0) I for all t in  [0, T] (and the same for Vm and u); 

since v.,m(0) = vm(0) = uo,,. and u(0) = u.(0) = uo, the uniform convergence holds. 

t One can also use a compactness result; see J. L. Loins [19], pp. 141-143. 
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As in Theorem (3.2), the previous result implies the existence of local solutions 

in the general case of I, 7 ~ 0. To show that a maximal solution is defined on the 

whole of  I, one uses the same technique as in (3.2) to show that u is bounded on 

[0, To]; then we use estimate ii) of  (1.3) on [a, To] with a > 0 (since qS(u(c0) is 

finite) to show that du ]dt is in L2(a, To; H), which implies the existence of  a limit 

for u(0 when t J' To. 

For applications, the following variation of  Theorem (4.1) is of  interest. 

(4.3) DEFINITION. A multivalued mapping B from I x D(A)into H satisfies 

condition (R') when 

a) for almost all t in I, the mapping x ~ B(t, x) is multivalued u.s.c, from D(A) 

(with the strong topology) to w - H with convex weakly compact values (w - H 

is H with its weak topology). 

b) for all x in D(A), the mapping t ~ B(t, x) is multivalued measurable from I 

to w - H .  

c) there exist two functions V and fi in LI~(I), such that for almost all t in I, all 

x in D(A), 

sup [y[ < V(t)[ x] + tS(t). 
y e B ( t , x )  

(4.4) PROPOSmON. Under the same assumptions on H and ?p as in Theorem 

(4.1), and i fB satisfies condition (R') (Definition (4.3)), the conclusions of  Theorem 

(4.1) still hold. t 

PROOF. All we have to show is that under condition (R') and when I = I-0, T-] 

and r - 0, the operator B = {I-u, v] ~ (L2(0, T; H))2; almost everywhere on [0, T] 

u(t) ~ D(A) and v(O ~ B(t, u(t))} is upper semi-continuous multivalued with convex 

compact images from L2(0, T; H) into w - L2(0, T; H). The proof of Proposition 

(3.4) still holds verbatim, as well as Proposition (3.5) except for the fact that 8u is 

nonempty when u(t) belongs to D(A) almost everywhere. 

Consider a measurable step function u on [-0, T] with values xl,  ' " ,  xn, distinct 

in D(A) and put F(0 = B(t, u(t)), defined (almost everywhere) on (0, T). In fact F 

takes values in the ball of radius 1 ~ ]t.~~ of H, and the weak topology of this 

ball is metrisable (since H is separable). As in the proof of (3.5), it is easily seen 

that F is measurable from (0, T) into that ball (with the weak topology). Hence, 

2 1" This result still holds when in condition R'c), o n e  only assumes that ~, and ~ are in Llo c (I). 
One can notice that this modified condition R' is weaker than R2. 
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by theorem 5.1 of rio],  F has measurable sections, which obviously are in 

L2(0, T,  H). The proof ends as in Proposition (3.5). 

(4.5) REMARK. The multivalued mapping ~ which maps Uo (in D(dp)) into 

the set o f  solution of  problem (P) with initial condition Uo is upper semi-con- 

tinuous f rom D(c~) into w - L2(0, T; H). 

PROOF. One can always restrict oneself to bounded subsets of  D(4)). It  is 

obvious that ~k maps bounded sets of D(4)) into bounded, hence x~eakly compact, 

sets of/_.2(0, T; H). 
H 

It is now enough to show that ~O has the closed graph property. If  Uo,.--* Uo and 

u., solution of du. /dt  + 8dpu.~ fl . ,u.(O)=uo,, with ft. ~Bu. ,  converges to u in 

w -  L 2, then the fl.'s are bounded in L2(0, T; H). There exists a converging 

subsequence fl.k -" fl in w - L 2. Since 

I f.ofl - u.I oo < I f.ofl - F.ofl.I oo +1 f.ofl. - t.o..fl.I 

< I F . o f l - F u o f l n l ~ + l U o - U o . . I  

by (4.2), we find that u.k converges to F.o fl in (~([0, T]; H); hence F.ofl = u. On 

the other hand, since fl.k -" fl in w - L 2, u.,  -o u in L 2. By the closed graph property 

of ~3, we see that fl belongs to 9u, so that u = F.ofl and fl ~ ~u. t 

When B is single valued, one can transfer the compactness condition which 

was so far taken on 4), onto B itself, as in the following partial result noticed by P. 

Benilan. 

(4.6) THEOREM. Let H be a separable real Hilbert space, 4) a proper I.s.c. 

convex function on H; let B be a single valued time dependent operator on 

I x D(4)) which is measurable in t on I, and continuous in x f rom D(4)) (with the 

weak topology ) into H (with the strong topology ). Suppose there exist ~ and 5 in 

L]oc(I) such that a.e. in t, for  all x in D(4)), 

I B ( t , x ) [<  y(t)J x I + ~5(t). 

Then the problem (P) 

du 
+ a~u + B( . ,u)~0; u(0) = Uo (Uo ~D(~)j 

dt 

has a solution. 

t One can actually show that the mapping Ifi is u.s.c, from D(4)) into the space C([0. T]. H) 
with the topology of uniform convergence on every compact subset of (0, T). 
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PROOF. As usual it is enough to show the existence of a solution on I-0, T] for 

~----0, and when q$ is bounded below. We use a fixed point theorem for 

G: u ~Fuo ( -  B( ",u(" )). First assume Uo ~ D(~b). Put M = T 1 61L2 + x/--~o) and 

K1 = (u ~ ( [ 0 ,  T]; w - H ) ;  u is absolutely continuous on every compact subset 

of  (0,T); u(O) = Uo, u(t) ~D(cb) a.e. and I du/dtlL2(O,T:m< M}.  K1 is convex, and 

by Ascoli's theorem, conditionally compact (metrisable since all its elements have 

their range in a bounded set of w -  H, which is therefore metrisable) in 

5([0, T] ; w - H). Thus K =/('1 is convex compact in cg(ro, T]; w - H). 

G is continuous on K as follows: 

Let u, converge to u in K; the set {u.(0; n ~ N ,  t ~ [ O , T ] }  is bounded hence 

weakly conditionally compact in H so that B(t, �9 ) is uniformly continuous on it. 

Therefore B(t,u.(O) converges for all t to B(t, u(t)); thus B(t, Un(t)) actually con- 

verges to B(t, u(t)) in/_,2(0, T; H); this in turn implies the uniform convergence of 

G(u,) to G(u) in r T]; H). By Schauder's fixed point theorem, there is a 

solution of u = G(u). 

If  Uo is in D(~b) we take u,, o in D(~b) converging to Uo, u. a solution of 

du,  ~dr + Ocb(u,) + B(t, u,) ~ 0 = u,  o. By an estimate of [5] (p. III. 20) we have for 

all a ~ (0, T), for all n, 

dt L2(~,r:n) < If~l,,2~0,r;nj + - - - -  f~(t)l dt + - -  dist(u.,o,Ko) 

where f~ = - B(",Un) and Ko = ~b-l(min ~b). 

We see that the family {Un} is relatively compact in every r T]; H) for 

E (0, T) (by Ascoli's theorem) therefore, taking a sequence an tending to 0, and 

by a diagonal sequence method, we get a subsequence u,~ which converges for all 

t E (0, T]. This subsequence obviously converges at t = 0 too, so that it converges 

for all t to a function u. Since B is continuous and dominated in L 2, B ( . ,  UnO 

converges to B(. ,  u) in L2(0, T; H). I f  v = FuoB(., u), we then have I Un~ -- V ILoo 

~-~ ] blnk,O -- UO [ "~'-1 B( ", u.~) - B( ", u)lL, which shows that u. converges to v 

uniformly on [0, T] ; this shows that u -- v, and u is as required. 

The previous results can be applied to some multivalued partial differential 

equations. Here are two examples. 

We take H = L2(f~) where s is an open bounded subset of •", with a smooth 

boundary F. Let j be a positive proper 1.s.c. convex function on ~ such that 

0~(0) # ~ .  We set 
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l . ]gradulzdx + I,, j(u)dx if u~Hlo(~), j(u)~Ll(~)) 

oo otherwise 
6(u) = 

Then, (see [4]) 

9dp(u) = - Au + aj(u) with 

D(O~b) = {u ~ HZ(fl) C~ Hol(f~) : there exists g ~ L2(F~) with g(x) ~ 9ju(x) a.e. on .q} 

D(&k) = D ( ~ ) =  {u CL2(fl); u(x)~D(j)a .e ,  on f~}. 

It easy to see that, for all M, the set 

{u zL2(f~); ~b(u) +1 u[~2 < M} is bounded 

in Hl(fl)  and thus compact in L2(f~). 

1) L e t f ( t , y )  be a bounded continuous function on [0, T] x D(j). Let u0 be in 

L2(fl), with Uo(X ) ~D(j)  a.e. on f~. Then, there exists a function u in T([0, T];  

L2(O)) with x/-[--du /dt ~ L 2 (0, T; LZ(f~)) satisfying 

Ou t, x --Ji- ( ) - Axu(t, x) + Oj(u(t, x)) ~ f ( t ,  u(t, x)) for almost all (t, x) in (0, T) x 

u(O, x)  = Uo(X) on f~ 

u(t,x)l v = 0 a.e. on (0, T). 

2) Let c(t, y) (resp. cl(t,y)) be continuous in t and 1.s.c. (resp. u.s.c.) in y on 

[0, 7"] x D(j) with c and d bounded and 

c(t, y) < d(t, y). 

Let Uo be in L2(f~) with values in O(j). There exists u in T([0, T];  L2(.Q)) and 

h ~ L~~ T); L2(fl)) with 

_~i_(t,x _ Axu(t, x) + aj(u(t, x)) ~ h(t, x) 

c(t, u(t, x)) < h(t, x) < d(t, u(t, x)) a.e. on (0, T) x f~ 

u(O, x) = Uo(X) on f~ 

u(t,X)l r = 0 a.e. on (0, T). 

RnMARK. One can easily transpose the above examples to get a Neumann 

boundary condition instead of the Dirichlet one. 
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