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ABSTRACT 

Let H be a Hopf algebra over a field with bijective antipode, A a fight 
H-comodule algebra, B the subalgebra of H-coinvariant elements and 
can : A ®B A --A @ H the canonical map. Then A is a faithfully flat (as left or 
right B-module) Hopf Galois extension iffA is coflat as H-comodulc and can 
is surjective (Theorem I). This generalizes results on affine quotients of affine 
schemes by Oberst and Cline, Parshall and Scott to the case of non-commuta- 
tive algebras. The dual of Theorem I holds and generalizes results of Gabriel 
on quotients of formal schemes to the case of non-cocommutativc eoalgebras 
(Theorem II). Furthermore, in the dual situation, a normal basis theorem is 
proved (Theorem III) generalizing results of Oberst-Schneider, Radford and 
Takeuchi. 

Introduction 

This  p a p e r  tries to p rov ide  evidence  for  the following assertion: 

There  is a non- t r iv ia l  quot ient  theory  o f  a rb i t ra ry  H o p f  algebras coact ing on 

a rb i t ra ry  algebras or  acting on arb i t ra ry  coalgebras.  

Such a theory  should generalize wel l -known results in the quot ient  theory  o f  

algebraic or  fo rmal  groups. One  should hope  that  there are appl ica t ions  o f  such 

a general theory,  since nowadays  arb i t ra ry  H o p f  algebras occur  in the guise o f  

q u a n t u m  groups. 

For  simplicity,  assume in this in t roduc t ion  that  k is a field. Algebras and  

coalgebras will be defined over  k, and  ~ = t~ k . 
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Let Xbe  an affine algebraic group scheme over k, G c X a closed subgroup, 

and X/G the quotient scheme. Then it was shown by Oberst [19] and 
independently by Cline, Parshall and Scott [2] (for smooth groups over an 
algebraically dosed field) that X/G is affine if and only if induction of G- 

modules to X-modules is exact. 
More generally, let Xbe an affine scheme, G an affine algebraic group scheme 

and It : X × G ~ X a free action of G on X, i.e. an action such that the canonical 

map can: X × G ~ X × X, defined on rational points by can(x, g) := (x, x .g), 

is a closed embedding. For example, if X is an affine group scheme and G c X 
a closed subgroup, then G acts freely on × b y  translation (multiplication in X). 

Let Y be the quotient in the category of affine schemes. Thus 

# 

X × G  -~ X ~ Y 
pr 

is an exact sequence of affine schemes. 
The quotient map X---- Ysatisfies "all that one might hope for" [16], p. 16, if 

can: X × G ---- X × r X is an isomorphism, and X---- Y is faithfully fiat. In this 

case, X ~ Yis called a G-torsor [3] (in the faithfully fiat topology), or aprincipal 

homogeneous G-space or a principalfibre bundle with group G [ 16], p. 16, and 

X × G  ~ X - - - .  Y 

is exact in the category of all schemes, hence the quotient exists in the category 

of  schemes, and it is affine. 
Oberst [19] gave a criterion in terms of representation theory of the free 

action for X to be a principal fibre bundle over Y with group G. This criterion 

generalizes the one described before in case of the quotient of  a group modulo 

a subgroup. 
These results on affine quotients are proved in [ 19] and [2] using the theory 

of  affine groups. For example, in [2] the theorem of Haboush (a reductive 

group is geometrically reductive) was applied. Then Doi [6] gave a purely Hopf 

algebraic proof. 
It is shown in this paper that the above results on affine quotients are 

particular cases of a theorem on arbitrary Hopf algebras (with bijective 

antipode) coacting on arbitrary algebras. 
Let H be a Hopf algebra, and AA : A ~ A @ H a right H-comodule algebra (cf. 

[15], 4.5), i.e. A is an algebra, AA a right H-comodule structure and an algebra 
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map. Define B :=  A ~°/~ :=  (a CA [ AA(a) = a ® 1 }, the algebra of coinvariant 
elements. Thus 

aA 
B C A  ~ A @ H  

in 

is exact. The canonical map can: A ®n A ----A ® H is defined by can(x @ y) :=  
x .AA(y). 

Denote by ./¢s the category of right B- modules. If M is a right B- module, 
then the induced module M @n A is an A-module and a right H-comodule in 
the natural way. Thus M @ n A  is an object of ./tff, the category of (A, H)- 
Hopf  modules (see Section 3). This defines a functor ~¢ts ~.Alff. Similarly, 
sd t" ' ,4d¢  H, M ~-> A ~B M,  is defined. 

THEOREM I. Assume the antipode of  H is bijective. Then the following are 
equivalent: 

(1) (a) A is injective as right H-comodule. 
(b) can: A ®BA ~ A  ® H  is surjective. 

(2) .gin ~ ~¢t~, M ~ M ®s A, is an equivalence. 
(3) sdg--'A.l¢ ~, M ~ A ®nM,  is an equivalence. 
(4) (a) A is faithfully flat as left B-module. 

(b) can is an isomorphism. 
(5) (a) A is faithfully flat as right B-module. 

(b) can is an isomorphism. 

By definition, B C A is called an H-Galois extension, if can is an isomor- 
phism. Hence Theorem I characterizes faithfully fiat H-Galois extensions. 

Takeuchi [29], 4.1, calls/l- Galois extensions satisfying (4) or (5) in Theorem 
I torsor-like. However, in [29], (4) and (5) (for H cocommutative) are treated as 
different cases. 

In Theorem I, the implication (4)=* (2) is a general imprimitivity statement, 
and (1)=* (4) (the main part of Theorem I) is a non-commutative version of the 
above-mentioned criterion for affineness. 

By 3.7, (4)=*(2) holds under very general assumptions over arbitrary 
commutative rings k. This implication was shown by Voigt in [33], 5.2, in case 
A and H are commutative, and by Ulbrich [32], p. 662, for H finitely generated 
and projective over k. 3.7 implies the imprimitivity theorem of Koppinen and 
Neuvonen [11] which contains the analogue of Blattner's imprimitivity 
theorem [1] for restricted Lie algebras (see 3.9). The oldest version of (4)=* (2) 
(in case A = H) seems to be the theorem on Hopf modules in Sweedler's book 
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[26]. In the case of H-Galois extensions, related sufficient conditions implying 
(2) have been given recently by Doi and Takeuchi [7], (2.11). 

I f H  is finitely generated and projective over the ring k, then (1) =* (4) follows 
from results of Kreimer and Takeuchi [ 13], (1.7) and (1.9), and Doi [6], (2.4). If 
H is the group algebra of an abstract group, then (1)(b) is the definition of 
strongly group-graded algebras, and ( 1 ) ~  (2) is Theorem 2.8 of Dade [3]. 

Finally, assume A and H are commutative. Then condition (1)(b) means that 
the group scheme G = Spec(H) acts freely on X = Spec(A). In this case, 
(1)=* (4) is the criterion on affine quotients by Oberst [19] and Cline, Parshall 
and Scott [2], and Theorem I is Theorem 3.2 of Doi [6]. 

Once there is a general theorem like Theorem I, one can formally dualize it, 
i.e. turn all the arrows around. In fact, the dual of Theorem I holds, although its 
proof cannot be dualized completely. 

Let H be a H opf algebra and C a right H-module coalgebra (cf. [15], 4.2), i.e. 
C is a coalgebra, C ®H-- -  C a right H-module structure and a coalgebra map. 
Define C :=  C/CH ÷, where H ÷ is the augmentation ideal of H.  

If V i sa  right C-comodule, and Wa left C-comodule, then VE]~ Wdenotes 
the cotensorproduct, already introduced in [15] (see Section 1). Now the dual 
of  Theorem I can be stated. 

ThEOReM II. Assume the antipode o f  H is bijective. Then the following are 

equivalent: 
(1) (a) C is a projective right H-module. 

(b) can: C ® H ---, CEVc C is injective. 
(2) d l c  ~ d l  c,  M ~ MI~cC,  is an equivalence. 
(3) -e¢¢ _., cA/n, M ~ CEVc M,  is an equivalence. 

(4) (a) C is faithfully coflat as left C-comodule. 
(b) can is an isomorphism. 

(5) (a) C is faithfully coflat as right C-comodule. 
(b) can is an isomorphism. 

For unexplained notions in this theorem, see Sections 1 and 4. Again, (1)(b) 
means that H operates "freely" on C. Take, for example, a Hopf algebra C and 
a Hopf subalgebra H c C. Then C is a right H- module coalgebra by multipli- 
cation in C. Clearly, condition (1)(b) is satisfied in this case. 

It turns out that Theorem II can be viewed as a non-cocommutative version 
of  the main theorem on quotients of formal schemes under free actions of 
formal group schemes (cf. Gabriel [8]). Formal schemes are (covariantly) 
equivalent to cocommutative coalgebras. In the cocommutative case, (1)(a) is 
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a consequence of (1)(b). More generally, assume the coradical of C is cocom- 
mutative (for example, C is pointed or cocommutative). Then it is shown in 
4.11 that (1)(a) follows from (1)(b). Hence, if C has cocommutative coradical, 
there is always a good quotient for free actions. 

In the situation of Theorem II, the following normal basis theorem is proved 
in 4.13. 

THEOREM III. Assume that can: C ® H --, C [~c C is injective, and that one 
of  the following holds: 

(1) The coradical of C is contained in G(C)H, for example, C is pointed 
(G(C) denotes the group-like elements). 

(2) The coradical of C is cocommutative, and H is finite dimensional. 
(3) The coradical of C is cocommutative, and any simple subcoalgebra of C is 

liftable along C---, C. 
Then C ~---C ® H as left C-comodules and right H-modules. 

In ease C and H are cocommutative, Theorem III was proved in [ 18] using 
the theory of formal groups. 

Consider the special case ofa Hopf algebra C and a Hopf subalgebra H C C, 
H acting on C by multiplication in C. Then can is always injective, and by 
Theorem III, C is free as a right H-module in each of the cases (1), (2) and (3). 
In this situation, the freeness of C over H was proved by Radford [21], [22], 
and Takeuchi [31 ] in cases (1) and (2). But this does not imply the normal basis 
theorem. 

Finally, in 4.15, an easy proof is given of the following fundamental result on 
quotients of a cocommutative Hopf algebra H: 

H' ~-~ HH' + is a bijection between Hopf subalgebras and coideals which are 
also left ideals (cf. [8], [ 17], [31 ]). 

Most of the results in this paper were obtained after the stimulating Hopf 
algebra conference in Beer-Sheva and Sde Boker, January 1989. 

1. Preliminaries 

Let k be a commutative ring. Algebras and coalgebras are always defined 
over k, and ® = ®k. If (C, A, e) is a coalgebra with comultiplication 
A : C ~  C ® C and augmentation e:C--,  k, then the following version of 
Sweedler's sigma notation [26] will be used: A(c)=Zci®c~, for c ~ C .  
Similarly, if (V, Av) is a right (resp. left) C-comodule, then its structure map 
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will be denoted by Av(v) = E v0@ vl (resp. X v_ z@ v0), for vE V. The category 
of  left resp. right C-comodules will be denoted by c / / resp .  ~/c .  I fR  is a ring, 

then R~//resp. d/R will denote the category of left resp. right R-modules. The 
module structure map of an R- module M will be denoted by PM. Let V E j / c  

and W E  ~t/. Then the cotensor product VEIc W is defined by the exact 

sequence in ~/k (equalizer of  k-modules) 

Vr3cWC V ® W ~  V ® C ® W ,  

where the arrows on the right are At, ® W and V ® Aw (cf. [ 15], 2, [28], § 1, and 

[23], p. 130). 
Let R be an algebra, and X E ~ R ,  Y~Rd¢. Then 

X@R@Y---~ X®Y---. X®R Y, 

where the arrows on the left are Px® Y and X@/tr ,  is exact. Thus cotensor 
product and tensor product are dual notions in the sense of duality of 

Q-categories (d/k, ®)  and (~¢/k, ®)op (cf. [231, P. 12). 
Let C be flat over k. Then ~¢¢c and C¢/are abelian categories, and a sequence 

of  C- comodules is exact, if and only if it is exact as a sequence of k- modules. 

Y E c¢¢ is called coflat resp. faithfully coflat, if  the functor - I~c Y: ./¢/c __, 

• ACk is exact resp. is exact and reflects exact sequences. If k is a field, then Y is 
coflat if and only if Yis an injective object in ~ ([301, A. 2.1). 

Let R be an algebra, and C a coalgebra. R~t/od c will denote the category of 
(R, C)- bimodules. Its objects are k- modules V which are left R- modules and 
right C-comodules such that Av is left R-linear, i.e. Av(rv) = X rvo® v~ for all 
r ~ R  and v~ V, or equivalently, #v is right C-collinear. Morphisms in RJgod c 
are R-linear and C-collinear maps. 

Now assume the situation U~CgR, VER~od c and W E  c~ .  Then VElc W 

is a left R- submodule of V ~ W, and U ~ Av: U ®R V ~ U ~R V ® C is a right 

C-comodule structure. Let i: VI~c W--, V® W be the inclusion. Then the 

image of  U ®R i lies in (U ®R V) I~c W. Hence, U ® i induces a canonical map 

can: U ®R (Vnc W)-"(U ®R V) t2c W. 

This map is bijective, if U is R-flat, or dually, if C is k-flat, and W is C-coflat 

(cf. [28], §1). 
Let C and D be coalgebras, and p : C --* D a coalgebra map. Then C is a left 

resp. right D-comodule with structure map (p ® C)A resp. (C ® p)A. 
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1.1. PROPOSITION (faithfully coflat descent). Let C and D be k-flat coalge- 
bras and p : C ---, D a coalgebra map. Assume C is faithfully coflat as right 
D-comodule. Then for any left D-comodule V, the canonical sequence 

P! 

CDo (Clio V) = CDo V ~ V, 
Pl 

where p~, P2 and p are induced by e @ 1 @ 1, 1 ® e ® 1 and e ~ 1, is exact. 

PROOF. By the flatness of D, C Do V is a left D-comodule with structure 
map C Do V ~ (D ® C) Do V ~ D ® (C Do V), defined by ( p @ 1)A @ 1. By the 
flatness of C, CDo (CDo V) can be handled as a submodule of C @ C @ V. 

Since C is faithfully coflat, it is enough to show that the sequence is exact 
after cotensoring with C. The exactness of the latter sequence is easily 
proved in a way dual to the case of a faithfully flat ring extension (note that 
A@ lx: CDD X--, CDz~ (CDo X) is well-defined for any left D-comodule X, 
and use this map for X = V and X = C DD V). 

Assume for the rest of this section that k is a field. If C is a coalgebra, then Co 
will denote its coradical, Co -- sum of all simple subcoalgebras of C. Then for 
any right C- comodule V, the socle of V ( = the sum of all simple subcomod- 
ules) is Av~(V~C0)~  VDc Co. Note that for any subcoalgebra C'C C the 
comultiplication of V defines an isomorphism A; ~ (V ~ C') ~ VDc C'. 

1.2. LEMMA. Let X, Y ~ ~I c and f:  X---, Y C-collinear. 
(1) Assume X is an injective ( = coflat ) comodule, and f Elc Co: XDc Co ~ 

YDc Co is bijective. Then f i s  bijective. 
(2) Assume X and Y are injective comodules, and f Dc Co is surjective. 

Then f is a split surjection of  comodules. 

PROOF. (1) This follows easily from the fact that XDc Co is isomorphic to 
the socle ofX:  f i s  injective, since its restriction to the socle is injective. Hence 
f is a split injection of comodules by the injectivity of X. The retraction of 
f is injective, hence an isomorphism, since its restriction on the socle is the 
inverse map o f f  Dc Co. 

(2) This is proved in the same way as [30], 6.7: Since Co is cosemisimple, 

there is a C0-collinear mapg0: YDcCo~Xr'lcCo such that f0g0=id,  
fo := f Dc Co. Let 

ix:XElcCo~--Axl(XC~Co) C X  and i t :  YDcCo--" Y 
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be the canonical injections. By the injectivity of X there is a C-collinear 
map g :  Y---X such that gir = ixgo. Then fg  is bijective by (1) using the 
injectivity of Y. 

1.3. PROPOSITION. Let C, D be coalgebras over the field k, and p : C --- D a 
coalgebra map. Then the following are equivalent: 

(1) C is right faithfully D-coflat. 
(2) (a) C is right D-coflat. 

(b) For all left D-comodules, e ® 1 : C 1"3D X ---, X is surjective. 

(3) (a) C is right D-coflat. 
(b) e ~ 1 : C Do Do ~ Do is surjective. 

(4) (a) C is right D-coflat. 
(b) p is a split surjection o f  right D-comodules. 

PROOF. (1)=*(2). By 1.1. 
(2)=,(3). Take X = Do. 
(3)=, (4). This follows from 1.2(2), since C and D are injective D-comodules. 
(4) =, (1). This is obvious, since any right D- comodule M is faithfully coflat 

if and only if M is coflat, and for ali 0 ÷ X ~ q# :  MI21D X ~ 0. 

2. Normal basis for (R, D)-bimodules 

In this section, k is a field. 
Let R be an algebra, and D a coalgebra. Then R @D will always be 

considered as (R, D)-bimodule in R~C/od ° in the obvious way with module 
structure a(r ® d) : = ar ® d, and comodule structure r ® d ~ ~ r ® d, ® d2, 
for a, r ~ R  and d ~ D .  

If  X is an (R, D)-bimodule, then X has a normal basis (by definition), if 

R @D ------X as (R, D)-bimodules. 

The following criterion for the existence of normal bases will yield normal 

basis theorems for module coalgebras later on. 

2.1. THEOREM. Let R be an algebra, C and D coalgebras, and f :  C --, D a 

coalgebra map. Assume that the coradical o f  D can be lifted along f ,  i.e. there is 
a coalgebra map g : Do--" C such that fg  is the inclusion map Do C D. 

Let X ~ R ~ / o d  °, and assume X is injective as D-comodule. Then the follow- 

ing are equivalent: 
(1) R ® D  --~ X a s  (R, D)-bimodules. 
(2) R @ C ~ XI2]D C as (R, C)-bimodules (where C is a D-comodule via f ) .  
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PROOF. (1)=* (2). This is obvious by cotensoring with C. 
(2)=* (1). Consider Do as left C-comodule via g. By (2), R @ C Dc Do 

XI"IoCI~cD o in R~t/od °0. But R ~ C D c D o ~ R  ~Do, and X D o C D c D o ~  
XDo Do, where Do c D defines the D-comodule structure of D0, since fg is the 
inclusion Do C D. 

Hence there is an isomorphism Oo:R@Do-- 'XDoDo of (R, Do)- 
bimodules. 

Since Do is R-linear and D0-collinear, it has the form Oo(r ® d ) =  r .j(d), 
where j :  Do--" XDo Do is a right Do-, hence D-collinear map. 

The comodule structure of X induces an isomorphism Xo : = A; i (X @ Do) 
XDoDo. Since X is an injective D-comodule by assumption, the D- 
collinear map 

Do ~ X Do Do--~ Xo C X 

can be lifted to a D-collinear map J :  D --- Xsuch that J(d) = (1 @ e)j(d) for all 
d ~ D .  Then J defines a map q~ : R @D ~ X ,  q~(r @d) := r .J(d), in R~/od °. 
Since R @D is clearly D-injective, by 1.2(1), ~ is bijective if and only if 

Do Do is bijective. But the composition 

R @DomR @DDoDo ¢oo0 XDoDo 

is Do, hence bijective, since (q~DDo)(~ rt~dl@d2) = Z r.J(dl)@d2 = 
Z r(1 ~e)j(dl)@d2 = r .j(d) for all r ~ R  and d~Do by the collinearity ofj .  

2.2. COROLLARY. Let XER,//od °, and assume X is injective as D- 
comodule. Then the following are equivalent: 

(1) R @D -~ X as (R, D)-bimodules. 
(2) For all simple subcoalgebras D' C D : R  @D'~--XI'qoD' as (R, D')- 

bimodules, or equivalently, XDD D' is free of rank 1 as left R @D'*- 
module. 

PROOF. (1)=*(2). Cotensor with D'. Note that R @ D ' ~ R  ®D'* as left 
modules over R @D'* (D'* := Hom(D', k) is the dual algebra), since D' is a 
simple coalgebra, hence D'* is a Frobenius algebra, and D' --~ D'* as left D'*- 
modules. 

(2) =, (1). Write Do -- ~)i Di, D~ simple subcoalgebras of D. By assumption, 
there are isomorphisms R @Di ~ XDoDi in RJ/od D, for all i. Their direct 
sum defines an isomorphism R ~ D o - ~ i  R ® Di -~ ) i  XDoDi ~ XDoDo in 
R~od°o. 
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By 2.1, where C is Do and f is the inclusion map Do c D, R ® D ~ X in 
Rd/od ~. 

2.3. COROLLARY. Assume in the situation o f  2.2 that R is finite dimen- 
sional. Let k c k' be any field extension. Then the following are equivalent: 

(1) R @ D ~-- X as (R, D )-bimodules. 
(2) (R ~ k') @k' (D ~ k') ~-- X ~ k' as (R ~ k', D ~ k')-bimodules. 

PROOF. (1)=*(2) is trivial. 
(2)=*(1). X ® k '  is an injective (=coflat)  D@k'-comodule,  since the 

cotensor product commutes with field extensions. Take any simple sub- 
coalgebra D ' c  D. Then the given isomorphism induces an isomorphism 
R @D'@k '~ - -XDoD'@k '  of left R ®D'*  ~ k'-modules. Now R ®D'*  is a 
finite dimensional algebra, hence R ® D ' ~  X[3o D' as left R ®D'*-modules 
by Deuring-Noether. Therefore, R @D --~ X in R ~ o d  ° by 2.2. 

2.4. REMARK. Let f :  C --- D be a coalgebra map. Then clearly the coradical 
of D is liftable along f i f  and only if any simple subcoalgebra of D is liftable 

alongf. 
Now assume C and D are cocommutative. Let ~o : Gt --" G2 be the map of 

formal schemes represented byf.  Recall that for any cocommutative coalgebra 
T, the formal scheme represented by T is the functor R ~-~ Coalg(R*, T), 
R a commutative finite dimensional algebra (cf. [8]). Hence, any simple sub- 
coalgebra of D is liftable along f if and only if for all finite field extensions 
k c k'  the induced map on the k'-rational points ~o(k'):Gl(k')--'G2(k') is 
surjective. 

This latter condition appears in the normal basis theorem for cocommuta- 
rive Hopf algebras in [ 18], Satz A, and 2.1 can be viewed as a generalization of 
this theorem. 

Finally, the dual of Theorem 2.1 also holds. 

2.5. THEOREM. Let C be a coalgebra, R and S algebras, and f :  R ~ S an 
algebra map. Assume that there is an algebra map g : S ~ R / R a ( R )  
(Ra = Jacobson radical) such that g f  is the canonical map R ~ R/Ra(R). 

Let X E R.//od c, and assume X is projective as R-module. Then the following 

are equivalent: 
(1) R ® C -~ X as (R, C)-bimodules. 
(2) S ~ C ~ S ®R X as (S, C)-bimodules (where S is an R-module via f ) .  
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PROOF. (1)=* (2). This is obvious by tensoring with S. 

(2)~(1) .  Consider R :=  R/Ra(R) as right module over S via g. Then the 
isomorphism in (2) induces an isomorphism • : R @k X =~ R @s S @R X ~- 
R @s S @ C = R @ C of (R, C)-bimodules. This map has the form ~(? @ x) = 
Z q(? @x0) @xl, where q : R @R X - "  R is left R-linear. Since Xis R-projective, 
there is a left R-linear map Q : X - - R  such that the diagram 

X 

m 

R ® R X  q 

, R  

, R  

with canonical vertical maps commutes. Define ~ "  X ~ R  ®C,  O(x):-- 
Z Q(xo)@x~. Then • is a morphism of (R, C)-bimodules, and the diagram 

X 

J 
R ~ R X  

, R ® C  

, R ® C  

with canonical vertical maps commutes. 

Take any finite dimensional subcoalgebra C' c C. Then • Iqc C' : XI-'lc C'--, 
R ® C' is surjective by Nakayama, since it induces an isomorphism modulo 

Ra(R). Therefore, • is surjective, hence R-split. But this implies that 
is bijective, since Ke(~) is R-projective by the projectivity of X, and 

R @R Ke(O) --- 0, hence Ke(~) = 0 (cf. [24], p. 325). 

3. Faithfully flat Hopf Galois extensions 

Let k again be an arbitrary commutative ring. 

Let H be a Hopf algebra, and A a right H- comodule algebra (see introduc- 

tion). The category of fight (A, H)- Hopf modules will be denoted by ~ /g .  Its 
objects are k-modules N which are right H-comodules and right A-modules 

such that the comodule structure map is A-linear, i.e. AN(na) = X noao ® n~al 
for all n E N  and a CA. Morphisms in JgA n are A-linear and H-collinear maps. 

The category A J / n  is defined similarly. If  the antipode of H is bijective, then 

the dual algebra H °p is a Hopf  algebra with the same coalgebra structure as H. 
Note that AJ/n = d4Ang. A ® H  will always be considered as Hopf  module in 

a ~ / n  and in ~/a  n in the obvious way, where the comodule structure is 1 @ A and 
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a (x @ h) = Z a0x ® a~h resp. (x @ h)a = Z Xao ® hal, a, x C A and h C H, de- 
fine the A-module structures. Define 

B : = ( a C A  I E a o ® a l = a ® l } .  

I f  N is a Hopf module, then N ~'n : = {n C N I y- no @ n~ = n @ 1 } is a left 
B-submodule of N. Clearly, NDn k ~-- N ~°n, where k is the trivial H- comodule 

k - - * H @ k ,  1 ~-~ 1@1. 
For any right B-module M, the induced module M ®B A is a right (A, H)- 

Hopf  module with comodule structure M@AA and A-module structure 
(m @ x)a = m ® xa, m C M  and x, a CA. 

The induction functor d l n ~ J t n A ,  M ~  M ® B A ,  is left adjoint to the 

functor of coinvariants. The adjunction maps are 

M - - , ( M ~ n A )  ~°n, m ~ m ~ 1, 

N~ tt ~n  A ~ N , n ® a ~ na , 

where M C d I B ,  N C,/¢ff, and m CM,  n C N a n d  a CA (cf. [6], [31]). 
In the same way, the induction functor s~tt ~A~CCn, M ~-~ A @sM, is left 

adjoint to N ~ N ~'H. 

There is a close relationship between the functor of coinvariants and A 17/~- 

(cf. [19], 5, in the context of  affinegroup schemes): 

3.1. LEMMA. Let H be a Hopf  algebra with antipode S, and A a right 

H-comodule algebra. 
(1) I f  V c H.4g, then A ~ V C Ajgn and (A ~ V) c° ~l = A Dtt V, where A ~ V is 

a left A-module by multiplication on thefirst factor, and where a @v w-> 
Z ao ~ Vo ~ a~ S(v_ ~), a CA and vC V, is the H-comodule structure. 

(2) I f  NC.At~,  then i :N~°~ '~ADHN,  i ( n ) : = l @ n ,  and p : A D n N ~  

N ~°n, p(Z ai ~ ni) := Z n~ai, are well-definedk-linear maps, andpi = id. 

Here, n ~-, Z S(n~)~ no is the left H-comodule structure o f  N. 

PROOI~. (1) A ~ V as a comodule is the usual tensor product of  right 

H-comodules, where V i s a  right H-comodule via S. To prove (A @ V) ~°n = 
A D'ln V, take t -- Z a~ ~ v~ in A ~ V. If t C(A ~ 10 ¢°H, then 

hence 

Z aio® V i o l a .  S(vi,-l) = Z a; ® vi ® 1, 

Z aio®vio®a.S(vi,-~)vi,-i = Z ai ~Pio@Vi,-t 



Vol. 72, 1990 PRINCIPAL HOMOGENEOUS SPACES 179 

and 

~, aio ~ ail t~ vi = ~, ai @ vi,- t @ Vio. 

Similarly, if t EA I"lx V, then t E(A @ V) °°H. 
(2) Take Z a i®niEAI" IHN.  Then Y. aio®a~lt~ni = E a i @ S ( n , ) ® n i o ,  hence 

A~c(Y~ ni ai) -- ~, nioaio~ nilail = y~ nioai ® nilS(ni2) = ~, niai ~ 1. 

This shows that p is well-defined. Trivially, i is well-defined, and pi = id. 

3.2. COROLLARY. Let  H be a H o p f  algebra with bijective antipode, and  A a 

right H-comodule algebra, B : = A co n. Assume  H a n d A  are f lat  over k.  Then the 

fol lowing are equivalent: 

(1) A is coflat as right H-comodule.  
(2) aJlln ~ B~¢¢, N ~ N c°n, is exact. 

(3) ~tl~--" ~'IB, N ~ N ~°n, is exact. 

PROOF. (1)=*(3). The functor N~--> N ~°u is clearly left exact, and the 
functorial epimorphism in 3.1(2) shows that it preserves surjective mor- 
phisms, since N ~ A Dn N does. 

(2)=* (1). The functor V ~ (A ® V) ~°n in 3.1(1) is exact by (2), and since A 
is fiat over k. 

(1) =* (2). Since the antipode of H is bijective, (1) =* (3) can be applied to A°P 
as H°P-comodule algebra. Therefore, N ~ N ¢°n, N E A~¢ n n** = ~/A®, is exact. 

(3)=* (1) Follows similarly from (2)=* (1) applied to A °p. 

A right H-comodule Z is relative injective, if Az has an H-collinear retrac- 
tion, or equivalently, if for all k-split monomorphisms  i : X--* Y of right H- 
comodules and for all H-collinear maps f :  X ~ Z there is an Hocollinear 
map g : Y ~ Z such that f--- gi. 

The following characterization of relative injective comodule algebras by 
Doi will be used in the sequel. 

3.3. REMARK ([6], (1.6)). Let A be a right H-comodule algebra. Then the 
following are equivalent: 

(1) A is relative injective as right H-comodule.  
(2) There is a right H-collinear and unitary map H---A.  
(3) Any Hopf  module in .//A n is relative injective as right H-comodule.  
(4) There is a morphism ~ : A ® H  - , A  in ~./ /n such that ~AA = idA. 

I f  the antipode of H is bijective, then each of  the above is equivalent to: 
(5) Any Hopf  module in A~/n is relative injective as right H-comodule.  
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(6) There is a morphism ~0' :A ® H  ----A in J i ~  such that ~o'Aa = ida. 

3.4. LEMMA. Let H be a Hopf algebra, A a right H-comodule algebra which 
is relative injective as right H-comodule, and B : =  A ~°n. Then the adjunction 
map M --, (M ~B A)C° n is an isomorphism for any right B-module M. 

PROOF. More generally, the canonical map 

M ~s  (.4 E3n W)---" (M ~s  A ) Dn W 

is bijective for all left H-comodules (since the defining sequence of the 
cotensor product A [3n W can be seen to be a split equalizer by 3.3(4)). In case 
W = k, this map is identified with the adjunction map M ~  (M®nA)  ~°n. 

The referee suggested the following more direct proof: By assumption there 
is a left H-collinear and unitary m a p j : H - - , A .  Let t : A - , B ,  t ( a ) : - -  
Z aoj(S(al)), by the associated trace map. Then one sees as in [7], p. 497, that 
(M®nA)C°n- ,M,  E mi®ai ~ X mit(a3, is an inverse for the adjunction 
map. (Still another proof  was given by Doi [6], 3. l, in case k is a field.) 

I fA is a right H-comodule algebra, B :=  A ~°n, there are canonical maps 

can:A @sA ---,A ~ H ,  x @ y  w-> Z Xyo@yl, 

can':A ~ s A ~ A  ® H ,  x ® y  ~ XxoY~X~. 

If  the antipode of H is bijective, then * :A ®H--*A ~ H ,  ~(a ®h)  :=  
Z ao~atS(h),  is an isomorphism, and c a n ' =  • can. Hence can is surjective 
resp. bijeetive if and only if can' is so ([13], (1.2), [29], p. 1464). 

3.5. THEOREM. Let H be a Hopf algebra. Assume H is projective over k, and 
the antipode of H is bijective. Let A be a right H-comodule algebra, and 
B : = A c°n. Assume 

(a) A is relative injective as right H-comodule. 
(b) can: A ®BA ---,A ~ H is surjective. 

Then both induction functors JIB --" JIll and nJI ---" a JIn are equivalences. 

PROOF. Since the antipode of H is bijective, it is enough to consider only 

right modules (then take the dual algebras). The induction functor JIB ~ J i ~  
is an equivalence if and only if for any M E JIB and N ~ JIA n the adjunction 
maps M-- , (M ~BA) ~°n and N ~°n ~BA ~ N are bijective. 

By 3.4 and hypothesis (a), the adjunction map is bijective for any right B- 
module M. Now take any N E JIA n. By 3.3 and hypothesis (a) (and the bijecti- 
vity of the antipode), there is a map ~0': A ® H ~ A in JIA n such that ~0'AA = idA. 
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Define f :  N @ A ~ H ~ N by f(n @ a @ h ) :=  Z no~o'(a ~ S(n~)h ). 
N @ A @ H  lies in J t  ff with A-module structure ( n ® a t ~ h ) . x =  

Z n~axo@hx~ for all n ~ N  and a , x ~ A  and h ~ H ,  and with comodule 
structure 1 ~ 1 @ A. 

Then f i s  obviously right A-linear, since (p' is so. The following calculation 
shows that f i s  also H-collinear: 

AA f(n @ a @ h ) = Z noq~'(a ® S(n3)hO ® ni S(n2)h2 

(since N is a Hopf  module, and ~0' is collinear) 

= ~, no~'(a ~S(nOhl)®h2 

= Z, f(n ® a  ~ h l ) ® h z .  

Furthermore, for all n ~ N :  flY. n0~  1 ® ni) = Z no~0'(1 ®S(nt)n2) = 
n~0'(1 ~ 1) = n (~o'(l ~ 1) = 1, since ~0'AA = idA). 

Hence f :  N ~ A  ~ H - - , N i s  a map in JtA n, and a k-split surjection. 
By assumption (b), the canonical map can: A ® A ~ A ~ H, x ® y ~-~ Y. xy0~ Y i, 

is surjective. Since H is projective over k, A ~ H is a projective left A-module. 
Obviously can is left A-linear (A operates on the first factor from the left). 
Therefore, can is a k-split (even A-split) epimorphism. 

Now consider N ~ A  ~ A  as Hopf  module in ~¢gn with comodule structure 
1 ® 1 ~A~ and module structure (n ~ x  ~ y ) .  a = n ® x  ~ y a  for all n ~ N a n d  
x,  y, a CA. Then 1 ~ c a n :  N ~ A  ~ A  ~ N Q A  ~ H  is a morphism of Hopf  
modules in .1¢A n, and a k-split surjection. 

Hence g = f ( l ~ c a n ) : N ~ A  ® A - ~ N  is a k-split epimorphism in .glA n. 
Since any Hopf  module, in particular Ke(g), is relative injective by (a) and 
3.3(3), Ke(g) is a direct summand  o f N ~ A  ~ A  as H-comodule.  

Now N ® A  ~ A  is a Hopf  module of the form V ~ A ,  Va k-module, with 
H- comodule structure V ~ A a and A- module structure (v ® a)- x = v@ ax, for 
all vE Vand  a, x~_A. By hypothesis (a) and 3.4 again, 

(V@A) ¢°n ~ V@B.  

Hence the adjunction map for V ® A  is bijective as composit ion of the 
canonical isomorphisms ( V ® A ) co n @B A ~-- ( V @ B) @s A ~ V @ A. 

Therefore, continuing the resolution with Ke(g) instead of  N, one obtains an 
exact sequence in d/A n 

N,--- NI ---N-- 0 



182 H.-J. SCHNEIDER Isr. J. Math. 

which splits as sequence of H-comodules and such that the adjunction maps 
for N2 and N~ are bijective. Hence 

and finally 

N 2 c o H . . . . . •  A . r c o H _ . .  M c o H  ~ / 3  
l~t 1 i v  I.r~ 

N~°n~BA -* N~°n@BA -" N¢°n @sA --'0 

are exact, and the adjunction map for N is an isomorphism, since both 
adjunction maps for N2 and NL are bijectiv¢. 

3.5. EXAMPLE. Let p" H -* H be a surjective map of Hopf algebras. Then 
(1 ® p ) A .  H - - , H ( ~ H  defines an H-comodule algebra structure on H, and 
condition (b) in 3.5 is satisfied. 

PROOF. The canonical map can: H ~  H--* H ~ H is surjective, since H ~ H-*  

H ~ H, x ~ y ~-> Z xYl ~ Y2, is an isomorphism with inverse x ~ y ~ Z xS(y0 ~ Y2. 

The following imprimitivity theorem proves the equivalence of(2) and (4) in 
Theorem I in a more general situation. Let H -- H/I  be a quotient coalgebra 
and a quotient right H-module of the Hopf algebra H, and A a right H- 
comodule algebra. Then the canonical map p : H -*H,  p(h) "= h, is collinear 

and fight H-linear, and A is a right H-comodule via p. Define 

A' :  = A ~ :=  {a EA I y- a0 ®al  = a ®]} .  

Then A' is a subalgebra of  A, and the canonical map 

can:A@A,A-- 'A@H, x®y~--> Y-xyo®yl, 

is well-defined (if x, y EA and z EA',  then 

can(x ®zy)  = X xzoYo®TlYl = 7. XZoYo®~Yt = 7_, XZyo®Yyl = can(xz ®y)).  

The adjoint functors -/'/a, ~ J4~ ,  M ~ M ®a, A, and 

~¢/~ ~ ~¢/a', N ~ NO°n: = {n ~ N I Z  no~ nl = n ~Y}, 

are defined as before. Here, the category ~/¢~ of right (A, H)-Hopfmodules is 

defined in the obvious way: A right (A, H)-Hopf  module N is a k-module 

which has a right A-module and a fight H-comodule structure such that the 
comodule structure map is A-linear, i.e. Au(na) = Y noao® nla~ for all n E N  
and a CA. This notion generalizes ~¢t~ of[31] and oCgff of[5]. Note that a~¢¢ ~ is 
not well-defined, since H does not operate on the left of  H. Also, 
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can': A ~a,A --.A ~ H ,  x ® y  ~ Z XoY~X,I, 
B 

does not exist. If  X is a right A- module, in particular if X = A, then X ¢~ H will 
be considered as right (A, H)-Hopfmodule  with comodule structure 1 ®A and 

module structure (x ¢~h)a "= Y. xao®-ha, for all x ~ X ,  h ~ H  and a CA. 
m 

3.7. THEOREM. Let H be a Hopf  algebra, H = H/ I  a quotient coalgebra and 
a quotient right H-module o f  H, andp : H ~ H  the canonical map. Let A be a 
right H-comodule algebra and A'  :=  A ~°r~, where (1 ® p)Aa is the ~I-comodule 

structure on A. Assume H is flat over k. Then the following are equivalent: 

(1) (a) A is faithfully flat as left A '-module. 
(b) can: A ®a, A ~ A ¢~ H is an isomorphism. 

(2) The induction functor dC A,--" /d~  , M ~ M ®A" A, is an equivalence. 

(The implication (1) =* (2) holds without the assumption that H is fiat over k.) 

PROOF. (2)==' (1). Clearly, A is left faithfully flat over A', since (by the 

flatness of H) exact sequences of (A, H)-Hopf  modules are exact as sequences 
of  k-modules. The adjunction map of N := A ~ H  can be identified with the 

canonical map can: A ®A. A ~ A ® H. Hence can is bijective. 
0)=*(2). (i) Let N be a right (A, H)-Hopf  module. Then the adjunction 

map gs  of N is bijective. 

PROOF. This was shown in [7], 2.1 l, in case H -- H using the assumption 

that H is a Hopf algebra. A slight modification of this proof also works in the 

general case: For any right A-module X, the canonical map canx: X ~A, A - -  

X ® H, x ~ a ~,  Y~ Xao ® al, is bijective, since canx ~- X @A can. The following 
diagram commutes: 

N ~ ° ~ A , A  ~ N ~ A , A  ~ ( N ~ H ) ~ a , A  

ltN l canN 1 can,v®X, ] 

N ---" N @ H  ~ N @ H @ H .  A~ 

Here, N ® H is a fight A- module by diagonal action as above. The row on top is 

the defining sequence of N ¢°~ tensored with -®A,A,  hence exact. The 

unlabelled maps on the bottom are AN ~ H  and N ~ A ~ .  Since N -  Nl~n H, 

the sequence on the bottom is exact. Now cans and canN®~ are isomorphisms, 

so #N is an isomorphism. 
(ii) Let M b e  a right A'-module. Then the adjunction map lu of M is bijective. 
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PROOF. The following diagram commutes: 

m ~ M~A,A _~ M~A,A ~A,A 

(M®A,A) c M®A,A = M® ,A 

In the sequence on the top, i(m) : = m ® 1, and the unlabelled maps are M ~ ix 
and M ~ i2, where i~(a) :=  a ® 1 and i2(a) : -- 1 ~ a. By faithfully flat descent, 
the sequence is exact. The lower sequence is the defining sequence of  the 
covariant elements. By assumption, can is an isomorphism. Hence tM is 
bijective. 

3.8. PROOF OF THEOREM I (INTRODUCTION). (1)~(2) .  By 3.5. 
(2 )~(4) .  By ( 2 ) ~  (1) of  3.7, where H = H. 
( 4 )~ (1 )  is proved similarly to [28], 1.5: Since k is a field, it is enough to 

show that A is cofiat as right comodule. By (b) and the bijectivity of  the 
antipode, c a n ' : A ® ~ A ~ A ® H ,  x ® y ~ X x o y ® x l ,  is bijective. As 
explained above, can' is a morphism in ~ j / n ,  hence in BJ /od  H. For any left 
/-/- comodule V 

( A n  n V ) ~ , A  ~--(A ~BA)Dn V ~ ( A  ~ H ) D n  V ~ A  ~ V, 

where the first map is an isomorphism, since A ;is fiat as left B- module by (a), 
and the second one is can' [] V. Hence, the functor V ~-)A DH Vis exact, since 
A is faithfully fiat as left B-module by (a). 

(1)(=.(3)(=0(5). Apply (1) ~=* (2) *:0 (4) to A °p as right H°P-comodulc algebra. 

3.9. REMARK. (1) Note that in the situation of Theorem I, another proof  of 
3.7, (1)=*(2), is given in 3.8. 

(2) In Theorem I, conditions (1)-(5) are equivalent to 
(6) (a) B is a direct summand in A as left B-module. 

(b) can is bijectiv¢. 
(7) (a) B is a direct summand in A as right B-module. 

(b) can is bijective. 

PROOF. If can is bijective, then (1)(a), (6)(a) and (7)(a) are equivalent by 

[61, (2.4). 
(3) Assume in Theorem I the equivalent conditions (1)-(5). Then A is 

faithfully coflat as right H-comodule by 3.8 or 3.1(1). 
(4) The imprimitivity theorem of Koppinen and Neuvonen [ 1 1 ] is a special 
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case of 3.7. Let H' c H be a Hopf  subalgebra (or just a subalgebra such that 
A(H') lies in the image of H ~ H')  such that H is a finitely generated projective 
generator as a left H' -module .  Then H : = H / H ' + H ~ - k ~ n , H  is finitely 
generated and projective over k. H is faithfully fiat as a left H'-  module, since it 
is a progenerator (cf. [12], 1.5 and 1.6). The canonical map can: H®n,  H---, 
H ® H is bijective (with inverse as in 3.6). Now it follows from the proof  of 3.7 
(1) ~ (2)(ii), applied to M = H',  that H '  = H ~° ~. The canonical map induces 
an isomorphism of algebras H* :=  Hom(H,  k)~--F '= Homm(n,H,  n,k) with 
convolution as algebra structure. Hopf  modules in ~//~ are the same as right 
H-modules satisfying the rule f (na)  = Z ((a2f)n)al for all f ~ H * ,  n E N  and 
a ~ H .  Here, H*  is a left H-module  in the usual way by (af)(~) = f(Yca) for all 
a,  x E H and f ~  H*.  Hence 3.7, with A = H and A' = H',  contains the (right 
version of the) theorem in [ 11 ]. 

3.10. COROLLARY. Let k be a field. Let H and H be Hop f  algebras with 
bijective antipodes, and p " H --, H a surjective Hopf  algebra map. Assume H is 
an injective right H-comodule via p. Let  B c A be a right H-Galois extension 
such that A is faithfully f lat as left B-module. Consider the induced H-comodule 

algebra (I ~ p ) A  A :A ---,A ~ H ,  and define A '  : = A  ~°~. Then A '  C A  is an 
H-Galois extension, and A is faithfully f iat as left A'-module. 

PROOF. This follows immediately from Theorem I, since 
(a) A is H-coflat, since A is H-coflat by Theorem I, and H is H-coflat. 

(b) The canonical map A @A ---A ® H  a®p A @ H  is surjective. 

3.11. REMARK. The above results show that there is a rich theory of 
faithfully flat Hopf  Galois extensions. 

Furthermore, some of the basic properties of principal homogeneous spaces 
or torseurs in algebraic geometry (cf. [4], III, §4) still hold over arbitrary rings k 
for H-Galois extensions B C A such that A is faithfully flat as right B-module 
(with more or less the same proofs), for example: 

(1) Let i : B ~ A and f: B ~ ` 4  be H- Galois extensions, and assume .4 is 
faithfully flat as right B-module (via f). Then any H-collinear algebra map 
f :  A ~ ` 4  satisfyingfi = f is an isomorphism (cf. [4], III, §4, 1.4). 

PROOF. The composition 
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can be identified with .4 ®a can, where ~4 is an A- module via f .  Hence .4 ~n  f 
is bijective, and so is f ,  since A is a faithfully flat fight B-module. 

(2) Let B c A be an H-Galois extension, and assume A is faithfully flat as 
right B- module. Let H '  c H be a k- direct Hopf  subalgebra which is flat over k. 
Define A'  : = A~ ' (A ~ H')  ~ A Dn H'.  Then B C A' is an H'-  Galois extension, 
and A' is faithfully fiat as right B- module. 

PROOF. The canonical isomorphism can:A®aA-- , 'A®H induces an 
isomorphism 

f : A  ®BA' ~ A  ~B(ADnH')~--(A ~BA)I~nH'~--(A ~ H ) D n H ' ~ A  ~ H ' ,  

where the second map is bijective, since A is flat as right B-module. Explicitly, 
f (a @ x ) =  Z ax0@xl for all a CA and x EA'.  Note that f is right and left 
B-linear. Hence A' is faithfully flat as right B-module, since AB and H~ are 
faithfully flat. 

To show the bijectivity of the canonical map can: A' @B A' ---, A'  ~ H', it is 
enough to show thatA @B can is bijetive, since An is faithfully flat. But applying 
f o n  the right and twice on the left, A @B can is identified with the bijection 
A ® H ' @ H ' - - ' A  @H'@H' ,  a @ x @ y  w-~ X a ~ y x l ~ x  2. 

(3) In fact, the above proof  in (2) shows that B ~ A  l-1 n H' ,  b ~ b @ 1, is an 
H'-  Galois extension, and A I'qn H '  is right faithfully flat over B for any Hopf  
algebra map H ' - , H ,  where H '  is flat over k, as was remarked by C. Wenn- 
inger. In the geometric case, this is the usual functorial behaviour oftorsors for 
variable groups (cf. [4], III, §4, 3.2). 

If  A is a commutat ive algebra over a field, and B c A a faithfully flat 
H-Galois extension, then it follows from a general descent theorem [10], 
Th. 3.13, Cor., that A is projective over B (since A ®n A ~ A @ H is projective 
over A, and A is faithfully flat over B). Hence the criterion 2.5 for the existence 
of  a normal basis can be applied to A as left B-module and right H-comodule.  

On the other hand, A is H-injective by Theorem I and from 2.2 one obtains 
the following 

3.12. ThEOrEM. Let H be a commutative Hopf algebra over a .heM, and 

B c A a commutative H-Galois extension such that A isfaithfullyflat over B. I f  
B is semilocal (for example, finite dimensional), then 

A ~-- B @H as left B-modules and right H-comodules. 

PROOF. By Theorem I, A is an injective H-comodule. Therefore, it is enough, 
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by 2.2, to show A t l n H ' ~  B @H' in s~iod n' for any simple subcoalgebra H'  in 
H. But if H '  c H is a simple subcoalgebra, then the canonical isomorphism 
A ~BA mA t ~ H  induces an isomorphism (/1 @ s A ) r l n H ' ~ ( A  @H)[]nH'-~ 
A @H'  in sd /od  n'. Since As is fiat, (A@BA)DnH'~--A @B(ADnH'). Hence 

A ®s (A Dn H') ~ A @s (B @ H') as left A @ H'*- modules. 
Define W: -- A Dn H', V: = B ® H '  as left modules over S : = B ® H'*. Then 

sV ~-- sS, andA @B W ~ A @s V as A ®S-modules.  
By assumption, the commutative ring A is faithfully fiat over the semilocal 

ring B. Therefore, the general form of the Deuring-Noether theorem in [9], 
2.5.8 (ii) implies that A Dn H ~-- B @ H' in s~/od n'. 

3.13. REMARK. As a special case of 3.12, take any finite dimensional Hopf 
subalgebra B of H. Then H --~ B ® H as left B'-modules and right Ho comodules, 

where H := H/HB +. This contains [22], Th. 1, where it is shown that H is free 

over B. But the methods in [22] or [31] do not prove the normal basis property. 
In general, if B is not finite dimensional, A need not be free over B. For 

positive and negative results in this direction, see [25]. 

4. The dual case 

Let H be a Hopf  algebra over the commutative ring k, and let C be a right 

H-module coalgebra, i.e. C is a coalgebra with a right H-module structure 

Pc : C @ H --  C such that Pc is a coalgebra map, in other words, 

A(ch)=Y. qhl@c2h~ and e(ch)=e(c)e(h) f o r a l l c E C a n d h E H .  

d / n  c is the category of right C-comodules and right H-modules N such that 

A~" N - - - N @ C  is H-linear, i.e. At~(nh) = Z noh~@n~h2 for all n ~ N ,  h ~ H .  
Morphisms in . / l  c are H-linear and C- collinear maps. The category of  Hopf  

modules cat n is defined similarly. If the antipode of H is bijective, then the 
dual coalgebra H °op is a Hopf  algebra with the same mutliplication as H. Again, 
cdg n = . .¢l~.  C ~ H is a Hopf  module in den c and c.lln in the obvious way, 

where the comodule structure is defined by c ®h ~ ~ q ®h~ ®c2h2 and 

c ® h ~ Z c~h~ t~ c2 ~ h2, and where C @ H is a right H- module by multiplica- 
tion on H. 

Define C :=  C/CH +. Then the canonical map p" C---- C, c ~ ?, is a co- 

algebra surjection. For any N E j / /c ,  N:  = N / N H  + ~ N ®n k is a C- comodule. 

Let C be flat over k. Then for any right C-comodule M, MEI~ C ~ d ¢  c,  

where the Hopf module structure is defined by the structure maps of C. Note 

that the comodule structure M ®A on MI2~ C is well-defined, since C is flat 
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over k. Dually to Section 3, the functor ~/~ ~ d t  c ,  M ~ MEI~ C, is right 
adjoint to ..¢¢n c ---dt  ~, N w-> ~'. The adjunction maps are 

MI~cC--*M,  Z mi@ci~---~ Z m,e(Ci), 

N--*NI~cC,  n ~-> Z-no@nl, 

where M is a right C- comodule and N a Hopf  module. 
In the same way, -~dl---, c~n ,  M ~ CI~cM, is right adjoint to N ~-~ N. 

4.1. L~MMA. Let H be a Hopf  algebra with antipode S, and C a right 
H-module coalgebra. 

(1) I f  V E m t ¢ ,  then C ~ V E C d g s  and C ~ V - ~ C ® s V ,  c ~ v w - ~ c ~ v ,  
where C ®  V is a left C-comodule by A ®  V, and where ( c ® v ) . h  := 
Z ch~ ® S(h2)v is the H-module structure. 

(2) I f N  ~ .t¢ c , then i" N ~ C ~ s  N,  i (-~) : = Z n~ ~ no, and p" C ~ s  N --* N,  

p(c ® n) := e(c)-~, are well-defined, and pi = id. Here, N is considered as 
a left H-module by hn :=  nS(h). 

PROOF. Dual to 3.1. 

4.2. COROLLARY. Let H be a Hopf  algebra with bijective antipode, C a right 
H-module coalgebra, and C = C / C H  +. Assume C and C are flat over k. Then 
the following are equivalent: 

(1) C is fiat as H-right module. 
(2) cat X - ,  ~.At, N ~ N,  is exact. 
(3) j l c  ~ .1¢~, N ~ N, is exact. 

PROOF. Dual to 3.2. 

A right H-module  Z will be called relative projective, i f#z  : Z @ H  ---- Z has 
an/-/-linear section, or equivalently, if Z is projective relative to all k-split H- 
epimorphisms. 

4.3. REMARK. Let H b e  a Hopfalgebra, and Ca  right H-module  coalgebra. 
Then the following are equivalent: 

(1) C is relative projective as fight H-module.  
(2) There is a fight H-linear and augmented map C ~ H .  
(3) Any Hopf  module in dg c is relative projective as right H-module.  
(4) There is a morphism g :  C ~ C ® H in cats  such that / tc  g = idc. 

I f  the antipode of H is bijective, then each of the above is equivalent to: 
(5) Any Hopf  module in c/c a is relative projective as right H-module.  
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(6) There is a morphism ~'" C---, C ® H  in ~ / c  such that ~c/t' = ido  

PROOF. Dual to 3.3 (cf. [5]). 

4.4. LEMMA. Let H be a Hopf  algebra, C a right H-module coalgebra, and 
C = C/CH ÷. Assume C is relative projective as right H-module. Then the 

adjunction map MEI~ C ---" M is an isomorphism for any right C-comodule M. 

PROOF. Dual to 3.4. 

If C is a right H-module coalgebra, C = C/CH ÷, there are canonical maps 

c a n : C @ H - - - C l ~ c C ,  c ® h  ~ Yc~®c2h, 

can': C®H--- 'C[~cC,  c ® h  ~ Y c l h ® c v  

If  the antipode S of H is bijective, then ~ :  C ® H ~ C ® H ,  t~(c@h):= 

Y. Chl ®S(h2), is bijective, and c a n ' =  can ~.  

4.5. THEOREM. Let H be a Hopf algebra with bijective antipode, which is 

flat and injective as k-module. Let C be a k-flat right H-module coalgebra, and 
C : =  C/CH ÷. Assume 

(a) C is relative projective as right H-module. 
(b) can: C ® H --, C l~c C is injective. 

Then both (co-)induction functors Jll ~ ---" ~ c  and ~ 1  ~ c~l n are equivalences. 

PROOF. Dual to the proof of 3.5. If N is a Hopf module in . / /c ,  then the 

dual map to f i n  the proof of 3.5 is 

N a~, N ~ C  N®*~ N ® C ~ H - , N ~ C ® H ,  

where ~F' is the map in 4.3(6), and where the last map is the isomorphism 

n ~ c  ~ h  ~-~X nS(h l )~c  ~h2. 
Note that the injective map can: C ® H ~ C ® C is left C-collinear, hence is 

a split H- collinear map, since H is injective over k (collinear maps into C ® H 
are given by linear maps into H). 

4.6. EXAMPLE. Let H be a Hopf algebra, and H '  c H a Hopf subalgebra. 

Then H is a right H'-module coalgebra in the natural way by multiplication in H. 

Define H : =  H/HH'  +. Then condition (b) in 4.5 is satisfied. 

PROOF. The canonical map H ®H---, H ® H ,  x ® y  ~ Z, x~ ®x2y,  is an 

isomorphism with inverse x ® y  ~ X x~ ®S(x2)y. 

From now on, assume k is a field. 
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If  H ' C  H is a right coideal subalgebra of the Hopf  algebra H,  i.e. a 
subalgebra such that A(H') c H '  ® H,  and C is a right H-module  coalgebra, 
then C : =  C/CH'  ÷ is a coalgebra, and the category of Hopf  modules j / c ,  is 
defined in the same way as . / / c  (dually to Section 3). 

4.7. THEOREM. Let H be a Hopf  algebra and H ' C  H a right coideal 
subalgebra. Let C be a right H-module coalgebra, and C: = C/CH'  +. Then the 
following are equivalent: 

(1) (a) C is faithfully coflat as left C-comodule. 
(b) can: C ¢~ H'---, C [ ~  C is an isomorphism. 

(2) The coinduction functor o¢¢ -~ ~ Jllc,, M ~, M ~ c  C, is an equivalence. 

PROOF. Dual to 3.7. 

4.8. PROOF OF THEOREM II (INTRODUCTION). (1)=* (2). By 4.5. 
(2)=*(4). See 4.7, (2)=*(1). 
(4)=*(1). By (a), it follows from 1.3 that there is a left C-collinear 

map  s" C ~ C such that ps --- idc. Now apply the functor ~ d / ~  cd/H. Then 
c I~c s : CI~c C ~ CI~c C is an H- split monomorphism.  But the canonical 
maps C I~c C ~ C, and can': C @ H --- C I ~  C are right H-linear. By (b), can' is 
bijective (since the antipode is bijective). Hence C is projective as right H- 
module. 

(1) ~ (3),~ (5). Apply (1).~ (2) ~ (4) to C ~°p as right H~°P-module coalgebra. 

4.9. REMARK. (1) In Theorem II, conditions (1)-(5) are equivalent to: 
(6) (a) C --- C has a left C- collinear section. 

(b) can is bijective. 
(7) (a) C ---- C has a right C-collinear section. 

(b) can is bijective. 

PROOF. Dual to 3.9(2). 
(2) Assume in Theorem II the equivalent conditions (1)-(5). Then C is 

faithfully fiat as right H- module by 4.1 (1). 

4.10. REMARK. A right action of a formal group scheme on a formal group 
(cf. [8]) corresponds (covariantly) to a right H-module  coalgebra, where the co- 
algebra C and the Hopf  algebra H are cocommutative. The action is called free, 
if the canonical map C ® H---- C ® C is injective, i.e. if (l)(b) in Theorem II is 
satisfied. In this situation, C is automatically projective as right H-module,  
hence (1)(a) follows from (1)(b). This is shown in the next theorem under less 
restrictive assumptions than cocommutativity by a modification of results of 
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Takeuchi and Radford. The main theorem on quotients of  formal schemes 
under free actions of formal groups ([8], 1.4 and 2.4) is the implication 

(1)(b)=* (4) in Theorem II for cocommutative C and H. Thus Theorem II 
together with 4.11 generalizes the full quotient theorem for formal groups (cf. 4.12). 

4.11. THEOREM. Let H be a Hopf algebra, and C a right H-module coalgebra, 

C : =  C/CH +. Let G(--)  denote the group-like elements of ( - - ) .  Assume 

(a) There is a field extension k c k' such that the coradical o f  C ® k' is 
contained in G(C ~ k').  (H ~ k'). 

(b) can: C ~ H - ,  C [Pc C is injective. 
Then all Hopf  modules in ..¢¢c are projective as right H-modules. In particular, 

C is a projective right H-module. 

PROOF. It is enough to consider the case k' -- k in (a), since a module over a 

k-algebra is projective if it is projective after some field extension. 

Assume condition (a) with k ' =  k. Then it will be shown that all Hopf 

modules are even free over H. 
(l) Let 0 ÷ N ~ ~ / c  such that N is finitely generated as H- module. Then N is 

free as H-module. This is shown by the following modification of [27], Th. 3.2. 
Choose a finite dimensional subcomodule V of N such that N = V.H.  Then 

there is a simple subcoalgebra C" of  C and a subspace 0 ~ W of  V such that 
At(W) C W ®  C', since VDc Co v ~ O. By assumption (a), C' is contained in 
G(C). H. Hence there is a group-like element g ~ C such that C' c g .  H, since 

G ( C ) . H  is the sum of the subcoalgebras g .H,  g E  G(C). Then AN(W.H) c 
W.  H ~ g . H. But the surjective coalgebra map H - , g . H ,  h ~ g . h, is in- 

jective, since g ~ H --- C ® C, g ~ h ~ g ~ g .  h, is injective by assumption 
(b). Hence H - - - g .  H is a right H-linear coalgebra isomorphism, and ~/H H 
j /~/n.  By [26], 4.1.1, any Hopf module in ~¢/g is free as right H-module. Hence 

W. H is free as right H- module. 
Now consider the exact sequence in ~¢t c 

O-,  W . H  c N---, N / W . H - - , O .  

N~ W . H  is generated over H by the image of the C-comodule V~ W and 

dim(V/W) < dim(V). Therefore, by induction on dim(V), one can assume that 

N~ W.  H is H- free. Then the sequence splits, and N is free as module over H. 

(2) Let Nbe  any non-zero Hopfmodule in j g c .  As in [22], Prop. 1, it follows 

from (1) that N is a free H-module. 
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4.12. COROLLARY. Let H be a Hopf algebra with bijective antipode, and C 
a right H-module coalgebra, C : =  C/CH +. Assume the coradical of  C is 
cocommutative. I f  the canonical map can: C ~ H ---, C El~ C is injective, then it 
is bijective, and C is faithfully coflat as left and right C-comodule. 

PROOF. Condition (a) in 4.11 is satisfied for k' = k an algebraic closure of 
k, since C ~/¢  is pointed. Hence 4.12 follows from Theorem II and 4.11. 

The normal basis Theorem III in the introduction is a corollary of the above 
results together with Theorem 2.1 for bimodules in °J/odR instead of R J//odD. 

4.13. PROOF OF THEOREM III (INTRODUCTION). In all three cases, the 
equivalent conditions in Theorem II are satisfied by 4.11. Assume (1). Denote 
by G the set of group-like elements of C and let (--)0 be the coradical. By [26], 
11.1.1, Co C p(Co). By assumption, p(Co) C p(G . n )  = p(k[G]). But p(k[G]) 
lies in the coradical, since it is spanned by group-like elements. Hence 
Co = p[k[G]) is pointed, and p induces a surjective map G(p)" G(C)---, G(C) 
between the group-like elements. Any set-section of G(p)  defines a coalgebra 
map i : Co ~ C such that pi is the inclusion map Co c C. Furthermore, by 
Theorem II, C is injective as left C-comodule, and can: C @H---- C[~c C is an 
isomorphism in CjIodn. Hence, by 2. l, C ------- C @ H in C~odn.  

In case (2), by 2.3, one can again assume that k is algebraically closed. Then 
C is pointed, and (2) is a special case of (1). 

Finally, in case (3), 2.1 can be applied directly. 

4.14. REMARK. (1) In the situation of Theorem III, all Hopf  modules in 
. a n  c are free as fight H- modules. This follows from Theorems II and III, since 
any Hopf  module is isomorphic to M [ ~  C, M a right C-comodule, and 
MEPc C m MEI~ C ~ H  ~ M ~ H  as right H-modules. 

(2) Let H be a Hopf  algebra, and H' c H a Hopf  subalgebra with bijective 

antipode. 
Then H is a right H ' -module  coalgebra as in 4.6, and all the above results can 
be applied. In particular, assume one of the following conditions: 

(a) H0 c G(H).H'  (for example, H is pointed). 
(b) H0 is cocommutative, and H' is finite dimensional. 
(c) H0 is cocommutative, and any simple subcoalgebra of H = H/HH'  ÷ is 

liftable along p : H ---- H (for example, H is irreducible). 
Then H ~-- H ~ H' as left H- comodules and right H'- modules. 

In cases (a) and (b), the freeness of H over H' was proved by Radford in 
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[22], Prop. 3, [21 ], Cor. 6. More generally, in these cases it was shown in [22], 
Prop. 3, and [31], Prop. 4, that all Hopf modules in JCn n, are free over H'. 

Finally, for completeness, an easy proof of the following basic result on 
quotients of cocommutative Hopf algebras will be given in the context of this 
paper. 

4.15. THEOREM. Let H be a cocommutative Hop f  algebra. Then 

o 

(H'  C H [ H'  Hopf  subalgebra} ~ {I c H [ I coideal and left ideal}, 

where ~P(H') : = HH'  + and ~F(I) : = {x E H [ E ~ ® x2 = -( ® x in H / I  @ H} ~-- 
k DHa H are inverse bijections. 

PROOF. (1) Let H ' c  H be a Hopf subalgebra. Define I : =  HH'+. By 
4.11 and Theorem II, d /n  n, ~ ~n/1 are equivalences. But H'Ed/nn., and 
H' ®u, k ~ k. Hence H' ~-- k ~ml H. This also follows by the method in 3.9(4). 
(Note that this part of the proof holds, if only the coradical is cocommutative.) 

(2) Let I C H be a coideal and a left ideal. Define 

H ' = H / I  and H ' : = { x ~ H I Z ~ x 2 = T ( ~ x } .  

Then H '  is a Hopf subalgebra, and H'  + c I, as is easily seen (cf. [3 1 ], Th. 4). 
Here, the cocommutativity of H is essential. To show that the coalgebra 
surjection H : =  H / H H  '+ ~ H / I  = H is bijective, or equivalently, that 
H H '  + = I, it is enough to show that 1 ~ e" H00 ~ H ~ H00 is injective, since the 
kernel of/~ ---- H is a left H- subcomodule (and cotensoring with the coradical 
gives the socle). Clearly one can assume that k is algebraically closed. Then 
H0 = k[G], H0 = k[G], where G and G are th~ group-like elements of Hand H. 
Note that G ~ G is surjective. The above map H00 ~ / ~  --* Hoo is the direct sum 
of all k~, E~ I:I---* k~, , ~ ~-G. 

Take any group-like element g of H. It remains to prove that 
1 ® e" k~, EPx H ~ k~ is injective, i.e. that k~ ~ H is 1-dimensional. 

By 4.12 (or [31], Th. 1, since H is a faithfully flat left H'-module by [27], 
Th. 3.2), H is faithfully coflat as left /~-comodule. Hence, by 1.3, 
l ® e ' ( k ~ i ~ H I : I ) D a H ~ ( k ~ E ~ I : I )  is surjective. Since k~EP~IYlE]aH~-- 
k~, EPH H, it follows that the canonical map 

k~ l~n H ~ k~ EPn I2I 

is surjective. In other words, any y ~ /~  such that Z ~ ~),2 = g ® Y in H ® / t  is 
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B 

the canonical image of an element x ~ H such that Y. ~11 @ x2 = ~ @ x in H ® H .  

But then Z g - I X l l ~ g - l x  2 = g - l g ~ g - l x  = T@g-lx,  and hence g- lxEH' ,  
which means that x ~ gH' and y E k~. Therefore, k~ O-on/t is 1-dimensional. 

4.16. REMARK. In a note added in proof, however without proof, 
Theorem 4.15 was stated by Takeuchi in [31]. 4.15 was already stated and 
proved by Newman as the main result of [ 17]. For irreducible cocommutative 
Hopf algebras H, i.e. in the crucial case when the corresponding formal group 
is infinitesimal, 4.15 was proved by Gabriel in the S6minaire Sch6mas en 
Groupes 1962/64 [8], 5.1. The above proof of 4.15 seems to be much easier 
than the proofs in [17] and [8]. It was inspired from Oberst's proof of a variant 
of [8], 5.1, in [20], 13(5). 

Added in revision. Meanwhile, Masuoka [14] has shown the following 
generalization of 4.15. Assume only that the coradical H0 of H is cocommuta- 
tive. Then the mappings in 4.15 are bijections between all right coideal 
subalgebras H '  c H such that the group-like elements in H'  ® ~: form a group 
and all coideals and left ideals I of H. A crucial point in Masuoka's proof is to 
use the H-coring structure on H ®n, H. However, the above direct proof of 
4.15 also works in the more general case. The only missing information is the 
following ([14], 1.6, applying the method of [31], Prop. 4): If H '  is a right 
coideal subalgebra of H such that the group-like elements in H ' ®  k form a 
group, then H is a faithfully flat left H'- module. 
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