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ABSTRACT

Let H be a Hopf algebra over a field with bijective antipode, A4 a right
H-comodule algebra, B the subalgebra of H-coinvariant elements and
can : A ®; 4 — 4 @ H the canonical map. Then 4 is a faithfully flat (as left or
right B-module) Hopf Galois extension iff A4 is coflat as H-comodule and can
is surjective (Theorem I). This generalizes results on affine quotients of affine
schemes by Oberst and Cline, Parshall and Scott to the case of non-commuta-
tive algebras. The dual of Theorem I holds and generalizes results of Gabriel
on quotients of formal schemes to the case of non-cocommutative coalgebras
(Theorem II). Furthermore, in the dual situation, a normal basis theorem is
proved (Theorem III) generalizing results of Oberst—Schneider, Radford and
Takeuchi.

Introduction

This paper tries to provide evidence for the following assertion:

There is a non-trivial quotient theory of arbitrary Hopf algebras coacting on
arbitrary algebras or acting on arbitrary coalgebras.

Such a theory should generalize well-known results in the quotient theory of
algebraic or formal groups. One should hope that there are applications of such
a general theory, since nowadays arbitrary Hopf algebras occur in the guise of
quantum groups.

For simplicity, assume in this introduction that k is a field. Algebras and
coalgebras will be defined over k, and ® = Q.
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Let X be an affine algebraic group scheme over k, G C X a closed subgroup,
and X/G the quotient scheme. Then it was shown by Oberst [19] and
independently by Cline, Parshall and Scott [2] (for smooth groups over an
algebraically closed field) that X/G is affine if and only if induction of G-
modules to X-modules is exact.

More generally, let X be an affine scheme, G an affine algebraic group scheme
andu: X X G — Xafreeaction of Gon X, i.e. an action such that the canonical
map can: X X G — X X X, defined on rational points by can(x, g} := (x, x - g),
is a closed embedding. For example, if X is an affine group schemeand G C X
a closed subgroup, then G acts freely on X by translation (multiplication in X).
Let Y be the quotient in the category of affine schemes. Thus

# 3
AXGZ X—Y

pr

is an exact sequence of affine schemes.

The quotient map X — Y satisfies “all that one might hope for” [16], p. 16, if
can: X X G — X Xy X is an isomorphism, and X — Y is faithfully flat. In this
case, X — Yis called a G-torsor [3] (in the faithfully flat topology), or a principal
homogeneous G-space or a principal fibre bundle with group G [16], p. 16, and

XXG=2X—>Y

is exact in the category of all schemes, hence the quotient exists in the category
of schemes, and it is affine.

Oberst [19] gave a criterion in terms of representation theory of the free
action for X to be a principal fibre bundle over Y with group G. This criterion
generalizes the one described before in case of the quotient of a group modulo
a subgroup.

These results on affine quotients are proved in [19] and [2] using the theory
of affine groups. For example, in [2] the theorem of Haboush (a reductive
group is geometrically reductive) was applied. Then Doi [6] gave a purely Hopf
algebraic proof.

It is shown in this paper that the above results on affine quotients are
particular cases of a theorem on arbitrary Hopf algebras (with bijective
antipode) coacting on arbitrary algebras.

Let H be a Hopf algebra, and A, : 4 — A ® H a right H-comodule algebra (cf.
[15], 4.5), i.e. A is an algebra, A, a right H-comodule structure and an algebra
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map. Define B :=A®#:= (a€4 | A,(a) = a @1}, the algebra of coinvariant
elements. Thus

AA
BCA = AQH

is exact. The canonical map can: 4 ®; A — A @ H is defined by can(x ® y) :=
X A4(p).

Denote by .# the category of right B-modules. If M is a right B-module,
then the induced module M &; 4 is an 4-module and a right H-comodule in
the natural way. Thus M @z 4 is an object of .#%, the category of (4, H)-
Hopf modules (see Section 3). This defines a functor .# — .#%. Similarly,
g — MY, M > AQy M, is defined.

THEOREM 1. Assume the antipode of H is bijective. Then the following are
equivalent:
(1) (a) A is injective as right H-comodule.
(b) can: A @, A — A Q H is surjective.
(2) Mpy— MY, M —> MQy A, is an equivalence.
(3) gt — MY, M > AQy M, is an equivalence.
(4) () A is faithfully flat as left B-module.
(b) can is an isomorphism.
(5) (a) A is faithfully flat as right B-module.
(b) can is an isomorphism.

By definition, B C A is called an H-Galois extension, if can is an isomor-
phism. Hence Theorem I characterizes faithfully flat H-Galois extensions.

Takeuchi [29], 4.1, calls H-Galois extensions satisfying (4) or (5) in Theorem
1 torsor-like. However, in [29], (4) and (5) (for H cocommutative) are treated as
different cases.

In Theorem I, the implication (4)= (2) is a general imprimitivity statement,
and (1)= (4) (the main part of Theorem I) is a non-commutative version of the
above-mentioned criterion for affineness.

By 3.7, (4)=(2) holds under very general assumptions over arbitrary
commutative rings k. This implication was shown by Voigt in [33], 5.2, in case
A and H are commutative, and by Ulbrich [32], p. 662, for H finitely generated
and projective over k. 3.7 implies the imprimitivity theorem of Koppinen and
Neuvonen [11] which contains the analogue of Blattner’s imprimitivity
theorem [1] for restricted Lie algebras (see 3.9). The oldest version of (4)=(2)
(in case A = H) seems to be the theorem on Hopf modules in Sweedler’s book
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[26]. In the case of H-Galois extensions, related sufficient conditions implying
(2) have been given recently by Doi and Takeuchi [7], (2.11).

If H is finitely generated and projective over the ring k, then (1)= (4) follows
from results of Kreimer and Takeuchi [13],(1.7) and (1.9), and Doi [6], (2.4). If
H is the group algebra of an abstract group, then (1)(b) is the definition of
strongly group-graded algebras, and (1) < (2) is Theorem 2.8 of Dade [3].

Finally, assume 4 and H are commutative. Then condition (1)(b) means that
the group scheme G = Spec(H) acts freely on X = Spec(4). In this case,
(1)=(4) is the criterion on affine quotients by Oberst [19] and Cline, Parshall
and Scott 2], and Theorem I is Theorem 3.2 of Doi [6}].

Once there is a general theorem like Theorem I, one can formally dualize it,
i.e. turn all the arrows around. In fact, the dual of Theorem I holds, although its
proof cannot be dualized completely.

Let H be a Hopf algebra and C a right H-module coalgebra (cf. [15], 4.2), i.e.
C'is a coalgebra, C ® H — C a right H-module structure and a coalgebra map.
Define C:= C/CH*, where H* is the augmentation ideal of H.

If Vis a right C- comodule, and W a left C- comodule, then V' [Oz W denotes
the cotensor product, already introduced in [15] (see Section 1). Now the dual
of Theorem I can be stated.

THEOREM II. Assume the antipode of H is bijective. Then the following are
equivalent:
(1) (@) C is a projective right H-module.
(b) can: C® H — COg C is injective.
() M€ — M5, M — MO C, is an equivalence.
(3) S#— My, M — COcM, is an equivalence.
(4) (a) C is faithfully coflat as left C-comodule.
(b) can is an isomorphism.
(5) (a) Cis faithfully coflat as right C-comodule.
(b) can is an isomorphism.

For unexplained notions in this theorem, see Sections 1 and 4. Again, (1)(b)
means that H operates “freely” on C. Take, for example, a Hopf algebra C and
a Hopf subalgebra H C C. Then C is a right H-module coalgebra by multipli-
cation in C. Clearly, condition (1)(b) is satisfied in this case.

It turns out that Theorem II can be viewed as a non-cocommutative version
of the main theorem on quotients of formal schemes under free actions of
formal group schemes (cf. Gabriel [8]). Formal schemes are (covariantly)
equivalent to cocommutative coalgebras. In the cocommutative case, (1)(a) is
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a consequence of (1)(b). More generally, assume the coradical of C is cocom-
mutative (for example, C is pointed or cocommutative). Then it is shown in
4.11 that (1)(a) follows from (1)(b). Hence, if C has cocommutative coradical,
there is always a good quotient for free actions.

In the situation of Theorem II, the following normal basis theorem is proved
in 4.13.

TueoREM III. Assume that can: C ® H — C g C is injective, and that one
of the following holds:
(1) The coradical of C is contained in G(C)H, for example, C is pointed
(G(C) denotes the group-like elements).
(2) The coradical of C is cocommutative, and H is finite dimensional.
(3) The coradical of C is cocommutative, and any simple subcoalgebra of Cis

liftalie along C—C.
Then C = C @ H as left C-comodules and right H-modules.

In case C and H are cocommutative, Theorem III was proved in [18] using
the theory of formal groups.

Consider the special case of a Hopf algebra C and a Hopf subalgebra H C C,
H acting on C by multiplication in C. Then can is always injective, and by
Theorem III, Cis free as a right H-module in each of the cases (1), (2) and (3).
In this situation, the freeness of C over H was proved by Radford [21], [22],
and Takeuchi [31]in cases (1) and (2). But this does not imply the normal basis
theorem.

Finally, in 4.15, an easy proofis given of the following fundamental result on
quotients of a cocommutative Hopf algebra H:

H’ — HH'’" is a bijection between Hopf subalgebras and coideals which are
also left ideals (cf. [8], [17], [31D).

Most of the results in this paper were obtained after the stimulating Hopf
algebra conference in Beer-Sheva and Sde Boker, January 1989.

1. Preliminaries

Let k be a commutative ring. Algebras and coalgebras are always defined
over k, and ®=Q&,. If (C,A,¢) is a coalgebra with comultiplication
A:C—CQC and augmentation ¢: C —k, then the following version of
Sweedler’s sigma notation [26] will be used: A(c)=2 ¢, Ry, for cEC.
Similarly, if (V, Ay) is a right (resp. left) C-comodule, then its structure map
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will be denoted by Ay (v) = Z y,® v, (resp. Z v_; Q 1), for vE V. The category
of left resp. right C-comodules will be denoted by $# resp. .#€. If R is a ring,
then g.# resp. # will denote the category of left resp. right R-modules. The
module structure map of an R-module M will be denoted by u,,. Let VE.#€
and WeES#. Then the cotensor product V. W is defined by the exact
sequence in ., (equalizer of k-modules)

VO WCVOW = VRCOW,

where the arrows on the right are A, ® Wand V ®A, (cf. [15], 2, [28], §1, and
[23], p. 130).
Let R be an algebra, and X € .#z, Y Ez.#. Then

XQRAOY s XQY — XQ, Y,

where the arrows on the left are u; ® Y and X ® uy, is exact. Thus cotensor
product and tensor product are dual notions in the sense of duality of
® -categories (M, ®) and (M, @)% (cf. [23], p. 12).

Let Cbe flat over k. Then .#€ and <# are abelian categories, and a sequence
of C-comodules is exact, if and only if it is exact as a sequence of k-modules.

Y €4 is called coflat resp. faithfully coflat, if the functor — O, Y : #€ —
M is exact resp. is exact and reflects exact sequences. If k is a field, then Y is
coflat if and only if Y is an injective object in <4 ([30], A. 2.1).

Let R be an algebra, and C a coalgebra. .#0d¢ will denote the category of
(R, C)-bimodules. Its objects are k-modules V which are left R-modules and
right C-comodules such that Ay is left R-linear, i.e. A, (rv) = Z ry, @ v, for all
r€R and vE€ V, or equivalently, u, is right C-collinear. Morphisms in z .#0d®
are R-linear and C-collinear maps.

Now assume the situation UE ., VE g Mod¢ and WE #. Then VO W
is aleft R-submodule of V@ W, and U®A, : Uz V— U Qg V& Cis a right
C-comodule structure. Let i: VO W — VQ® W be the inclusion. Then the
image of U @y ilies in (U Qg V) O W. Hence, U @i induces a canonical map

can: UQx (VO W)~ (U VYO, W.

This map is bijective, if U is R-flat, or dually, if C is k-flat, and W is C-coflat
(cf. [28], §1).

Let C and D be coalgebras, and p: C — D a coalgebra map. Then Cis a left
resp. right D-comodule with structure map (p @ C)A resp. (C Q p)A.
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1.1. ProOPOSITION (faithfully coflat descent). Let C and D be k-flat coalge-
bras and p: C— D a coalgebra map. Assume C is faithfully coflat as right
D-comodule. Then for any left D-comodule V, the canonical sequence

Py
CO,(CO, V)= CO, V>V,

P2
where p,, p, and p are induced by e @1 Q1,1 Qe ®1 and e ® 1, is exact.

ProoF. By the flatness of D, CO, V is a left D-comodule with structure
map CO, V=D ®C)O, V=D QR(CO, V), defined by (p ® 1)A® 1. By the
flatness of C, CO, (COp V) can be handled as a submodule of CRCR V.

Since C is faithfully coflat, it is enough to show that the sequence is exact
after cotensoring with C. The exactness of the latter sequence is easily
proved in a way dual to the case of a faithfully flat ring extension (note that
AQly: COp, X— COp (COp X) is well-defined for any left D-comodule X,
and use this map for X = Vand X = CO, V).

Assume for the rest of this section that & is a field. If C'is a coalgebra, then C,
will denote its coradical, C, = sum of all simple subcoalgebras of C. Then for
any right C-comodule ¥V, the socle of V (= the sum of all simple subcomod-
ules) is A;'(V® Cp) = V[, C,. Note that for any subcoalgebra C’ C C the
comultiplication of V defines an isomorphism A; '/ (V® Ch= V. C".

1.2. LEeMMA. Let X, YEM#C and f: X — Y C-collinear.
(1) Assume X is an injective ( = coflat) comodule, and f Oc Cy: XO- Cy—
YO G, is bijective. Then fis bijective.
(2) Assume X and Y are injective comodules, and f O¢ C, is surjective.
Then f'is a split surjection of comodules.

ProoF. (1) This follows easily from the fact that XO, C, is isomorphic to
the socle of X : fis injective, since its restriction to the socle is injective. Hence
f is a split injection of comodules by the injectivity of X. The retraction of
f is injective, hence an isomorphism, since its restriction on the socle is the
inverse map of f O C,.

(2) This is proved in the same way as [30], 6.7: Since C, is cosemisimple,
there is a Cycollinear map g,: YO, C,—~ X0 C, such that fyg,=1d,
Jo:=f0OcC,. Let

IX:XDCCOEA;I(X®C0)CX and iY:YDCco_’Y
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be the canonical injections. By the injectivity of X there is a C-collinear
map g: Y — X such that gi, =iyg,. Then fg is bijective by (1) using the
injectivity of Y.

1.3. ProposITION. Let C, D be coalgebras over the fieldk,andp: C—~Da
coalgebra map. Then the following are equivalent:
(1) C is right faithfully D-coflat.
(2) (a) C s right D-coflat.
{b) For all left D-comodules, e @1 : COp X — X is surjective.
(3) (a) C is right D-coflat.
(b) e®1:C0O, Dy— Dy is surjective.
(4) (@) Cis right D-coflat.
(b) p is a split surjection of right D-comodules.

Proor. (1)=(2). By 1.1.

(2)=(3). Take X = D,.

(3)=1(4). This follows from 1.2(2), since C and D are injective D-comodules.

(4)=(1). This is obvious, since any right D-comodule M is faithfully coflat
if and only if M is coflat, and forall 0 = X€24: MO, X # 0.

2. Normal basis for (R, D)-bimodules

In this section, & is a field.

Let R be an algebra, and D a coalgebra. Then R®D will always be
considered as (R, D)-bimodule in z.#0d” in the obvious way with module
structure a(r ®d) := ar ®d, and comodule structure r ®d — Zr Qd, Qd,,
fora,rERanddE€D.

If X is an (R, D)-bimodule, then X has a normal basis (by definition), if

R®D =X as(R,D)-bimodules.

The following criterion for the existence of normal bases will yield normal
basis theorems for module coalgebras later on.

2.1. THEOREM. Let R be an algebra, C and D coalgebras, and f- C—D a
coalgebra map. Assume that the coradical of D can be lifted along f, i.e. there is
a coalgebra map g : Dy— C such that fg is the inclusion map D, C D.

Let X € g #0dP, and assume X is injective as D-comodule. Then the follow-
ing are equivalent:

(1) R®D = X as (R, D)-bimodules.

(2) R®C =X0O, Cas (R, C)-bimodules (where C is a D-comodule via f).
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Proor. (1)=(2). This is obvious by cotensoring with C.

(2)=(1). Consider D, as left C-comodule via g. By (2), RQCO Dy =
XO,COcD, in g#od®. But RQCO-Dy=R ®D,, and X0, CO, D, =
X0Op Dy, where Dy C D defines the D-comodule structure of Dy, since fg is the
inclusion D, C D.

Hence there is an isomorphism ®,: R®Dy,— X0, D, of (R, Dy)-
bimodules.

Since @, is R-linear and D;-collinear, it has the form ®yr ®d) =r-j(d),
where j: Dy— X0Op D, is a right Dy, hence D-collinear map.

The comodule structure of X induces an isomorphism X, := Ay ' (X @ D) =
X0O, D, Since X is an injective D-comodule by assumption, the D-
collinear map

D, > XOpDy=X,C X

can be lifted to a D-collinear map J : D — X such that J(d) = (1 ® ¢)j(d) for all
d€D. Then J definesamap®: RQD — X, O(r ®d) :=r-J(d), in gM0d®.
Since R ®D is clearly D-injective, by 1.2(1), @ is bijective if and only if
& 0O, D, is bijective. But the composition

¢ (]
R®Dy=R® D0, Dy—=2 X0, Dy

is @, hence bijective, since (PODNIr®d,@d))=2r-J(d)®d,=
Zr(1®¢)j(d)®d,=r-j(d) for all r ER and d € D, by the collinearity of j.

2.2. COROLLARY. Let XEgM0od?, and assume X is injective as D-
comodule. Then the following are equivalent:
(1) RQD =X as (R, D)-bimodules.
(2) For all simple subcoalgebras D' CD:RQD'=X0, D’ as (R, D)-
bimodules, or equivalently, X0, D’ is free of rank 1 as left RQ@D'*
module.

ProoF. (1)=(2). Cotensor with D’. Note that R ® D’ = R @ D’* as left
modules over R ® D’* (D’*:=Hom(D’, k) is the dual algebra), since D’ is a
simple coalgebra, hence D’* is a Frobenius algebra, and D’ = D’* as left D’*-
modules.

(2)=(1). Write D, =®; D;, D, simple subcoalgebras of D. By assumption,
there are isomorphisms R ® D; = X3, D; in z.#0d® for all i. Their direct
sum defines an isomorphism R®Dy=®, RQD, =@, X, D; = XO, D, in
M 0d>,
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By 2.1, where C is D, and f is the inclusion map D, C D, R®D =X in
rM0dP.

2.3. COROLLARY. Assume in the situation of 2.2 that R is finite dimen-
sional. Let k C k’ be any field extension. Then the following are equivalent:

(1) RQD =X as (R, D)-bimodules.

2) (ROK)R (DRKkNY=XQk’ as (R ®k’, D @ k’)-bimodules.

PrOOF. (1)==(2)is trivial.

2)=(1). X®k’ is an injective (= coflat) D ® k’-comodule, since the
cotensor product commutes with field extensions. Take any simple sub-
coalgebra D’ C D. Then the given isomorphism induces an isomorphism
R@D'Q@k'=X0,D’'Xk’ of left R ® D’*® k’-modules. Now R@D'*is a
finite dimensional algebra, hence R @ D’ = X[, D’ as left R @ D’*-modules
by Deuring-Noether. Therefore, R ® D = X in z.#0d? by 2.2.

2.4. REMARK. Letf: C — D be a coalgebra map. Then clearly the coradical
of D is liftable along fif and only if any simple subcoalgebra of D is liftable
along f.

Now assume C and D are cocommutative. Let ¢ : G, — G, be the map of
formal schemes represented by f. Recall that for any cocommutative coalgebra
T, the formal scheme represented by T is the functor R — Coalg(R*, T),
R a commutative finite dimensional algebra (cf. [8]). Hence, any simple sub-
coalgebra of D is liftable along f if and only if for all finite field extensions
k C k’ the induced map on the k’-rational points @(k’) : Gi(k")— G(k") is
surjective.

This latter condition appears in the normal basis theorem for cocommuta-
tive Hopf algebras in [18], Satz A, and 2.1 can be viewed as a generalization of
this theorem.

Finally, the dual of Theorem 2.1 also holds.

2.5. THEOREM. Let C be a coalgebra, R and S algebras, and f R — S an
algebra map. Assume that there is an algebra map g:S— R/Ra(R)
(Ra = Jacobson radical) such that gf is the canonical map R — R/Ra(R).

Let X €E g #Mod€, and assume X is projective as R-module. Then the following
are equivalent:

(1) ROC =Xas (R, C)bimodules.

2) S®C=SQg X as (S, C)-bimodules (where S is an R-module via f).
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ProoF. (1)=1(2). This is obvious by tensoring with S.

(2)=(1). Consider R := R/Ra(R) as right module over S via g. Then the
isomorphism in (2) induces an isomorphism ®:R®X=R RS Qp X =
R®SR®C=RQCof (R C)-bimodules. This map has the form ®F ® x) =
= q(F ® x;) ® x,, where ¢ : R ®z X — Ris left R-linear. Since X is R-projective,
there is a left R-linear map Q : X — R such that the diagram

i

with canonical vertical maps commutes. Define : X—-RQC, P(x):=
2 Q(x5)® x,. Then ® is a morphism of (R, C)-bimodules, and the diagram

X

R® X

L4

JX R®C
R®X—> - R®C

with canonical vertical maps commutes.

Take any finite dimensional subcoalgebra C’ C C. Then ®O.C’: XO,C'—
R Q@ is surjective by Nakayama, since it induces an isomorphism modulo
Ra(R). Therefore, @ is surjective, hence R-split. But this implies that
@ is bijective, since Ke(®P) is R-projective by the projectivity of X, and
R ®; Ke(®) = 0, hence Ke(d) = 0 (cf. [24], p. 325).

3. Faithfully flat Hopf Galois extensions

Let k again be an arbitrary commutative ring.

Let H be a Hopf algebra, and A4 a right H-comodule algebra (see introduc-
tion). The category of right (4, H)-Hopf modules will be denoted by .#% . Its
objects are k-modules N which are right H-comodules and right 4-modules
such that the comodule structure map is 4-linear, i.e. Ay(na) = £ nya, @ nya,
for all n €N and a €A4. Morphisms in .#% are 4-linear and H-collinear maps.
The category ,.#" is defined similarly. If the antipode of H is bijective, then
the dual algebra H*? is a Hopf algebra with the same coalgebra structure as H.
Note that , " = .#%. A ® H will always be considered as Hopf module in
4#*" and in 4% in the obvious way, where the comodule structure is 1 ® A and
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a(x®h)=Zayx @ah resp. (x@h)a =32 xa,®ha,, a, xEA and hEH, de-
fine the 4-module structures. Define

B:={a€A|2a®a,=a®1}.

If N is a Hopf module, then N°#:={n €N |Zn,®@n =n®1} is a left
B-submodule of N. Clearly, NOy k = N®°H_ where k is the trivial H-comodule
k—=HQ®k,1 - 1Q1.

For any right B-module M, the induced module M &; A4 is a right (4, H)-
Hopf module with comodule structure M @A, and 4-module structure
m®x)a=mQ®xa, mEMand x,a€A.

The induction functor #y;— .#%, M +—> M ®zA, is left adjoint to the
functor of coinvariants. The adjunction maps are

M—(MQ®zA4)°H, me-m®l,
NeH@,4—N, nQ®awm na,

where ME My, NE MY, and mEM, nEN and a €A (cf. [6], [31)).
In the same way, the induction functor z# — , M7, M > A Qz M, is left
adjoint to N > N®¥,

There is a close relationship between the functor of coinvariants and 4 Oy-
(cf. [19], 5, in the context of affine group schemes):

3.1. LeMMA. Let H be a Hopf algebra with antipode S, and A a right
H-comodule algebra.

() IfVEE M, then AQVE ;M" and (AR V)*°H = A0, V, where AQ Vis
a left A-module by multiplication on the first factor, and where a Qv —
Za,®u,®a,S(v_,), a EA and vEV, is the H-comodule structure.

Q) If NEMY, then i: N°H—>ADQLN, i(n):=1Qn, and p: AOyN—
N®H p(Z a;@n,) := Z n,a;, are well-defined k-linear maps, and pi = id.
Here, n > Z S(n)®n, is the left H-comodule structure of N.

Proor. (1) A®V as a comodule is the usual tensor product of right
H-comodules, where V is a right H-comodule via S. To prove (4 @ V) =
AOyV,take t =2 a,Qu;in AQ V. If tE(AQ V)*¥, then

z ai0®vi0®ails(vi,—l) =2a;,Qy®l,
hence

2a,,Qv,0Ra; SW;, v, -1 =2 & ®vi0®vi,—l
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and
2z a,-o®a,-1®v,- =2 ai®v,"_| ®Ui0.

Similarly, if tEA0y V, then t €(4 @ V)*H,
(2) Take Z q;@n,EA0yN. Then T 4;,Qa; @ n; = = a;® S(n;)® n;y, hence

AN(Z nya) = Z 10,0 @ a5, = Z nyoa; 0y S(nig) = Z ma; @ 1.
This shows that p is well-defined. Trivially, i is well-defined, and pi = id.

3.2. CorROLLARY. Let H be a Hopf algebra with bijective antipode, and A a
right H-comodule algebra, B := A®" . Assume H and A are flat over k. Then the
following are equivalent:

(1) A is coflat as right H-comodule.

2) 4MH— g M, N — N®H s exact.

() MH— My, N — N®H isexact.

Proor. (1)=(3). The functor N+~ N®# is clearly left exact, and the
functorial epimorphism in 3.1(2) shows that it preserves surjective mor-
phisms, since N — 40y N does.

(2)=>(1). The functor ¥ — (4 @ ¥)*#in 3.1(1) is exact by (2), and since 4
is flat over k.

(1)=(2). Since the antipode of H is bijective, (1)=(3) can be applied to 4°®
as H°°-comodule algebra. Therefore, N > N®°H N€&€ , #" = #%, is exact.

(3)=(1) Follows similarly from (2)= (1) applied to 4.

A right H-comodule Z is relative injective, if A has an H-collinear retrac-
tion, or equivalently, if for all k-split monomorphisms i : X — Y of right H-
comodules and for all H-collinear maps f: X — Z there is an H-collinear
map g: Y — Z such that f = gi.

The following characterization of relative injective comodule algebras by
Doi will be used in the sequel.

3.3. REMARK ([6], (1.6)). Let A be a right H-comodule algebra. Then the
following are equivalent:

(1) A is relative injective as right H-comodule.

(2) There is a right H-collinear and unitary map H — A4.

(3) Any Hopf module in .#% is relative injective as right H-comodule.

(4) There is a morphism ¢ : 4 ® H — A4 in ,#* such that 9A, = id,.
If the antipode of H is bijective, then each of the above is equivalent to:

(5) Any Hopf module in ¥ is relative injective as right H-comodule.
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(6) There is a morphism ¢’ : A ® H — A in 4% such that ¢’A, =id,.

3.4. LEMMA. Let H be a Hopf algebra, A a right H-comodule algebra which
is relative injective as right H-comodule, and B := A®". Then the adjunction
map M — (M @z A)° ¥ is an isomorphism for any right B-module M.

ProoF. More generally, the canonical map
MQ@pAQy W)= (M QpA)0y W

is bijective for all left H-comodules (since the defining sequence of the
cotensor product 4 Oy W can be seen to be a split equalizer by 3.3(4)). In case
W = k, this map is identified with the adjunction map M — (M &, A)*.

The referee suggested the following more direct proof: By assumption there
is a left H-collinear and unitary mapj: H—A. Let t:4A—B, t{a):=
2 a,j(S(a,)), by the associated trace map. Then one sees as in [7], p. 497, that
MQA)°H —>M, T m;Qa; — Z m;t(a;), is an inverse for the adjunction
map. (Still another proof was given by Doi [6], 3.1, in case k is a field.)

If A is a right H-comodule algebra, B:= A®# | there are canonical maps
can:AQA—-ARQH, xQy Zxy,Qy,
can"AQpA—-AQH, xQy— ZxyQx,.

If the antipode of H is bijective, then P: AQH —-AQH, ®(a®h):=
Z ay®a,;S(h), is an isomorphism, and can’ = ® can. Hence can is surjective
resp. bijective if and only if can’ is so ([13], (1.2), [29], p. 1464).

3.5. THEOREM. Let H be a Hopfalgebra. Assume H is projective over k, and
the antipode of H is bijective. Let A be a right H-comodule algebra, and
B:=A%H Assume

(a) A is relative injective as right H-comodule.

(b) can: 4 @, 4 — A Q H is surjective.

Then both induction functors 4z — MY and g M — , 4" are equivalences.

ProoOF. Since the antipode of H is bijective, it is enough to consider only
right modules (then take the dual algebras). The induction functor .# 5 — #4
is an equivalence if and only if for any M €.# and N €.4% the adjunction
maps M — (M ®z A)°" and N°¥ @, 4 — N are bijective.

By 3.4 and hypothesis (a), the adjunction map is bijective for any right B-
module M. Now take any N € .#%. By 3.3 and hypothesis (a) (and the bijecti-
vity of the antipode), there is a map ¢’ : A @ H — A in 4% such that ¢’A, = id,.
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Define [ NQARQH—>Nby f(n®@a®h):=Z ngp’(a @S(n)h).

NQ@®ARH lies in #% with A-module structure (M ®a®h)-x =
Zn®ax,@hx, for all nEN and a,xEA4 and h€H, and with comodule
structure 1 @ 1 ®A.

Then fis obviously right 4-linear, since ¢’ is so. The following calculation
shows that fis also H-collinear:

A f(n@a®h) =3 nyp'(a @S(n)h) @ n,S(ny)h,
(since N is a Hopf module, and ¢’ is collinear)
=2 nyp’(a ® S(n,)h,)® h,
=2 f(n®a®h)Qh,.

Furthermore, for all nE€EN: f(Zn,@1Qn) =23 ny’'(1QS(n)n,) =
ne’(1®01)=n(p(1®1)=1, since p’A, =id,).

Hence /: NQA ®H — Nis a map in 4%, and a k-split surjection.

By assumption (b), the canonical map can: AQ A - AR H, xQy — Z xy,Q y,,
is surjective. Since H is projective over k, A @ H is a projective left A-module.
Obviously can is left 4-linear (4 operates on the first factor from the left).
Therefore, can is a k-split (even 4-split) epimorphism.

Now consider N ® 4 ® 4 as Hopf module in .#% with comodule structure
1 ®1®A,and module structure (n @ x @ y)-a = n Q@ x @ ya for all n €N and
x,y,a€A. Then 1Qcan: N®AR®A—~N®AQH is a morphism of Hopf
modules in .#%, and a k-split surjection.

Hence g = f(1®can): N®A®A — N is a k-split epimorphism in .#%.
Since any Hopf module, in particular Ke(g), is relative injective by (a) and
3.3(3), Ke(g) is a direct summand of N® A4 @ 4 as H-comodule.

Now N®A4 ® A is a Hopf module of the form V® A4, V a k-module, with
H-comodule structure ¥ ® A, and 4-module structure (v®a)-x = vQax, for
all vE V and a, x €EA4. By hypothesis (a) and 3.4 again,

(V®A)*H=V®B.

Hence the adjunction map for V®4 is bijective as composition of the
canonical isomorphisms (V ® A)*# @, A =(V@R®B)®; A=V R A.
Therefore, continuing the resolution with Ke(g) instead of N, one obtains an
exact sequence in %
N,—N,—-N-0
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which splits as sequence of H-comodules and such that the adjunction maps
for N, and N, are bijective. Hence

NgoH_,NfoH_,NcoH_,O’
and finally
NPH®p A —~NPH @A — N°H @y 4

are exact, and the adjunction map for N is an isomorphism, since both
adjunction maps for N, and N, are bijective.

3.6. EXAMPLE. Letp: H—Hbea surjective map of Hopf algebras. Then
(I1®p)A:H—H ® H defines an H-comodule algebra structure on H, and
condition (b) in 3.5 is satisfied.

PrOOF. The canonical map can: H® H — H® H is surjective, since H® H —
HQOH, xQyw— Zxy,Qy, isan isomorphism with inverse x @ y > Z xS(1)) y>.

The following imprimitivity theorem proves the equivalence of (2) and (4) in
Theorem I in a more general situation. Let H = H/I be a quotient coalgebra
and a quotient right H-module of the Hopf algebra H, and 4 a right H-
comodule algebra. Then the canonical map p: H— H, p(h):=h, is collinear
and right H-linear, and A is a right H-comodule via p. Define

A=A .= (€A |2 a,®7, =a®1).
Then A’ is a subalgebra of 4, and the canonical map
canAQ,A—~ARH, x®yr> Zxy,®F,,
is well-defined (if x, y €4 and z € 4/, then
can(x @ zy) = T x2, ¥, @2 ¥ = = x2, Vo @ Z1 ¥, = = x2y,® 1y, = can(xz @ y)).
The adjoint functors .# A,—nﬂj_", M- MQ®, A, and
ME—> My N> N°F .= (nEN|Zn,®@n =n®1)},

are defined as before. Here, the category .47 of right (4, H)-Hopf modules is
defined in the obvious way: A right (4, ﬁ)—Hopf module N is a k-module
which has a right 4-module and a right H-comodule structure such that the
comodule structure map is 4-linear, i.e. Ay(na) =X nya,®na, for all nEN
and a € 4. This notion generalizes .#% of [31] and .#¥ of [5]. Note that M s
not well-defined, since H does not operate on the left of H. Also,
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can: AR A= ARQH, xQy > Z X%y ®%),

does not exist. If Xis a rig}lt A-module, in particular if X = 4, then X ®§ will
be considered as right 4, H) Hopf moglule with comodule structure 1 ®Aand
module structure (x @ h)a:= 2 xa,@ ha, forall xEX, h€EH and a €A.

3.7. THEOREM. Let H bea Hopfalgebra, H = H/I a quotient coalgebra and
a quotient right H-module of H, and p: H — H the canonical map. Let A be a
right H-comodule algebra and A’ := AT where (1® p)A, is the H-comodule
structure on A. Assume H is flat over k. Then the following are equivalent:

(1) (a) A is faithfully flat as left A’-module.

(b) can: A ®, A —AQH is an isomorphism.

(2) The induction functor # oMM > M®, A, is an equivalence.

(The implication (1)=(2) holds without the assumption that H is flat over k.)

Proor. (2)=>(1). Clearly, A is left faithfully flat over A’, since (by the
flatness of FI) exact sequences of (4, }TI)- Hopf modules are exact as sequences
of k-modules. The adjunction map of N:= A ® H can be identified with the
canonical map can: 4 ®, 4 — 4 ® H. Hence can is bijective.

(D=(2). (i) Let N be a right (4, H)-Hopf module. Then the adjunction
map uy of N is bijective.

Proof. This was shown in [7], 2.11, in case H = H using the assumption
that H is a Hopf algebra. A slight modification of this proof also works in the
general case: For any right A-module X, the canonical map cany: X &, 4 —~
X®H,xQa > = xa,®4a,, is bijective, since cany = X ®, can. The following
diagram commutes:;

NF®, 4> NQ,A=Z (NQH)®, A

In l cany t CanygyH }

NrN®ﬁzN®ﬁ®ﬁ

Here, N® Hisa right 4-module by diagonal action as above. The row on top is
the defining sequence of NF tensored with — ®, A, hence exact. The
unlabelled maps on the bottom are Ay ®Hand N R A5. Since N=NOp FI,
the sequence on the bottom is exact. Now cany and canygj are isomorphisms,
SO Uy is an isomorphism.

(ii) Let M be aright A’-module. Then the adjunction map 1,,0f M is bijective.



184 H.-J. SCHNEIDER Isr. J. Math.

Proor. The following diagram commutes:

M>M®. 42 MR, AR, 4

I

MOy AP C MR, A2 MR, AQH.

MQ@can

In the sequence on the top, i(m) := m & 1, and the unlabelled maps are M & i,
and M ® i,, where i,(a) := a ® 1 and i,(a) := 1 @a. By faithfully flat descent,
the sequence is exact. The lower sequence is the defining sequence of the
covariant elements. By assumption, can is an isomorphism. Hence 1,, is
bijective.

3.8. Proor oF THEOREM I (INTRODUCTION). (1)=(2). By 3.5.

(2)=(4). By (2)=(1) of 3.7, where H = H.

(4)=(1) is proved similarly to [28], 1.5: Since k is a field, it is enough to
show that A4 is coflat as right comodule. By (b) and the bijectivity of the
antipode, can=A®;A—-AQH, xQyr— Zx,yQ®x,, is bijective. As
explained above, can’ is a morphism in ,.#%, hence in g.#0d”. For any left
H-comodule V

AOy V)@ A=(ABp )0y V=(AQH) Oy V=AQV,

where the first map is an isomorphism, since A js flat as left B-module by (a),
and the second one is can’ O V. Hence, the functor V' +— A Oy V is exact, since
A is faithfully flat as left B-module by (a).

()=(3)=(5). Apply (1)=(2)<=(4) to A as right H°®-comodule algebra.

3.9. REMARK. (1)Note thatin the situation of Theorem I, another proof of
3.7, (1)=(2), is given in 3.8.
(2) In Theorem I, conditions (1)-(5) are equivalent to
(6) (a) B is a direct summand in A as left B-module.
(b) can is bijective.
(7) (a) Bis a direct summand in A4 as right B-module.
(b) can is bijective.

Proor. If can is bijective, then (1)(a), (6)(a) and (7)(a) are equivalent by
[6], (2.4).

(3) Assume in Theorem I the equivalent conditions (1)-(5). Then A is
faithfully coflat as right H-comodule by 3.8 or 3.1(1).

(4) The imprimitivity theorem of Koppinen and Neuvonen [11] is a special
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case of 3.7. Let H' C H be a Hopf subalgebra (or just a subalgebra such that
A(H") lies in the image of H ® H’) such that H is a finitely generated projective
generator as a left H’-module. Then H:= H/H'*H =k ®y H is finitely
generated and projective over k. H is faithfully flat as a left H’-module, since it
is a progenerator (cf. [12], 1.5 and 1.6). The canonical map can: H . H —
H®His bijective (with inverse as in 3.6). Now it follows from the proof of 3.7
(1)=(2)(ii), applied to M = H’, that H’' = H*¥ The canonical map induces
an isomorphism of algebras H*:= Hom(H, k)= F := Homy. (g H, k) with
convolution as algebra structure. Hopf modules in .//lﬁ are the same as right
H-modules satisfying the rule f{na) = = ((a,f)n)a, for all fEH*, n €N and
a€H. Here, H*is a left H-module in the usual way by (af }(X) = f(xa) for all
a,xE€H and fEH*. Hence 3.7, with A = H and A’ = H’, contains the (right
version of the) theorem in [11].

3,10. COROLLARY. Let k be a field. Let H and H be Hopf algebras with
bijective antipodes, and p : H — H a surjective Hopf algebra map. Assume H is
an injective right H-comodule via p. Let B C A be a right H-Galois extension
such that A is faithfully flat as left B-module. Consider the induced H-comodule
algebra (1@ p)A,:A—~ARH, and define A’:=A%". Then A’CA is an
H-Galois extension, and A is Jaithfully flat as left A”-module.

PROOF. _This follows immediately from Theorem I, since _
(a) A is H-coflat, since A4 is H-coflat by Theorem I, and H is H-coflat.
(b) The canonical map A Q@4 —-AQH —> 4987, 4 ® H is surjective.

3.11. REMARK. The above results show that there is a rich theory of
faithfully flat Hopf Galois extensions.

Furthermore, some of the basic properties of principal homogeneous spaces
or torseurs in algebraic geometry (cf. [4], II1, §4) still hold over arbitrary rings k
for H-Galois extensions B C A such that 4 is faithfully flat as right B-module
(with more or less the same proofs), for example:

(1) Let i:B—A and : B— A be H-Galois extensions, and assume A4 is
faithfully flat as right B-module (via 7). Then any H-collinear algebra map
f: A — A satisfying fi = ' is an isomorphism (cf. [4], III, §4, 1.4).

Proor. The composition

AR A2 i®,i-* iQH
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can be identified with 4 ®, can, where A4 is an A4-module via f. Hence A ®; f
is bijective, and so is f, since A is a faithfully flat right B-module.

(2) Let B C A be an H-Galois extension, and assume A is faithfully flat as
right B-module. Let H’ C H be a k-direct Hopf subalgebra which is flat over k.
Define A’ :=A;' (A @ H’)= A0y H'. Then B C A’ is an H’-Galois extension,
and A’ is faithfully flat as right B-module.

ProoFr. The canonical isomorphism can: 4 ®; 4 —A4 Q®H induces an
isomorphism

JiAQRpA' =AQyATyH) = (AR A) Oy H' =(AQH) Oy H=AQH",

where the second map is bijective, since A is flat as right B-module. Explicitly,
fla®x)=Zax,®x, for all a€A and x €EA’. Note that fis right and left
B-linear. Hence A’ is faithfully flat as right B-module, since Az and H} are
faithfully flat.

To show the bijectivity of the canonical map can: 4’z 4’'— A’QH’, it is
enough to show that 4 ®; can is bijetive, since A is faithfully flat. But applying
S on the right and twice on the left, 4 ®; can is identified with the bijection
AQH' QH -AQH' QH, a®@x®y > Z aQyx, ®x,.

(3) In fact, the above proofin (2) shows that B—>A O, H', b — b ®1,isan
H’-Galois extension, and A4 [0y H’ is right faithfully flat over B for any Hopf
algebra map H’— H, where H’ is flat over k, as was remarked by C. Wenn-
inger. In the geometric case, this is the usual functorial behaviour of torsors for
variable groups (cf. [4], III, §4, 3.2).

If A is a commutative algebra over a field, and B C 4 a faithfully flat
H-Galois extension, then it follows from a general descent theorem [10],
Th. 3.13, Cor., that 4 is projective over B (since 4 ®; 4 = A4 @ H is projective
over A, and A is faithfully flat over B). Hence the criterion 2.5 for the existence
of a normal basis can be applied to A4 as left B-module and right H-comodule.

On the other hand, 4 is H-injective by Theorem I and from 2.2 one obtains
the following

3.12. THEOREM. Let H be a commutative Hopf algebra over a field, and
B C A a commutative H-Galois extension such that A is faithfully flat over B, If
B is semilocal ( for example, finite dimensional), then

A = B Q®H as left B-modules and right H-comodules.

ProOF. By Theorem I, 4 is an injective H-comodule. Therefore, it is enough,
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by 2.2, to show A0y H’ = B® H’ in z.#od” for any simple subcoalgebra H’ in
H. But if H’ C H is a simple subcoalgebra, then the canonical isomorphism
A®yA=AQH induces an isomorphism (4 Qs )y H' =(AQH)Oy H' =
AQH’ in g#od”. Since Ay is flat, (A QzA) Oy H = A Qy(A0y H’). Hence
ARp(A0y H)= A Qz(BQ H’) as left A ® H'* modules.

Define W.:=A0y H', V:= B @ H’ as left modules over S:= B ® H’*. Then
sV=sS,and A Qy W =A4Q; Vas A ®S-modules.

By assumption, the commutative ring A is faithfully flat over the semilocal
ring B. Therefore, the general form of the Deuring-Noether theorem in [9],
2.5.8 (ii) implies that A0y H = BQ H’ in g.#0d"".

3.13. REMARK. As aspecial case of 3.12, take any finite dimensional Hopf
subalgebra B of H. Then H = B ® H as left B’-modules and right H-comodules,
where H:= H/HB™. This contains [22], Th. 1, where it is shown that H is free
over B. But the methods in [22] or [31] do not prove the normal basis property.

In general, if B is not finite dimensional, 4 need not be free over B. For
positive and negative results in this direction, see [25].

4. The dual case

Let H be a Hopf algebra over the commutative ring &, and let C be a right
H-module coalgebra, i.e. C is a coalgebra with a right H-module structure
Uc: C ® H— C such that uc is a coalgebra map, in other words,

Alch)=Z ¢ h,@cy,h, and e(ch)=e(c)e(h) forallcECand hEH.

M is the category of right C-comodules and right H-modules N such that
Ay:N—NQC is H-linear, i.e. Ay(nh) = Z noh,@n,h, for all nEN, hEH.
Morphisms in #§ are H-linear and C-collinear maps. The category of Hopf
modules <# is defined similarly. If the antipode of H is bijective, then the
dual coalgebra H*? is a Hopf algebra with the same mutliplication as H. Again,
My =M=, CQH is a Hopf module in 4§ and <4, in the obvious way,
where the comodule structure is defined by ¢c®% — Z ¢, ®h, ®c,h, and
c®h > Zch®c,;®hy, and where C ® H is a right H-module by multiplica-
tion on H.

Define C:= C/CH*. Then the canonical map p: C—>Z‘, cw—> ¢, is a co-
algebra surjection. Forany NE.#S, N:= N/NH*+* =N ®y kis a C-comodule.

Let C be flat over k. Then for any right C-comodule M, M} C .45,
where the Hopf module structure is defined by the structure maps of C. Note
that the comodule structure M ® A on M [z C is well-defined, since C is flat



188 H.-J. SCHNEIDER Isr. J. Math.

over k. Dually to Sgction 3, the functor € — M5, M —> M & C, is right
adjoint to #5— .#¢, N — N. The adjunction maps are

MO C—M, ZmQci— T melc),
N—NO:C, nw Z7,Qn,

where M is a right Z‘_— comodule and N a Hopf module. _
In the same way, <# — <#,, M — COg M, is right adjoint to N — N.

4.1. LEeMMA. Let H be a Hopf algebra with antipode S, and C a right
H-module coalgebra.

() If VE M, then CROVES M,y and CRV=C®yV, cQuv>cQu,
where CQV is a left C-comodule by AQV, and where (cQuv)-h:=
Z ch; & S(hy)v is the H-module structure.

(2) IFNEMS, theni:N—C®yN,i(A):==nQny andp: C®, N—N,
p(c ®n):=e(c)n, are well-defined, and pi = id. Here, N is considered as
a left H-module by hn := nS(h).

ProoF. Dual to 3.1.

4.2. CorOLLARY. Let H be a Hopfalgebra with bijective antipode, C a right
H-module coalgebra, and C = C/CH*. Assume C and C are flat over k. Then
the following are equivalent:

(1) C is flat as H-right module.

() S#y— S, N N, is exact.

(3) M5 — MC, N — N, is exact.

ProoOF. Dual to 3.2.

A right H-module Z will be called relative projective, if u,: ZQ H — Z has
an H-linear section, or equivalently, if Z is projective relative to all k-split H-
epimorphisms.

4.3. REMARK. Let Hbe a Hopf algebra, and C a right H-module coalgebra.
Then the following are equivalent:

(1) Cis relative projective as right H-module.

(2) There is a right H-linear and augmented map C — H.

(3) Any Hopf module in .#§ is relative projective as right H-module.

(4) There is a morphism y: C =~ C ® H in 4 such that u-w =id.
If the antipode of H is bijective, then each of the above is equivalent to:

(5) Any Hopf module in $#/, is relative projective as right H-module.
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(6) There is a morphism y’: C =~ C & H in 4§ such that ucy’ = id..
ProoF. Dual to 3.3 (cf. [5]).

_44. LemMA. LerH be a Hopf algebra, C a right H-module coalgebra, and
C =CICH*. Assume C is relative projective as right H-module. Then the
adjunction map M Oz C — M is an isomorphism for any right C-comodule M.

PrOOF. Dual to 3.4.

If C is a right H-module coalgebra, C = C/CH*™, there are canonical maps
can:COH—-CC, cQhw— Zc,®ch,
can: CQH—-CO:C, ¢Qhs Zch®c,.

If the antipode S of H is bijective, then ®: CRQH - CQH, ®(c®h):=
< ch, ® S(h,), is bijective, and can’ = can P.

4.5. THEOREM. Let H be a Hopf algebra with bijective antipode, which is
flat and injective as k-module. Let C be a k-flat right H-module coalgebra, and
C:=C/CH*. Assume

(a) C is relative projective as right H-module.

(b) can: CQ® H — CO¢ C is injective.

Then both (co-)induction functors M€ — M$ and SH# — My, are equivalences.

ProoF. Dual to the proof of 3.5. If N is a Hopf module in .#§, then the
dual map to fin the proof of 3.5 is

N2 Nn@c X NQCRH~NQC®H,

where ¥ is the map in 4.3(6), and where the last map is the isomorphism
n@cQh > nSh)Qc®h,.

Note that the injective map can: C ® H — C ® C is left C-collinear, hence is
a split H-collinear map, since H is injective over k (collinear maps into C ® H
are given by linear maps into H).

4.6. ExaMPLE. Let H be a Hopf algebra, and H’ C H a Hopf subalgebra.
Then H is a right H’-module coalgebra in the natural way by multiplication in H.
Define H := H/HH'’*. Then condition (b) in 4.5 is satisfied.

Proor. The canonical map HQH—-HQH, xQy - Zx,®x,y, is an
isomorphism with inverse x ® y > Z x, @ S(x,)y.

From now on, assume k is a field.
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If H' CH is a right coideal subalgebra of the Hopf algebra H, i.e. a
subalgebra such that A(H’) C H'@H, and C is a right H-module coalgebra,
then C:= C/CH’* is a coalgebra, and the category of Hopf modules .#¢, is
defined in the same way as .#§ (dually to Section 3).

4.7. THEOREM. Let H be a Hopf algebra and H' C H a right coideal
subalgebra. Let C be a right H-module coalgebra, and C:=C/CH'*. Then the
Jfollowing are equivalent .

(1) (a) C is faithfully coflat as left C-comodule.

(b) can: C® H'— C g C is an isomorphism.
(2) The coinduction functor ME— MG, M > MO C, is an equivalence.

ProoF. Dual to 3.7.

4.8. Proor oF THEOREM II (INTRODUCTION). (1)=(2). By 4.5.

(2)=(4). See 4.7, (2)=(1).

(4)=>(1) By (a), it follows from 1.3 that there is a left C-collinear
map s: C — C such that ps = id.. Now apply the functor #—Hy. Then
cOes: COg c—C O C is an H-split monomorphism. But the canonical
maps CO¢ C=C ,and can’: C ® H — C Oz C are right H-linear. By (b), can’ is
bijective (since the antipode is bijective). Hence C is projective as right H-
module.

(1)=(3)=(5). Apply (1) =(2) = (4) to C*® as right H*P-module coalgebra.

4.9. REMARK. (1) In Theorem II, conditions (1)-(5) are equivalent to:
6) (@ C — C has a left C-collinear section.

(b) can is bijective.
(7) (@) C— C has a right C-collinear section.

(b) can is bijective.

ProOF. Dual to 3.9(2).
(2) Assume in Theorem II the equivalent conditions (1)—(5). Then C is
faithfully flat as right H-module by 4.1(1).

4.10. REMARK. A right action of a formal group scheme on a formal group
(cf. [8]) corresponds (covariantly) to a right H-module coalgebra, where the co-
algebra C and the Hopf algebra H are cocommutative. The action is called free,
if the canonical map C @ H — C @ C is injective, i.e. if (1)(b) in Theorem II is
satisfied. In this situation, C is automatically projective as right H-module,
hence (1)(a) follows from (1)(b). This is shown in the next theorem under less
restrictive assumptions than cocommutativity by a modification of results of
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Takeuchi and Radford. The main theorem on quotients of formal schemes
under free actions of formal groups ([8], 1.4 and 2.4) is the implication
(1)(b)=(4) in Theorem II for cocommutative C and H. Thus Theorem Ii
together with 4.11 generalizes the full quotient theorem for formal groups (cf. 4.12).

4.11. THEOREM. Let H be a Hopf algebra, and C a right H-module coalgebra,
C:= C/CH". Let G(—) denote the group-like elements of (—). Assume
(a) There is a field extension k C k’ such that the coradical of CQk’ is
contained in G(CQk’)-(HQ k).
(b) can: CQH — CO¢ C is injective.
Then all Hopf modules in #$ are projective as right H-modules. In particular,
C is a projective right H-module.

ProOOF. Itisenough to consider the case k’ = k in (a), since a module over a
k-algebra is projective if it is projective after some field extension.

Assume condition (a) with k'’ =k. Then it will be shown that all Hopf
modules are even free over H.

(1) Let 0 # N €. such that N is finitely generated as H-module. Then N is
free as H-module. This is shown by the following modification of [27], Th. 3.2.
Choose a finite dimensional subcomodule V of N such that N = V- H. Then
there is a simple subcoalgebra C’ of C and a subspace 0 # W of ¥ such that
Ay(WYC WQC, since VO Cy # 0. By assumption (a), C’ is contained in
G(C)- H. Hence there is a group-like element g € C such that C’ C g - H, since
G(C)- H is the sum of the subcoalgebras g-H, g €G(C). Then Ay(W-H) C
W.HQ®g-H. But the surjective coalgebra map H—~g-H, h > g-h, is in-
jective, since gQH —-CQC, g®@h— gQg-h, is injective by assumption
(b). Hence H — g -H is a right H-linear coalgebra isomorphism, and .#¥ =
M5 . By [26], 4.1.1, any Hopf module in .#% is free as right H-module. Hence
W . H is free as right H-module.

Now consider the exact sequence in 4§

0—-W-HCN—N/W-H—0.

N/W .H is generated over H by the image of the C-comodule V/W and
dim(V/W) < dim(¥). Therefore, by induction on dim(}’), one can assume that
N/W -H is H-free. Then the sequence splits, and N is free as module over H.

(2) Let Nbe any non-zero Hopf module in .#§. As in [22], Prop. 1, it follows
from (1) that N is a free H-module.
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4.12. CorOLLARY. Let H be a Hopf algebra with bijective antipode, and C
a right H-module coalgebra, C:= C/CH*. Assume the coradical of Cis
cocommutative. If the canonical map can: C ® H — COg C is injective, then it
is bijective, and C is faithfully coflat as left and right C-comodule.

PROOF. andition (a) in 4.11 is satisfied for k’ = k an algebraic closure of
k, since C @ k is pointed. Hence 4.12 follows from Theorem II and 4.11.

The normal basis Theorem Il in the introduction is a corollary of the above
results together with Theorem 2.1 for bimodules in 2#0dy instead of z.#0d”.

4.13. ProoF ofF THEOREM III (INTRODUCTION). In all three cases, the
equivalent conditions in Theorem II are satisfied by 4.11. Assume (1). Denote
by G the set of group-like elements of C and let (—), be the coradical. By [26],
11.1.1, a) C p(Cy). By assumption, p(C,) C p(G - H) = p(k[G]). But p(k[G])
lies in the coradical, since it is spanned by group-like elements. Hence
C, = p[k[G]) is pointed, and p induces a surjective map G(p): G(C)— G(C)
between the group-like elements. Any set-section of G( p) defines a coalgebra
map i: Co — C such that pi is the inclusion map CO cC. Furthermore, by
Theorem II, C is injective as left C- comodule, and can: CQ H — C[Iz Cis an
isomorphism in $#ody. Hence, by 2.1, C = C @ H in <#0d,.

In case (2), by 2.3, one can again assume that k is algebraically closed. Then
C is pointed, and (2) is a special case of (1).

Finally, in case (3), 2.1 can be applied directly.

4.14. REMARK. (1) In the situation of Theorem III, all Hopf modules in
M are free as right H-modules. This follows from Theorems II and III, since
any Hopf module is isomorphic to M Oc C, M a right C-comodule, and
MUOC =Ml CQ®H =M®QH as right H-modules.

(2) Let H be a Hopf algebra, and H’ C H a Hopf subalgebra with bijective
antipode.

Then H is a right H’-module coalgebra as in 4.6, and all the above results can
be applied. In particular, assume one of the following conditions:

(a) HyC G(H)-H’ (for example, H is pointed).

(b) H, is cocommutative, and H’ is finite dimensional.

(c) H,is cocommutative, and any simple subcoalgebra of H=H/HH'* is

liftable along p: H — H (for example, H is irreducible).
Then H =~ H ® H’ as left H-comodules and right H’-modules.
In cases (a) and (b), the freeness of H over H’ was proved by Radford in
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[22], Prop. 3, [21], Cor. 6. More generally, in these cases it was shown in [22],
Prop. 3, and [31], Prop. 4, that all Hopf modules in .#%, are free over H’.

Finally, for completeness, an easy proof of the following basic result on
quotients of cocommutative Hopf algebras will be given in the context of this
paper.

4.15. THEOREM. Let H be a cocommutative Hopf algebra. Then

{H'C H|H’ Hopf subalgebra} {I C H | I coideal and left ideal},

where ®(H’):= HH'* and ¥(I):= (xEH |25 ®x, = 1Q@x in HIQH} =
kO, H are inverse bijections.

Proor. (1) Let H’ C H be a Hopf subalgebra. Define I:=HH’*. By
4.11 and Theorem II, .#% = .#"" are equivalences. But H'€.#% , and
H’'®y k= k. Hence H' = k [y, H. This also follows by the method in 3.9(4).
(Note that this part of the proof holds, if only the coradical is cocommutative.)

(2) Let I C H be a coideal and a left ideal. Define

H:=H/I and H :={x€H|:%®x,=1®x).

Then H’ is a Hopf subalgebra, and H'* C I, as is easily seen (cf. [31], Th. 4).
Here, the cocommutativity of H is essential. To show that the coalgebra
surjection H:=H/HH'*—H/I =H is bijective, or equivalently, that
HH'* = I, itis enough to show that 1 ® ¢ : H, Oz H — H, is injective, since the
kernel of H — H is a left H-subcomodule (and cotensoring with the coradical
gives the socle) Clearly one can assume that k is algebraically closed. Then

= k[G), Hy = k[G], where G and G are the group-like elements of H and H.
Note that G —G is sur]ectlve The above map Ho Oz H— H0 is the direct sum
of all kgOz H — k2, Z€G.

Take any group-like element g of H. It remains to prove that
1®e: kg Oy H — kg is injective, i.e. that kg 05 H is 1-dimensional.

By 4.12 (or [31], Th. 1, since H is a faithfully flat left H’-module by [27],
Th. 3.2), H is faithfully coflat as left H-comodule. Hence, by 1.3,
1®e¢: (kg0z H)Og H —(kg0O5 H) is surjective. Since kg0 HOyH =
kg Oz H, it follows that the canonical map

ke H—kgOz H

is surjective. In other words, any y € Hsuch that 27, ®y, =3 Qyin H® H is
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the canonical image of an element x € H such that 2%, @ x, =g ® x in HQ®H.
But then 2 g "X Qg 'x, =g 'g®g 'x =1®g " 'x, and hence g~ 'xEH’,
which means that x EgH’ and y € kg. Therefore, kg O H is 1-dimensional.

4.16. REMARK. In a note added in proof, however without proof,
Theorem 4.15 was stated by Takeuchi in [31]. 4.15 was already stated and
proved by Newman as the main result of [17]. For irreducible cocommutative
Hopf algebras H, i.e. in the crucial case when the corresponding formal group
is infinitesimal, 4.15 was proved by Gabriel in the Séminaire Schémas en
Groupes 1962/64 [8], 5.1. The above proof of 4.15 seems to be much easier
than the proofs in [17] and [8]. It was inspired from Oberst’s proof of a variant
of [8], 5.1, in [20], 13(5).

Added in revision. Meanwhile, Masuoka [14] has shown the following
generalization of 4.15. Assume only that the coradical H, of H is cocommuta-
tive. Then the mappings in 4.15 are bijections between all right coideal
subalgebras H’ C H such that the group-like elements in H’® k form a group
and all coideals and left ideals J of H. A crucial point in Masuoka’s proof'is to
use the H-coring structure on H ®,. H. However, the above direct proof of
4.15 also works in the more general case. The only missing information is the
following ([14], 1.6, applying the method of [31], Prop. 4): If H’ is a right
coideal subalgebra of H such that the group-like elements in H’® k form a
group, then H is a faithfully flat left #’-module.
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