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ABSTRACT 

We examine the symmetric basic sequences in some classes of Banach spaces 
with symmetric bases. We show that the Lorentz sequence space d(a,p) has a 
unique symmetric basis and every infinite dimensional subspace of d(a,p) con- 
tains a subspace isomorphic to I p. The symmetric basic sequences in d(a,p) are 
identified and a necessary and sufficient condition for a Lorents sequence space 
with exactly two nonequivalent symmetric basic sequences in given. We con- 
clude by exhibiting an example of a Lorentz sequence space having a subspace 
with symmetric basis which is not isomorphic either to a Lorentz sequence 
space or to an lP-space. 

Introduction 

A basis (x,} of  a Banach space X is called symmetric if every permutation 

{Xot,~} of  {xn} is a basis of  X, equivalent to the basis {xn}. In this paper we consider 

the problem of  constructing symmetric basic sequences in some Banach spaces 

with symmetric bases. 

Much of  our work is done with the Lorentz sequence spaces d(a,p). Let 

l < p < + o o .  For any a=(a j ,a2 , . . . ) eco \ l  t, a l > a 2 > . . . > O ,  let d(a,p) 

= {x = (cq,~2,.. .)~Co: s u p ~  ~,~1[ ct~t,)]Pan < + oo} where rr is the set of  all 

permutations of  the natural numbers. Then d(a,p) with the norm II x ll 

= (supo~ Eft= l l~ocn~ IPa,) TM for x e d(a,p) is a Banach space and the sequence 

of  unit vectors {x,} is a symmetric basis of  d(a, p) [2,4].  For  p = 1, these 

spaces have been studied by W. L. C. Sargent [10], D. J. H. Garling [2], W. 

Ruckle [9], and J. R. Calder and J. B. Hill [1]. For 1 < p < + oo, Garling [4] 
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showed that d(a, p) is a reflexive Banach space which, in general, is distinct from 

the/P-spaces. See [1] for further references on other work on d(a,p). 
Another class of  Banach spaces with symmetric basis is that of  the Orlicz 

sequence spaces. J. Lindenstrauss and L. Tzafriri [6, 7] have shown that every 

Orlicz sequence space has a subspace isomorphic to some I p. They have also shown 

that there are Orlicz sequence spaces which have at least two nonequivalent 

symmetric bases. We show that d(a, p) has a unique symmetric basis for all a and p 

and that every infinite dimensional subspace X of d(a, p) has a subspace isomorphic 

to I p which can be chosen to be complemented in X if X has a symmetric basis. 

The Lorentz sequence spaces which have exactly two nonequivalent symmetric 

basic sequences are characterized. Finally, an example of a Lorentz sequence 

space having a subspace with symmetric basis which is isomorphic neither to Ip 

nor to any Lorentz sequence space is given. 

We introduce a new type of block basic sequence of a symmetric basis which 

has the property that it always has a symmetric subsequence. In the spaces d(a, p), 
these are the only symmetric block basic sequences of the unit vector basis {xn} 

of d(a, p) which are not equivalent to the unit vector basis of l ~. 

The notations and terminology in this paper are essentially those of I. Singer 

[12]. A sequence {xn} of  a Banach space X is called a basis of  X if every x ~ X 
oo has a unique expansion of  the form x = E~ = 1 ~tnxn. Let 1 < p < + oo ; a basis 

{x,} of X is called p-Hilbertian if ~2=1 e~x, converges in X for every {0t~} ~ F. 

A basis {x~} is q-Besselian, 1 < q < + oo, if Eft= 1 c~,xn converges irr X implies 

that {o~,} ~ l ~. 
If  {x~} is a basis of  a Banach space X, a sequence {y~} in X is said to be a block 

basic sequence of  {xn} if t.here is an increasing sequence of natural numbers {p~} 

x, pn§ for n = 1,2, A block basic sequence {y~} is said such that y~ = ~i=p.+lct~x~ .-.. 

to be bounded i f0  < inft__<n<+oo[I yn I [ < supl_<,<+ool[ y~ I [ < + oo. We will denote 

by [{y~}] the closed linear span of the sequence {y~}. If  (xn} and {y~} are bases 

of X and Y, respectively, we say that {x,) dominates (Yn}, and write {x,} > {Yn}, if 

E ,~  10t~x, converges in X implies that E ,~  10c~yn converges in Y. The basis {x,} 

is equivalent to the basis {y~}, and we write (x~} ~ (y~}, if {xn} > {y,} and {y,} 

> {x~}. It is clear that a basis {x~} is equivalent to the unit vector basis of I p if 

and only if {x~} is p-Hilbertian and p-Besselian. 

If  {x~} and {yn} are symmetric bases, it is easy to show that {x~} ~ {y~} if and 
oo only if for any sequence of  scalars ~1 > 0~2 > ".  > 0, E~ = 10~x, converges in X if 

and only if E~= t o~nyn converges in Y. We also note that if 
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pn+ 1 

Yn = ~ OtiX~ [=pn+l 
for n = 1,2, ..., is a block basic sequence of  a symmetric basis (x~}, and for each 

n, a,  is a permutation of  {p~ + 1,p~ + 2,.. . ,p~+~}, then {y~) ~ {zn} where 
Pn+l n =  1,2,....  Therefore, when working with block basic 

sequences {y,} of a symmetric basis {x,} we will always assume that %,+1 

> % , + 2  >="" >%~+1 > 0  for n = 1,2,....  

Let {x~} be a symmetric basis in a Banach space X. Define 

III x III = ,~sup IP,I- ~lsup 1'=1 ~ fl,fi(x)x~i) , x e X ,  

l~n<+~ 
where {f~} is the sequence of  biorthogonal functionals of  {x~} in X*. Then the 

symmetric norm lit x/I[, x e X, is an equivalent norm on X. Throughout this paper, 

we shall assume that every Banach space with symmetric basis is equipped with 

the symmetric norm. 

1. Preliminaries 

In this section we state some simple and well-known facts on symmetric basic 

sequences in Banach spaces. 

PROPOSITION 1. Every symmetric basic sequence in a Banach space is either 

weakly convergent to zero or is equivalent to the unit vector basis of  l ~. 

It is known that in the 1 p spaces, 1 < p < ~ ,  all symmetric bases are equivalent 

[-12, p. 573]. As a consequence of Proposition 1, we have 

COROLLARY 1. In the spaces X = c  o or I p, 1 <= p < + o %  all symmetric basic 

sequences are equivalent. 

PROPOSITION 2. Let X be a Banach space with a symmetric basis {Xn}. I f  

every bounded block basic sequence of  {x~} is symmetric, then {x~} is equivalent 

to the natural basis of  c o or IP for  some p, 1 < p < + oo. 

PROOF. Let {Yn} be a bounded block basic sequence of  {x,}. Since {y~} is 

symmetric, {y~} ~ {Y2~}. Choose a subsequence {x,,} of {Xn} such that 

Y2~ if n = 2 i ,  i = 1 , 2 , . . . ,  

Zn~{ x,, if n = 2 i + l ,  i = 1 , 2 , . . . ,  

is a bounded block basic sequence of  {x,}. Then, since {z,} is symmetric, 
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{x~} .~ {xn, } ,,~ {z~} ~, {Y2~} N {y,}. Hence by a result of  M. Zippin [13], {x~} is 

equivalent to the natural basis of Co or F, 1 < p < + oo. Q.E.D. 

PROPOSITION 3. Let {x,} be a symmetric basis of a Banach space X. I f  
~ P n  + 1 y~= i=p~+loqx~, n---1,2,. . ,  is a bounded block basic sequence of {xn} and 

supl_<~<+~(p~+l- p~) < + ~ ,  then {y,} is equivalent to {x,}. 

PROOF. We may assume that 1 for n =  1 , 2 , .  Suppose 
~,n~=la~x~ converges in X. Since {x,} is symmetric and I%o+,1--< ]ly ll ___1, 
~n~= 1 [ a~%. +i] Xp, +~ converges in X for each i = 1,2, ..., M where M = sup1 _<, < + 

(P~+I-  P~). Since 

M 

the series ~n~ 1 a~y~ converges in X. 

Conversely, if ~ n ~  a,y~ converges in X, note that for each n = 1,2, ..., there 

exists k~ such that p, + 1 < kn < p~+ t and [~k~ I > 1 /M > 0. Hence, ~ = x  a~k.Xk. 

converges in X and so ~ 1 a~xn converges in X. Q.E.D. 

PROPOSITION 4. Let {xn} be a symmetric basis in a Banach space X. I f  
~Pn+l  yn = i=p.+laix,, n = 1,2,. . . ,  is a bounded block basic sequence of {xn} such 

that inf~s~< +~o suppo+~_,sp,., I~,1 > 0, then {y,} dominates {x,}. However, in 

9choral, {y~} is not equivalent to {xn}. 

PROOF. Since {x~} is symmetric, we may assume that there exist ~ > 0 and 
*a a 0 < k n < p ~ + l - p ,  such that %~+k.>=e for n = 1 , 2 , " ' .  Suppose ~,=1 ,Y, 

converges in X. Then 

1 <.1_ 

Thus ~g~_ 1 anXp~+k, converges in X, so that ~ ,~  1 anx, converges in X. 

Now, let {x,} be any nonshrinking symmetric basis which is not equivalent to 

the unit vector basis {e,} of l ~ (e.g., the unit vector basis of the space d [12, p. 361]). 

Since {x,} is nonshrinking, there is a bounded block basic sequence z, 
~ p n  + t = ~i=p~+ 1 ~x~ for n = 1,2,., . ,  which is of  type l+ [12, p. 369]. Hence {z~} ~ {e~} 

and is a symmetric basic sequence. Let y~ = Xp~, + z2~ for n = 1, 2,.... Then {y~} 

is a bounded block basic sequence of  {x~} and it is clear that {yn} satisfies the 

hypothesis of Proposition 4. However, {y,} ~ {z2~} ~ {e~}, so {y,} is not equivalent 

to {xn}. Q.E.D 
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2. The Lorentz sequence spaces d(a,p) 

Let  1 < p < + ~ .  For  any sequence a = (ai ,  a 2 , ' " )  e co \ I t, a l  > a2 > "" > 0, 

in the Lorentz  sequence space d(a, p), the unit  vector basis {Xn} is symmetric I-2, 4]. 

Fo r  any x = (~i, ~ 2 , ' " )  e d(a, p), let ~ = (~i, ~ 2 , " ' )  where {~n} is an enumerat ion  

o f  the nonzero  elements of  {c(,) such that  ]~i I > I ~2 [ > """ Then  it can be proved 

that  llxll In the rest o f  the paper, we shall assume that  

a = ( a l ,  a 2 , . . . ) ~ c o \ l  l, l > a l > a 2 > . . . > 0 a n d  l < p < + o D .  It is clear that  

the norm in d(a, p) is a symmetric norm. 

PROPOSmON 5. I f  {xn} is the unit vector basis of d(a,p) then all bounded 

block basic sequences of {x,} are p-Hilbertian. In particular, all symmetric 

basic sequences in d(a,p) are p-Hilbertian. 

~ p n + t  PROOF. Let  y , =  ,~=p.+l~x~, n = l , 2 , . . . ,  be a block basic sequence o f  

{xn} such that  II II-- l, n-- 1,2, . . .  For any nonnegative scalars bi,  b 2 , ' " ,  b ,  

n n PI+I 

where {at.j}j =p,+l... p,+ ~,i = 1.2 .... , is an enumerat ion of  {a l, a2,-- ' ,  ak} for  some k. 

For  each i =  1,2,...,n, ~,P' § j=p,,+l ]~j I pa,,j < [I Y, lip = 1. Hence II x,=l  biy, II 
< (X~'=l b[) lip and {y,} is p-Hilbert ian.  Q.E.D. 

LEMMA 1. Let {xn} be the unit vector basis of d(a,p), l f  y n Vp.+, --~ ~ i = p n + l  O(iXi, 

n = 1,2,-- . ,  is a bounded block basic sequence of {x~} such that limn_,~ ~ = 0, 

then there exists a subsequence of {y,} which is equivalent to the unit vector 

basis of I p. 

PROOF. Since {x~} is a symmetric basis, and limn-.~o=, = 0, by switching to a 

subsequence if necessary, we may assume that  ~p, + 1 > =p, + 2 > "'" > =, > "'" > 0, 

P,+2 - -  P,+I > P~+I- P, and II I1 -- 1 for  n = 1 ,2 , . . . .  We shall construct  a 
~-~qu + 1 o block basic sequence z~ = z,i=q.+ 1 pixi for  n = 1,2, ... o f  {x~} with the following 

two propert ies:  

(1) II z ll-- 1 and ~i=q.+lt.,iVq"+t RP ai = > �89 for  n = 1 ,2 , . . . ;  

(2) {z,} is equivalent  to a subsequence of  {y,}. 

We may assume that  p~ = 1 and let zl  = Yl. Then  z 1 satisfies (1). Assume now 
qn we have constructed z,_ ~ = E~ =q._, + ~/~x~ with the required properties.  Since 

a = {an}6Co, there exists a positive integer k such that  Z.~=~'k+qnat < 1/22. 

Since {~,} is decreasing to zero, choose h such that  Ph+l--Ph > k + q ,  a n d  
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od[ < 1[22k for all i such that Ph q- 1 <- i _<_ Ph+l. Define q.+t = P n + t -  Ph + q., 

5"q.+, n ~  Notice that the fl~.+i = %h+i, i = 1~2,..., q . + x -  q.; and z.  = .-i=q.+lei~.i. 

coefficients of  z. are the same as the coefficients of  Yh; hence, 11 z. II = 1. N o w  

q"§ Ph+l--Ph+q 
E ~fa~ Z 1" a O~ph--q.+i i 

i =qn-I- 1 i=q . + l  

Ph + l--Ph Ph+ l ~Ph'l'q. 
E ~ - Z P ,(a~_q - at) t~ph'+ t ai  ~ § 

i = 1  i = q . + l  

= 1 -  
qn+k 

~.d ~Ph--qn+t(ai--q.-- at) 
t=q.+ l 

But 

Ph+l --oh+q" 

x a ~ h - q . + , ( a t - , . - o 0 .  
t=qn+k+l 

q.+k q.+k 
P Z a p h - q . + i ( a [ - q . - -  at)  = < Z %.-q.+iP 

t = q n + l  [=qn+l  

< _ + . . .  + = �9 
22 ' 

k t~mes 

and 

ph+I--ph+q. 
Z 

i=qn+k+l 

P a .= %,-q.+t( i -q . -  a3 < 

5- 

pa+ 1 --ph+qn 

Z (ai -q . -  a~) 
i~-qn+k+l 

q. qn 

]~ a k + ~ -  '~ aph+l_p~,+ i 
i=l i = l  

q" 1 

]~ ak+t < 2-- Y . 
i=1 

Hence vq.+, /3pai>_ �89 By induction, we construct {z.} satisfying (1). Since {z.} /-di = q . +  1 

is merely a translation o fa  subsequence of  the block basic sequence {y.}, it follows 

that {z.} is equivalent to a subsequence of  {y.}. 

Finally, we claim that {z.} is equivalent to the unit vector basis of  ft. By Proposi- 

tion 5, {z.} is a p-Hilbertian basic sequence. For any nonnegative scalars 

bl, b2, "", b., we have 
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Hence {zn} is a p-Besselian basic sequence. It follows that there is a subsequence 

of (Yn} equivalent to the unit vector basis of  the space ft. Q.E.D. 

COROLLARY 2. Let (Xn} be the unit vector basis of the Banach space d(a,p). 

For every bounded block basic sequence (Yn} of (xn}, either there is a sub- 

sequence of  {y~} which is equivalent to the unit vector basis of  l p or {Yn} dominates 

{xn}. In particular, every symmetric basic sequence in d(a,p) dominates {xn}. 

COROLLARY 3. Let {xn} be the unit vector basis of d(a,p). I f  {yn} is a bounded 

block basic sequence of (x~}, then there is a block basic sequence of {y~} which 

is equivalent to the unit vector basis of ft. 

~r "l" l PROOF. Let Yn-- i = q . + 1 0 q X , ,  n = 1,2, . . . .  Notice that inf,[I r, > 0 

implies that Ei~176 does not converge in d(a,p). Since {x.) is a boundedly 

complete basis (see, e.q., [1]), it follows that supk__. ][ ET=kY, [[ = + oo. Therefore 

there exists a sequence pl < P2 < "'" of  integers such that sup~ll E p-+l �9 +oo.  

Let 

Pn+l / [ Pn+l 
z~ = ~ Y i Y-, Y~ �9 

i=pn+l ifp.+ 1 

Considering {z,} as a bounded block basic sequence of {x,}, it is easily seen that 

(zn} satisfies the hypotheses of Lemma 1. Hence, there is a subsequence {Znj} of 

{z~} which is equivalent to the unit vector basis of  ft. Q.E.D. 

REMARK 1. If  {Yn} is a symmetric block basic sequence then it is known 

]-e.g., 8] that there is a projection from ]-{Yn)] onto [-{z~j)]. 

Let {x,} be the unit vector basis of  d(a, p). For any infinite-dimensional subspace 

X of d(a,p), by a result of  B. Bessaga and A. Pelczyfiski (see, e.g., ],12, p. 442]), 

X contains a bounded basic sequence (y,} which is equivalent to a block basic 

sequence {z~} of {x~}. By Corollary 3, the subspace [{z~}] contains a subspace 

which is isomorphic to ft. Thus X contains a subspace Y which is isomorphic to 

P. In view of the previous remark, if X has a symmetric basis, then Y is comple- 

mented in X. Hence we obtain the following result. 

THEOREM 1. Every infinite dimensional subspace X of  d(a,p) contains a 

subspace Y which is isomorphic to F. I f  X has a symmetric basis then Y can be 

chosen to be complemented in X.  

REMARK 2. In [7, Proposition 4], it is proved that d(a, p) has a complemented 

subspace isomorphic to ft. 
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3. Uniqueness of symmetric basis in d(a, p) 
Let {x.} be a symmetric basis of  a Banach space X. If {x.} is not equivalent to 

the unit vector basis of  c o or F, 1 < p < + 0% then we know that there are 

bounded block basic sequences of  {x.} which are not symmetric. On the other 

hand, if {y.} is a symmetric basic sequence in X, then either {y,} is equivalent to 

the unit vector basis of  the space 1 ~ or {y~} is weakly convergent to zero. In the 

latter case, {y.} is equivalent to a bounded block basic sequence of  {x.}. In this 

section, we shall construct some special symmetric basic sequences in X and in 

the d(a,p) spaces we will determine all the bounded block basic sequences of the 

unit vector basis which are symmetric. A new type of  block basic sequence is 

introduced which seems to play an important role in determining symmetric 

basic sequences in Banach spaces with symmetric bases. 

PROI'OSITION 6. Let {xn} be a symmetric basis in a Banach space X.  For any 

{a,} e 11, a 1 # O, and any monotone increasing sequence o f  natural numbers, 
~Pn+l Pl < Pz < "'" < P. < "", let y.  = i=p.+ t a i -px i  for  n = 1,2,. . . .  Then {y.} is a 

basic sequence in X which is equivalent to the basis {x.}. 

PROOF. By Proposition 4, it is clear that the basic sequence {y~} dominates the 

basis {x.}. Conversely, let E.% 1 cqx. e X. Then 

( I'" ,=~ cqy, < ,=1 ~ Jail ,~1 r l' n = l , 2 , . . . .  

Thus ]~'= 1 cqy~ converges in X. Hence {y.} is equivalent to {x.}. Q.E.D. 

THEOREM 2. Let {x.} be a symmetric basis of  a Banach space X.  For any 

element ~.~=~ct.x.eX, ~ # O, and for  any natural numbers Pl < P2 < "", let 

rp.§ l ~ - p  x . f o r  n = 1,2,. . . .  Then there is a subsequence o f  {y.} which y. = L~fp.+ 

is a symmetric basic sequence in X .  

PROOF. If supl=<,<+|  + o0, then {y.} is equivalent to the basis 

{x.} and we are done. Assume that sup1 ._<.< +~ (P~+l - P.) = + ~ .  By switching 

to a subsequence, if necessary, we may assume that p ~ + : - p ~ + ~ >  p . + ~ - p ,  for 

n = 1,2, .... 
Let {N~}~=~,2,... be subsets of  the natural numbers, N, such that N = U ~ a  Ni, 

N, n Nj  = ~ for all i # j and N, = ~r, i = 1,2,.. . .  For  each i, N,. = {i,j}j =z z ..... 

let u~ = Y~=~ ~ix~,i. It is clear that {ut} is a symmetric basic sequence in d(a, p). 

Let {n~} be an increasing sequence such that 1} E%p.,+~_,, +~ajxjll < 1/2~, 

v~"' +'-P", c~jx~ i = 1, 2, Then i =  1,2,.... Let z~ = ,-q=a j, "". 
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oo 

i = 1  i = 1  j = p . t . l . l - p .  +1 i = 1  
I 

By a theorem of B. Bessaga and A. Petczyfiski (e.g. [-12, p. 93]), (u~} ~ (zz}. Now, 

it is clear that {zi} ~ {Y,,}. Hence, {ui} ~ {y.,} and so {y,,} is symmetric. Q.E.D. 

REMARK 3. For 1 < p < + oo, the symmetric basic sequences in the Lorentz 

sequence space d(a,p) constructed in Theorem 2 are not equivalent to the unit 

vector basis of l p. Indeed, if 0 ~ ~, .~l~,x .  ~ d(a,p) where {x,} is the unit vector 

basis of d(a,p), we may assume that 1 > ~1 > ct2 > ... >= ~, >= ... >__ 0. Since 

limi.+o~[I ~ = 1  gi+,x, II = 0, for any e > 0, there exists a positive integer N, such 

that 1] ~=l~N~+.x .  II p< ep/2" Let a =  {a.}. Since limn-.ooa. = 0, we have that 

w.u. a / at/2. Then if ys l im,_,~oE~'~]al/ ,=0. Choose n such that .-,i=1 i / n <  

]~pj+l for j = 1,2, ~-- i=p.i+ l O~i_pjXi ""., 

nN~ 

< Z 
i = 1  

a i + n  ~ < n  ~ + n  =na p . 

Hence [I X" nl/,e. 1/p_ . i=, Y No+ill < But n - [ I  ]~'=1 ei II where {en} is the unit vector 

basis of ft. Thus {y,} is not equivalent to {e.}. Similarly, no subsequence of {y,} is 

equivalent to {e,}. 

DEFINITION. Let (x.} be a symmetric basis of a Banach space X. For any 

~ . = l ~ . x . ~ X ,  ~1 r 0, and any Px < P2 < "'" < Pn < "", let y . =  ~ = p . + t a i - .  x~ 

for n = 1,2, .... Then {y.} is a bounded block basic sequence of {x.} in X. We shall 

call {y.} a block of type I of {x.}. 

THEOREM 3. Let {x.} be the unit vector basis of  the Lorentz sequence space 

d(a,p). For any bounded block basic sequence {y,} of{x.},  (y,} has a subsequence 

equivalent either to the unit vector basis o f l  p or to a block basic sequence o f  type 

I of  (x.) .  

~ P n + l  PROOF. Let y . =  i=p.+io~xi for n =  1,2,.. . .  We may assume that IlY. H = 1 

and 0~p.+l >- e,.+2 >- "'" > ep.+l > 0 for n = 1,2,.. . .  If  supl==.<+oo(p.+l- P.) < 

+ 0% then {y.} is equivalent to {x.} and so is equivalent to a block of type I of 

{x.}. Assume now that sup l~ .  <+ |  P.) = + oo. 
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Let ]7,= supl_<n<+~o]% +i[, i =  1,2, . . . .  We first observe that  in d(a,p), ior 

every e > 0, there exists n(e)such that I[ (e, e, . . ., e, 0, 0, . ..) I[ > 1 where the number 

o fe ' s  is n(e). Thus l imi.~ o fli = 0. 

Case 1. Assume that  for every e > 0, there exists an integer N(e) such that  

II 7 ,~  II-- = ,-,i=p.+N~iXi < e for all n with Pn+l - Pn > N. Since supl__<,<+~o(pn+t-- p~) 

= + O% by switching to a subsequence of  {y,} if necessary, we may assume that 

Pn+2-- Pn+t>= Pn+l-- Pn, n = 1,2, .... For  each n = 1,2, ..., define 

P - + I  - P  

Z n ~ ~.~ O~i+pX i. 
i = l  

Then ilz~ll = II y~ll = 1 for n = 1 ,2 , . . . .  By hypothesis and by using a standard 

argument of  compactness, it can be shown that  there is a Cauchy subsequence of  

{zn}. Thus we may assume that  limn_.o~z~ = x =  ~,~~ Since [[z~I[ 

= I[ Y, [1 = 1, it is clear that  x # 0. 

Let {f~} be a sequence of  biorthogonal functionals of  {y~}. Then supl<n<+| 

II~ I[ = M <  + oo Since lim,.~oo z n = x, there is a subsequence {z,,} of  {Zn} such 

that ~=11[ z ~ -  x 1[ < 1/M. Define 

P~# " 

ui = E flk-p. XK, i = 1,2, .... 
k=P ,+1 

Then {u,} is a block of  type I of  {x,} and 

~- IIs., II I1 yo,- u, I1 -~ ~- IIs,, I1 II :,, - x I1 < '. 
i = l  i = 1  

Hence, {ui} "" {Y,,}. 

Case 2. There exists an e > 0 such that  for every N = 1,2, ..., there exists n(N) 

ii ,-~p-,+, ,, such that p,+~-  Pn > N and Z~=p.+N~X~ ]1 > e. Hence there exists n~ < n 2 < " "  

such that  P , , + I - P ,  > i  and II v "",+~ II ,..j=p.,+i~jxj il > e' Since limi_>o~sup, l% +i[ = 0, 

we may assume that ~J is monotone  decreasing to zero. For  each i = 1,2,-. . ,  let 
~--Pnl§ 1 zi = ] . . j = , . , + i e j x j .  Then~ =< II z, II-<-II y:. II : 1 for i =  1 , 2 , . . . .  Hence {zi}  is a 

bounded block basic sequence of  {x~} and the coefficients of  {zi} tend to zero. 

By Lemma 1, there is a subsequence, say {wi}, of {z~} which is equivalent to the 

unit  vector basis {e,} of  l g. Since {y~.} dominates {w,}, {y,,} is a p-Besselian basic 

sequence. By Proposition 5, the basic sequence {y,,} is p-Hilbertian. Therefore, 

{y,,} is equivalent to {e,}. Q.E.D. 

COROLLARY 4. Let {Xn} be the unit vector basis of  the Banach space d(a,p). 
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Then every bounded block basic sequence of {x~} has a subsequence which is 

symmetric. 

COROLLARY 5. Every symmetric basic sequence in the space d(a,p) is equi- 

valent either to the unit vector basis of  l p, or to a block basic sequence of type I 

of the unit vector basis old(a, p). 

THEOREM 4. If Y is a closed linear subspace of d(a,p) with symmetric basis, 

then all symmetric bases in Y are equivalent. 

PROOF. Let {y,} be a symmetric basis of Y. By Corollary 5, {y~} is equivalent 

either to the unit vector basis {e,} of l p or to a block basic sequence of type I in 

d(a,p). In the first case, it is clear that all symmetric bases in Y are equivalent. 
~"P,, + i Otherwise, we may assume that y~=~=p~+l~x~,  n =  1,2,-.., such that 

~ q n + l  mm~o~ n ~ 0 where {x~} is the unit vector basis of  d(a,p). Let z~ i=q~+l 

fliYi, n = 1,2, ... be another symmetric basis of  Y. Since {zn} and {e~} are not 

equivalent, lim,_~| ~ 0. By Proposition 4 and the symmetricity of  {z,}, we 

have {z~} > {y,}. By the same argument, {y,} > {zn}. Q.E.D. 

4. d(a, p) with exactly two nonequivalent symmetric basic sequences 

In this section, we give a necessary and sufficient condition that d(a,p) has 
exactly two nonequivalent symmetric basic sequences. 

DEFINITIOn. Let {sn} and {tn} be two sequences of nonnegative numbers. We 

say that {tn} dominates {sn}, denoted by t, > s,. if there exists a positive number 

A such that s, < Ate, n = 1,2, .... We say that {sn} is equivalent to {tn}, and write 

sn ,-~ t~, if s~ > t~ and t~ > s~. 

PROPOSITION 7. Let {vi} and {w~} be sequences of nonnegative numbers and let 

= ~ w = Thentn>s~i fandonly i f there  ex i s t sA>O Sn= Ei=lvi, tn ~=1 i,n 1,2,.... 
oo oo 

such that ~,i:lflivi < A Ei=l fliwi for all nonincreasing sequences {fit} of non- 

negative numbers. 

The proof is obvious. 

LEMMA 2. Let d(a,p) and d(b,p) be Lorentz sequence spaces. For each 

n = 1,2,.. . ,  let sn -- IF,'~= 1 ai, tn = ~,~= 1 bi where a = (a l, a2, '")  and b = (b I, b2,...). 

Then d(a,p) is isomorphic to d(b,p) i f  and only i f  s~ ,,~ t~. 

PROOF. Let {x,} and {y,} be the unit vector basis of  d(a,p) and d(b,p), re- 
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spectively. By Proposition 7. s .~ t .  if and only if there exist A > 0, B > 0 such that 

AE~=1o~b. < X.%i c(.Pa. =< BE.%1 p = ~.b. for every nonincreasing sequence {0t.}. 

Since (x~} and {y.} are symmetric, this means that s. ~ t. if and only if {Xn} ~ {y.}. 

Finally, notice that {x.} and (y~} are unique, up to equivalence, symmetric bases 

in d(a,p) and d(b,p) respectively. Then d(a,p) is isomorphic to d(b,p) if and 

only if {x.} ~ {y.}, i.e., if and only if s, ~ t.. Q.E.D. 

PROPOSmON 8. Let d(a,p) be a Lorentz sequence space. For oc = ~=~oc, x, 
oo p e d(a,p), let vl = 2j=lejai4  where {a~,y}j=l,2 ... (respectively, {a,j}i=l 2 ...) is a 

subsequence o f  {a,} for  i =  1,2,--- (respectively, j = 1,2, ...). Then {v~} is 

decreasing to zero. 

PROOF. Notice that from the hypothesis, ai4 < a~,h ay,i <= ah,i for h <__j, and 

ai.y < ai, i , j  = 1,2,.... Therefore, (v~} is decreasing. For any e > 0, choose N and 

M such that ~y=N+~~ 1 oCjayP < e / 2  and aM<e/2Ef=loc~. Then for every i>M,= 

v ,=  ~jY=, etya,,y + ~,~~ Z~.=N+i~yaj<e. Q.E.D. 

D~FINmON. Let 0 ~ = Y... = ~ o~.x. ~ d(a, p) with 0q > 0~ 2 > ... _> 0. For each 

n =  1,2,. . . ,  let s . =  ~ = l a i ,  s(~ ~)= ~=le~ ' (s . i  - s.o-1)) where S o = 0 ,  w(~ " )=  

s(~> o(~/ and sotS>= 0. 
r l  ~ ~  

co ,,, (~) _ PROPOSITION 9. For every o~d(a ,p ) ,  st.~)N nl]ctl] P, .-..=l ... -- + oo and 

{w(~ *)} is a sequence decreasing to zero. 

PROOF. Clearly s~(~'< nile llp and Z.~176 1 w(~)= + oo. For a fixed n, we have 

S(.+~)k ~_ S.k and 2S.k >= S(.+l>k + S(n-1)k for k = 1,2,.. . .  Thus ~ = l  (s(.+i)~ 

- -  s{.+~)(~-l)) = S(~+l>k >--- S~k = E~=I(S.~-- Sn(i-l~) and by Proposition 7 with 

o(~> o~> Hence {w~ ~)} is a decreasing fl~ = 0h, we get o,+1 ~ = > s~ (~> a n d  2 s .  (~) => o . + l  + ~-~.  

sequence of  nonnegative numbers. Now, 

w.(~>= c( an(~- l )+y-  Y~ a(.-1)(~-l>+y < c(~a~. 
1=1 1= j=~ i=i 

Thus lim~_.oo w~ "~ = 0 follows from Proposition 8. Q.E.D. 

LEMUA. 3. If for every o~sd(a,p) with oq > ez > ... > 0  and II {i = i ,  ~here 

exists B. > 0 such that s(~ ~) < B.sn, n = 1, 2,. . . ,  then there exists 

B > 0 such that for  all ~, II [I = ,. d ( a , p ) ,  s~ ")< ns.,  n = 1,2,....  

PROOF. For every fixed n, let atk")=(S.k--S.(~_l))/S., k =  1,2,3,-.-. Then 

a(") = t-ir"("),,.z"("),'",a(~"),'")eCo\ lk  Let d = (Eff=l ~d(a(n),P)). o and let 
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{x ~ and {x,} be the uni t  vector basis of  d(a ~), p) and d(a, p), respectively. i Si = 1-2,... 

Define 7",: d(a, p) ~ d by 

THEOREM 5. 

s.~ /s,s k < + oo 

S(aO n ~ ~ n  �9 

n ' thp lace  

oO 
for  all a = ~i  = 1 aixi ~ d(a, p). Then if at => a2 >= ... >= ... => 0, we have 

II ro(~)ii~ = ~ ~r~s.,- s~ = __s':' < __n II ~11 ~ 
i = 1 Sn 8n "~ Sn 

and so II T~ll-< (n/s.;'~. Now for each a~d(a,p), by the h y p o t h e s i s ,  H T.(~) [[ 
< B, for all n = 1,2, .... By the uni form boundedness principle, there exists B > 0 

such that sup,II 7",t I < B ~/~. Thus  for  every a~d(a ,p) ,  flail = 1, we get s~ ~)< Bs,, 

n = 1,2,. . . .  Q.E.D. 

Let d(a,p) be a Lorentz sequence space. Then sup~_~,.~<+~ 

i f  and only i f  for  every a e d(a, p), at > az > "'" > O, 1[ a [[ = 1, 

PROOF. Let a = ~ = 1  ~.x .e  d(a, p)such  that  [I a I] = 1. Clearly we always have 

s~')>a~s.. Suppose sup l=<n ,k<+o  o Snk/SnSk = B <  + 00. Then S.k= Z,i=t(S.~ 

-- S. , -1))  < Bs.(Y~=tai) = Bs.s k for all n,k  -- 1,2, .... Fix n. By Proposi t ion 7, we 

--  ~ ~ -(~) Hence ~ s,. get Bs. - -  B s . ( ~ ,  i = 1 o :~a i )  > -  • i  = 1 ~ ( s . i  - s . o -  l ) )  = ~ .  �9 ~. "~ 

Conversely, suppose _..~ (=)~ s. fo r  al l  o~ed(a,p), [lal] = 1 and cq => ~2 = > "'" = > O. 

By Lemma 3, there exists B > 0 such that  for  all [[ a [[ = 1, s2 "1<< - Bs,, n = 1,2,- . . .  

F o r  each k, let y~ = (1/sk) ~/p if  i < k and y~ = 0 if i > k. Let  7 = ~,i%lY~x~ �9 Then  

II~II = 1 and S t"n = Snk/Sk." Hence S,k =< BSnSk, n , k =  1,2, . . . .  This  completes the 

p roo f  of  the theorem. Q.E.D. 

il II LEMMA 4. Let a = ~ ,=l  a, x,  E d(a,p) such that a = 1 and a 1 > a2 >-_'", 

= = x~P"+' ~ x. n = 1,2,- . .  is symmetric > O. I f  the block basic sequence y, ~=p,+, ~-v. ,, 

then [{y,}]  is isomorphic to d(a,p) i f  and only i f  st, ~)~ s,. 

PROOF. Let {Ni} ~ = 1 2 ... be subsets o f  the natural  numbers,  N, such that  

N = U , ~ N ~ ,  Ni n Nj = Z for  all i #  j ,  and b~ = ~7, i =  1 ,2 , . . . .  Fo r  each i, 

N~ = {i,j}] = 1,2..... Let u~ ") = Yv~ 1 ajxl.j where a = ~ =  1 ajxi ~ d(a, p). As we have 

seen in the proof of  Theorem 2, {y,} is equivalent to {u~ "' } and II zT=, u$ ~' II ~ = sX ='. 

Suppose that  [{y,}] is i somorphic  to d(a,p). Then  [{u~')}] is isomorphic to 
d(a, p), and since all symmetric bases in d(a, p) are equivalent,  {u~ ")} is equivalent 

to {x . } .  Thus II '~" " " ' "  " ' " ' ~  "-,=,-,  ~, ~ II z ,= ,  =, II which m e a n s  , .  s.. 
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Conversely, suppose s~ ~) ,-~ s,. Let,,vl (~) -- ol ~ w~ ~) = on+l ~ - s~ ~), n = 2, 3,... and 

w(~)= (Wtl"),w(2"),...). By Lemma 2, d(w(~), p) is isomorphic to d(a,p). Let {#n} 

be any decreasing sequence of nonnegative numbers. Then 

i=  i = l  j 

where for every i = 1,2, ..., N (respectively, for every j), (a~,j}j_- 1,2,... is a decreasing 

subsequence of (an}. Now, for every 1 and k, 

ai, j  "( Ski = 2 (Skj -- Sk(j-1)) .  
i=1  j = l  j = l  

For each fixed k = 1,2, ..., N, by Proposition 7 

l~, P < Sk(j- ~ )) =  ja,,j = - 

i=1  j = l  j = l  

Since {fin} is decreasing, by Proposition 7 again, I[ II "z  , larw  
Hence {v~, ~)} > (u~ ~)} where {v(~ ~)} is the unit vector basis of d(w (~), p). Since 

{x,} ,-, (v~ ~)) and (ut, ~)} ~ {y~) we get (x~) > (y~}. On the other hand, by Pro- 

position 4, (Yn} > (Xn). Thus [(y,}] is isomorphic to d(a,p). Q.E.D. 

THEOREM 6. In d(a,p) there are exactly two nonequivalent symmetric basic 

sequences i f  and only/fsupl=<, k<+~o Snk/Sjk < + 00. 

PROOf. Let (y~} be a symmetric basic sequence in d(a, p). By proposition 1 and 

Theorem 3, (Yn} is equivalent either to the unit vector basis of  I p or to a block 

basic sequence of type I. If  sup~<,,k<+~S,k/SJ, < + O0, by Theorem 5 and 

Lemma 4, (Yn} is equivalent to the unit vector basis (x~} of d(a, p). Conversely, if 

sup 1~, k<+~o S,~/SnSk = + 0% by Theorem 5 and Lemma 4, there exists a block 

basic sequence (Yn} of Type I which is not equivalent to (xn}. By Remark 3, (Yn} 

is not equivalent to unit vector basis of l p. Thus, in d(a, p) there are more than two 

nonequivalent symmetric basic sequences. Q.E.D. 

Let us remark that there exists a Lorentz sequence space with infinitely many 

nonequivalent symmetric basic sequences. Indeed, it has been mentioned in 

[7, p. 378] that the Lorentz sequence space d((1/log n}, p) is isomorphic to the 

Orlicz sequence space l M where M(x) = xP/1 + I logx[;  furthermore, in the same 

paper [7, p. 363] it has been proved that IM has infinitely many nonequivalent 

symmetric (Orlicz) basic sequences. 

THEO~M 7. There exists a Lorentz sequence space d(a,p) having a subspace 
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with symmetric basis which is isomorphic neither to l p nor to any Lorentz 
sequence space. 

PROOF. Let p > 1 and consider the Lorentz sequence space d(a,p) for which 

al  = a2 = 1, a/1 = 1/x/n(logn) 2, n = 3,4,. . . .  Let ~/1 = n -~w, n = 1,2,. . . .  Then 

= {~,} ~ d(a, p). Define the vectors {ul (~} as in the proof of Lemma 4. One can 

easily see that if I{ul~)}] is isomorphic to a Lorentz sequence space, then 

{u~ ~} is equivalent to the unit vector basis of d(w (~), p). But by definition, 

s(. ") = ~ ~r(s.,-- s.o-~ )) >= n ~ ~ra.,, n = 1,2, . . . ,  
i=1 l=1 

and 

Consequently, 

Z w _>_ 

j= l  x/J- j=:  

On the other hand 

f f dx ~/ n r ~ n - . 
= x x x/h--(log nx) 2 log n 

( / n(? 
1 I . s(.,)> ~ I 1 j ~ ~t~a,j 

4 ;  4J--4:" ,.1 

~ ~  .I 1 ~ f f ~ :  : 

j=l (N~; 4 j ~ - ~ l  ) logj j=l (J "q-1) log o "JI- 1)" 

i-'l(2p)u~') P <= I + ~ d(n)a. -, 
~: tat)  =I /I=2 ~ t=1 

where d(n) is the number of divisors of n. Since ]~'=1 d(i)~ nlogn [5, p. 262] 

there exists a constant A > 0 such that 

oo 
d(n) a,,_t < A ~, d(n) 

,=t /1=2 n(logn)S/2~ 

/1=2 n(logn) s/2 

(l~ 5/2 

/1=2 n2 (log n) s 

: ] d(i) 
(n + 1)(log(n + 1)) 5/2 i=2 

n log n = 
oo 1 

]~ n (log n) 3/2 rim2 

< q- o0. 

Hence '~i~i-1/2pu~ ~) converges while the sequence {i-al(2P)}q~d(w(~~ This 

means that [(u~')}] is isomorphic to no Lorentz sequence space. To conclude the 

proof, notice that [{u}')}] is not isomorphic to I p (cf. Remark 3). Q.E.D. 
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