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ABSTRACT

We examine the symmetric basic sequences in some classes of Banach spaces
with symmetric bases. We show that the Lorentz sequence space d(a,p) has a
unique symmetric basis and every infinite dimensional subspace of d(a,p) con-
tains a subspace isomorphic to /. The symmetric basic sequences in d(a,p) are
identified and a necessary and sufficient condition for a Lorents sequence space
with exactly two nonequivalent symmetric basic sequences in given. We con-
clude by exhibiting an example of a Lorentz sequence space having a subspace
with symmetric basis which is not isomorphic either to a Lorentz sequence
space or to an /P-space.

Introduction

A basis {x,} of a Banach space X is called symmetric if every permutation
{X,m} of {x,} is a basis of X, equivalent to the basis {x,}. In this paper we consider
the problem of constructing symmetric basic sequences in some Banach spaces
with symmetric bases.

Much of our work is done with the Lorentz sequence spaces d(a,p). Let
1Sp<+ . For any a=(a,,a,,)ece\lt, a,Za, =20, let d(a,p)
={x = (1,03, ") €Co: SUP, ¢ Ti%y| %qiy|Pan < + 0} Where m is the set of all
permutations of the natural numbers. Then d(a,p) with the norm " X "
= (SUP,es X2 1|t |%a,)!"? for xed(a,p) is a Banach space and the sequence
of unit vectors {x,} is a symmetric basis of d(a, p) [2,4]. For p =1, these
spaces have been studied by W. L. C. Sargent [10], D. J. H. Garling [2], W.
Ruckle [9], and J. R. Calder and J. B. Hill [1]. For 1 < p < + o0, Garling [4]
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showed that d(a, p) is a reflexive Banach space which, in general, is distinct from
the IP-spaces. See [1] for further references on other work on d(a, p).

Another class of Banach spaces with symmetric basis is that of the Orlicz
sequence spaces. J. Lindenstrauss and L. Tzafriri [6, 7] have shown that every
Orlicz seqﬁence space has a subspace isomorphic to some 7. They have also shown
that there are Orlicz sequence spaces which have at least two nonequivalent
symmetric bases. We show that d(a, p) has a unique symmetric basis for all a and p
and that every infinite dimensional subspace X of d(a, p) has a subspace isomorphic
to I which can be chosen to be complemented in X if X has a symmetric basis.
The Lorentz sequence spaces which have exactly two nonequivalent symmetric
basic sequences are characterized. Finally, an example of a Lorentz sequence
space having a subspace with symmetric basis which is isomorphic neither to I,
nor to any Lorentz sequence space is given.

We introduce a new type of block basic sequence of a symmetric basis which
has the property that it always has a symmetric subsequence. In the spaces d(a, p),
these are the only symmetric block basic sequences of the unit vector basis {x,}
of d(a, p) which are not equivalent to the unit vector basis of I”.

The notations and terminology in this paper are essentially those of I. Singer
[12]. A sequence {x,} of a Banach space X is called a basis of X if every xe X
has a unique expansion of the form x = X% a,x,. Let 1 £ p < + c0; a basis
{x,} of X is called p-Hilbertian if X*_, a,x, converges in X for every {a,}e”.
A basis {x,} is g-Besselian, 1 < g < + oo, if X%, «,x, converges ir X implies
that {a,} el

If {x,} is a basis of a Banach space X, a sequence {y,} in X is said to be a block
basic sequence of {x,} if there is an increasing sequence of natural numbers {p,}
such that y, = ¥23!.  a.x; for n=1,2,---. A block basic sequence {y,} is said
to be bounded if 0 < inf, <,c o ¥o | < SUPy cnc s ool Y] < + 0. We will denote
by [{y.}] the closed linear span of the sequence {y,}. If {x,} and {y,} are bases
of X and Y, respectively, we say that {x,} dominates {y,}, and write {x,} > {y,}, if
Tr. a,x, converges in X implies that X2, «,y, converges in Y. The basis {x,}
is equivalent to the basis {y,}, and we write {x,} ~ {y,}, if {x,} > {y.} and {y.}
> {x,}. It is clear that a basis {x,} is equivalent to the unit vector basis of I? if
and only if {x,} is p-Hilbertian and p-Besselian.

If {x,} and {y,} are symmetric bases, it is easy to show that {x,} ~ {y,} if and
only if for any sequence of scalars o; = a, = - 2 0, X, a,x, converges in X if

and only if X2, a,y, converges in Y. We also note that if
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P+t
Yn = Z ;X

i=p,+1
for n =1,2,---, is a block basic sequence of a symmetric basis {x,}, and for each
n, o, is a permutation of {p, + 1,p, +2,-*,Ps+1}, then {y,) ~ {z,} where
Z, = E,?;;:Hloz,(,-) [xi, n=1,2,.--. Therefore, when working with block basic
sequences {y,} of a symmetric basis {x,} we will always assume that a, ,,
Za 2-2a, , 20forn=1,2,.

=%, t2="
Let {x,} be a symmetric basis in a Banach space X. Define

lixil = sup sup '

gen |Bij=1
1Sn<+w

2 Bfi(X) X ”’ xeX,
=1

where {f,} is the sequence of biorthogonal functionals of {x,} in X*. Then the
symmetric norm || x|, x € X, is an equivalent norm on X. Throughout this paper,

we shall assume that every Banach space with symmetric basis is equipped with
the symmetric norm.

1. Preliminaries

In this section we state some simple and well-known facts on symmetric basic
sequences in Banach spaces.

PROPOSITION 1. Every symmetric basic sequence in a Banach space is either
weakly convergent to zero or is equivalent to the unit vector basis of I*.

It is known that in the I? spaces, 1 £ p < o0, all symmetric bases are equivalent
[12, p. 573]. As a consequence of Proposition 1, we have

COROLLARY 1. In the spaces X=c, or I°,1 £ p <+ 0, all symmetric basic
sequences are equivalent,

PROPOSITION 2. Let X be a Banach space with a symmetric basis {x,}. If
every bounded block basic sequence of {x,} is symmetric, then {x,} is equivalent
to the natural basis of ¢ or I? for some p, 1 £ p < + 0.

Proor. Let {y,} be a bounded block basic sequence of {x,}. Since {y,} is
symmetric, {y,} ~ {¥,,}. Choose a subsequence {x,} of {x,} such that

Vi if n=2i i=1,2,,
z"={xn‘ if n=2i+1, i=1,2-

is a bounded block basic sequence of {x,}. Then, since {z,} is symmetric,
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{x,} ~ {x,} ~ {2a} ~ {¥2a} ~ {a}. Hence by a result of M. Zippin [13], {x,} is
equivalent to the natural basis of ¢y or I?, 1 < p < + 0. Q.E.D.

PROPOSITION 3. Let {x,} be a symmetric basis of a Banach space X. If
= Xt L youx;, n=12,- is a bounded block basic sequence of {x,} and
SUP; cn<+ e (Pat1— Pu) < + 00, then {y,} is equivalent to {x,}.

Yauil =1 for n=1,2,..-. Suppose

7.1 a,x, converges in X. Since {x,} is symmetric and |a, ;| < |y, ] <1,

ProoF. We may assume that “ X, ” =

h Rl ia,,ozpn+i|xp"+iconverges in X foreachi=1,2,---,M where M = sup; <p< 1

(pn+1 - pn) Since

s

© M
X
n=1 i=1

©
Z a,y, an“p,,+i ‘xp_,+£

n=1

the series X, a,y, converges in X.

Conversely, if 2, a,y, converges in X, note that for each n = 1,2, -+, there
exists k, such that p, + 1 £k, < p,+, and l“knl = 1/M > 0. Hence, X7, a,0 X,
converges in X and so X, a,X, converges in X. Q.E.D.

PROPOSITION 4. Let {x,} be a symmetric basis in a Banach space X. If
y, = 2Pt o, n=1,2,-, is a bounded block basic sequence of {x,} such
that inf <<t SUPp +15i<pnss I“il > 0, then {y,} dominates {x,}. However, in
general, {y,} is not equivalent to {x,}.

PROOF. Since {x,} is symmetric, we may assume that there exist & >0 and
0Lk, € ppr1— Dy such that o, ., =& for n=1,2,---. Suppose X,-4,y,

converges in X. Then

I
Thus X%, a,X,, +x, converges in X, so that X7 ; a,x, converges in X.

Now, let {x,} be any nonshrinking symmetric basis which is not equivalent to
the unit vector basis {e,} of I* (e.g., the unit vector basis of the space d [ 12, p. 361]).
Since {x,} is nonshrinking, there is a bounded block basic sequence z,
= Xt agx; for n=1,2,-+, which is of type I, [12, p. 369]. Hence {z,} ~ {e,}
and is a symmetric basic sequence. Let y, = x,, + z,, for n=1,2,-.-. Then {y,}
is a bounded block basic sequence of {x,} and it is clear that {y,} satisfies the
hypothesis of Proposition 4. However, {y,} ~ {z,,} ~ {e,}, so {y,} is not equivalent
to {x,}. QE.D

M=

1
AiX py+ iy ’ ée l Z A0p;+1,X Pi+kiﬂ —‘ ) 2 alYl\I

i=1

1
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2. The Lorentz sequence spaces d(a, p)

Let 1 £ p < + o0. For any sequence a = (a,,a,,-*)eco\l, a, 2a, 220,
in the Lorentz sequence space d(a, p), the unit vector basis {x,} is symmetric [2,4],
For any x = («,,%,,---)ed(a, p), let £ =(4,,8,,--) where {&,,} is an enumeration
of the nonzero elements of {«,} such that |&, | 2 |&;| Z -+-. Then it can be proved
that | x| =(Z:%,|4,|7a,)"/?. In the rest of the paper, we shall assume that
a=(a,,a,,)eco\I*, 12a,=a,=2--20and 1 £ p< + 0. It is clear that
the norm in d(a, p) is a symmetric norm.

PROPOSITION 5. If {x,} is the unit vector basis of d(a,p) then all bounded
block basic sequences of {x,} are p-Hilbertian. In particular, all symmetric
basic sequences in d(a,p) are p-Hilbertian.

Proof. Let y, = XF2t!,  ax;, n=1,2,--, be a block basic sequence of
{x,} such that “ Va ” =1, n=1,2,-.-. For any nonnegative scalars b, b,,--, b,

1/p

I E b;y;

LHEAC

’ ||l 1 j= p¢+1

where {a;,;};=p.+1 - piepi=1,2 «.n i a0 enumeration of {a,,a,,--+,a,} for some k.
For each i=1,2,-,n, Zf”,,‘,,ﬂ |a;|Pa; ;< || yi|?=1. Hence | == buyi|
< (2P, bN"7 and {y,} is p-Hilbertian. Q.E.D.

Lemma 1. Let {x,} be the unit vector basis of d(a,p). If y, = XP2%!, «x;,
n=1,2,-, is a bounded block basic sequence of {x,} such that lim,_, a, =0,
then there exists a subsequence of {y,} which is equivalent to the unit vector
basis of I°.

ProoF. Since {x,} is a symmetric basis, and lim,_, ., = 0, by switching to a

subsequence if necessary, we may assume that a, ,; = 0!,, 2z, 20,

Pn+2 — Pnt1 = Pu+1— Pn and “ Vn “ =1 for n=1,2,---., We shall construct a
block basic sequence z, = X%, fix; for n =1,2, of {x,} with the following
two properties:

(1) || za] =1 and TP, a2} for n=1,2,-

(2) {z,} is equivalent to a subsequence of {y,}.

We may assume that p; = 1 and let z; = y;. Then z, satisfies (1). Assume now
we have constructed z,_, = X2 _ ., Bx; with the required properties. Since

a={a,}eco, there exists a positive integer k such that Xf¥f%a, < 1/22,
Since {a,} is decreasing to zero, choose h such that p,,, — p, >k + g, and
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af < 1/2%k for all i such that p,+ 1 £ i< p,,q. Define g,4y = pys1— Pu + 4o,
Bpati = sty i=1,2,0, Gui1—qy; and z,= 2501 Bix;. Notice that the

i=q::

coefficients of z, are the same as the coefficients of y,; hence, | z, | = 1. Now

gn+y Pr+1—Prtq
P, = 7
X fla = % Upn—gn+iPi
i=gn+1 i=gn+1
Ph+1~Pn Ph+1~Prtan
— 4 . » o
= pX Xy, +id; z apn-qnﬂ'(ai-q al)
i=1 i=gn+1
gn+k
= p
=1- X o sitiog— @)
i=gn+1l
Pr+i1—prtgn
p
- al’h"q""'i(ai"‘Qn"ai)'
i=gntk+1
But
q"+k qn+k
P r
2 a?h—qn+i(ai-qn_ ai) § Z Oy —gnti
i=gnt1 i=qnt+1
1 (1 1y 1
<@\ttt T
<
k times
and
putl-pntgn Pt l=pntan
p - I — *
aph—lhd’i(ai"’q" ai) é (a;_q” a;)
i=gntk+1 i=gntk+1
gn qan
= E Qs — Z aPh+1"p;,+i
i=1 i=1

qn

1
_—<—__ Z QG < ——2-2—.
i=1 ,

Hence X!, BPa,2%. By induction, we construct {z,} satisfying (1). Since {z,}
is merely a translation of a subsequence of the block basic sequence {y,}, it follows
that {z,} is equivalent to a subsequence of {y,}.

Finally, we claim that {z,} is equivalent to the unit vector basis of /7. By Proposi-
tion 5, {z,} is a p-Hilbertian basic sequence. For any nonnegative scalars

bl’ b2, tety bn, we haVC

AL 1/p n di+t i/p . =n
B (Z2) <[22 E ma)] s|E be)
i=1 i=1 j=q+1 i=1
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Hence {z,} is a p-Besselian basic sequence. It follows that there is a subsequence
of {y,} equivalent to the unit vector basis of the space I?, Q.E.D.

CoROLLARY 2. Let {x,} be the unit vector basis of the Banach space d(a,p).
For every bounded block basic sequence {y,} of {x,}, either there is a sub-
sequence of {y,} which is equivalent to the unit vector basis of I or {y,} dominates
{x,}. In particular, every symmetric basic sequence in d(a,p) dominates {x,}.

COROLLARY 3. Let {x,} be the unit vector basis of d(a,p). If {y,} is a bounded
block basic sequence of {x,}, then there is a block basic sequence of {y,} which
is equivalent to the unit vector basis of I.

PrOOF. Let y, = Zfzi! . 0%, n=1,2,-. Notice that inf, | Zfz3t,; ax; | > 0
implies that X%, a;x; does not converge in d(a,p). Since {x,} is a boundedly
complete basis (see, e.q., [1]), it follows that sup, <, | £F_, ;|| = + co. Therefore
there exists a sequence p; < p, < --- of integers such that sup,," X 1 Vi H + o0.
Let

pn+1 Pn+1
Zy = Yi|-
i= p,.+1 i= p,,+1

Considering {z,} as a bounded block basic sequence of {x,}, it is easily seen that

{2} satisfies the hypotheses of Lemma 1. Hence, there is a subsequence {z, } of
{z,} which is equivalent to the unit vector basis of /7. Q.E.D.

Remark 1. If {y,} is a symmetric block basic sequence then it is known
[e.g., 8] that there is a projection from [{y,}] onto [{z, }].

Let {x,} be the unit vector basis of d(a, p). For any infinite-dimensional subspace
X of d(a, p), by a result of B. Bessaga and A. Pelczynski (see, e.g., [12, p. 442]).
X contains a bounded basic sequence {y,} which is equivalent to a block basic
sequence {z,} of {x,}. By Corollary 3, the subspace [{z,}] contains a subspace
which is isomorphic to I?. Thus X contains a subspace Y which is isomorphic to
I?. In view of the previous remark, if X has a symmetric basis, then Y is comple-
mented in X. Hence we obtain the following result.

THEOREM 1. Every infinite dimensional subspace X of d(a,p) contains a
subspace Y which is isomorphic to I?. If X has a symmetric basis then Y can be
chosen to be complemented in X.

REMARK 2. In [7, Proposition 4], it is proved that d(a, p) has a complemented
subspace isomorphic to /7.
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3. Uniquepess of symmetric basis in d(a, p)

Let {x,} be a symmetric basis of a Banach space X. If {x,} is not equivalent to
the unit vector basis of ¢4 or 17, 1 £ p < + oo, then we know that there are
bounded block basic sequences of {x,} which are not symmetric. On the other
hand, if {y,} is 2 symmetric basic sequence in X, then either {y,} is equivalent to
the unit vector basis of the space I* or {y,} is weakly convergent to zero. In the
latter case, {y,} is equivalent to a bounded block basic sequence of {x,}. In this
section, we shall construct some special symmetric basic sequences in X and in
the d(a, p) spaces we will determine all the bounded block basic sequences of the
unit vector basis which are symmetric. A new type of block basic sequence is
introduced which seems to play an important role in determining symmetric
basic sequences in Banach spaces with symmetric bases.

ProrosITION 6. Let {x,} be a symmetric basis in a Banach space X. For an y
{a,}el’, a; #0, and any monotone increasing sequence of natural numbers,
Py <Py < <Py<ce, let o= X3t ai_px forn=1,2,--. Then {y,} is a
basic sequence in X which is equivalent to the basis {x,}.

ProOF. By Proposition 4, it is clear that the basic sequence {y,} dominates the
basis {x,}. Conversely, let £, a,x, € X. Then

!:351 exiyiN = (.?1 la.-l) l‘:g aix,.”, n=1,2,-

Thus ., oy, converges in X. Hence {y,} is equivalent to {x,}. Q.E.D.

THEOREM 2. Let {x,} be a symmetric basis of a Banach space X. For any
element X7 o, x,€X, a, #0, and for any natural numbers p; < p, < -+, let
Vo=t 10y X, for n=1,2,---. Then there is a subsequence of {y,} which
is a symmetric basic sequence in X.

PROOF. If SUP; <p< 4o (Pat1— Pa) < + 0, then {y,} is equivalent to the basis
{x,} and we are done. Assume that SUp; <, <4 (Ps+1— P.) = + 0. By switching
to a subsequence, if necessary, we may assume that p,,,— p,;,> p,4;~ p, for
n=12,--

Let {N;}i=y,5,... be subsets of the natural numbers, N, such that N = U2, N,
N;AN;=foralli#jand N;=N, i =1,2,- For each i, N;={i,j};_; ...
let u; = X2, a;x; ;. It is clear that {u,} is a symmetric basic sequence in d(a, p).

Let {n;} be an ingreasing sequence such that | £ ooy srmpn +1 %5 || < 1724
=12, Let z;= £, %' P1qx, ;, i = 1,2, Then ‘
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oo o

)>

j=pni+ 1 —p"i+ 1

=1,

|u—z|= 2

i=1

IIMg

i i=1

By a theorem of B. Bessaga and A. Pelczysiski (e.g. [12, p. 93]), {u;} ~ {z;}. Now,
itis clear that {z;} ~ {y,,}. Hence, {u;} ~ {y,,} and so {y, } is symmetric. = Q.E.D.

RemArk 3. For 1 £ p < + o0, the symmetric basic sequences in the Lorentz
sequence space d(a,p) constructed in Theorem 2 are not equivalent to the unit
vector basis of 7. Indeed, if 0 # X2, o,x, €d(a, p) where {x,} is the unit vector
basis of d(a,p), we may assume that 1Za; Za; ==, = -=0. Since
lim i_mﬂ Y e nXn n =0, for any ¢ > 0, there exists a positive integer N, such
that || Z2-; oy, 4% | "< e?2. Let a = {a,}. Since lim,_,a,=0, we have that
lim,., Z{¥a;/,=0. Choose n such that Xi’ia;/n<e?[2. Then if y;

_Zflmﬂzx, p X for j=1,2,.,

=z

™M=

3
1A

YN, +i

- in ©
ap( z ag )+ n, 2 Uy +iX

i
i=1 k=(-1)n+1 i=1

I
- 8? SP EP »
] “f*"(z—)<"(7)+"(7)="8-

Hence || Z0_, yu,+:] < n'/%e. But n'/?= | Zi_, ¢;| where {e,} is the unit vector
basis of I7. Thus {y,} is not equivalent to {e,}. Similarly, no subsequence of {y,} is

1

2

n

A

"

i

equivalent to {e,}.

DEerFINITION. Let {x,} be a symmetric basis of a Banach space X. For any
T 0%, €X, 0y #£0, and any p; < py <+ < py <o, let y,= Pt o, X
forn =1,2,---. Then {y,} is a bounded block basic sequence of {x,} in X. We shall
call {y,} a block of type I of {x,}.

TueoReM 3. Let {x,} be the unit vector basis of the Lorentz sequence space
d(a, p). For any bounded block basic sequence {ya} of {x,}, {y,} has a subsequence
equivalent either to the unit vector basis of I or to a block basic sequence of type
I of {x,).

ProoF. Let y, = Z”""‘+1oc-x for n=1,2,--. We may assume that | y,| =1
and o, 41 2%, 12 2 2o, ,, >0for n=1,2 I sup cncsoPrsi— D) <
+ oo, then {y,} is equlvalent to {x,} and so is equivalent to a block of type I of

{x,}. Assume now that SUp; < » <+ (Pa+1— Pw) = + .
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Let ﬁi=sup1§,,<+w|ocp_+,~|, i=1,2,.--. We first observe that in d(a,p), ior
every ¢ > 0, there exists n(e) such that | (e,¢,++,¢,0,0,---) | > 1 where the number
of ¢’s is n(¢). Thus lim;_, , ;= 0.

Case 1. Assume that for every &> 0, there exists an integer N(g) such that
” ZPm N, ” < ¢ for all n with p,,y — p, 2 N. Since sup; cp< 4o (Put1— P
= + o0, by switching to a subsequence of {y,} if necessary, we may assume that
Pnt2— Pn+1= Ppi1— P8 =1,2,---. Foreach n=1,2,---, define

P-+1"P
Zp = X Oy, X
i=1

Then | z,|| = |
argument of compactness, it can be shown that there is a Cauchy subsequence of
{z,}. Thus we may assume that lim,z, = x = %2, Bix;e d(a, p). Since | z, H
= | yall =1, it is clear that x # 0.

Let {f,} be a sequence of biorthogonal functionals of {y,}. Then sup, <,<+q
”j;, ” =M< + 0. Since lim,.. , z, = x, there is a subsequence {z, } of {z,} such
that {2, | z,,— x| < 1/M. Define

¥a|| =1 for n =1,2,-. By hypothesis and by using a standard

= X By X i=12-

k=p ,+1

Then {u;} is a block of type I of {x,} and

Jui

I

z,,'—xn<1.

© o

z | ya—w| s Z
i=1 i=1
Hence, {u;} ~ {y..}-

Case 2. There exists an ¢ > 0 such that for every N = 1,2, -+, there exists n(N)
such that p,.;— p, = N and | Z2% " yox; | > &. Hence there exists n; < n, < ---
such that p, ., — p, >i and | Z70", jax; || > e. Since lim;, sup,|a, ;| =0,
we may assume that o; is monotone decreasing to zero. For each i = 1,2, -, let
Z;= Z;";‘;:"Hajxj. Then ¢ £ ” zZ; ” < | Vo il =1 for i=1,2,---. Hence {z;} is a
bounded block basic sequence of {x,} and the coefficients of {z;} tend to zero.
By Lemma 1, there is a subsequence, say {w;}, of {z;} which is equivalent to the
unit vector basis {e,} of I?. Since {y, } dominates {w,}, {y, } is a p-Besselian basic
sequence. By Proposition 5, the basic sequence {y, } is p-Hilbertian. Therefore,

{yn,} is equivalent to {e,}. Q.E.D.

COROLLARY 4. Let {x,} be the unit vector basis of the Banach space d(a, p).
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Then every bounded block basic sequence of {x,} has a subsequence which is
symmetric.

COROLLARY 5. Every symmetric basic sequence in the space d(a,p) is equi-
valent either to the unit vector basis of I?, or to a block basic sequence of type I
of the unit vector basis of d(a, p).

THEOREM 4. If'Y is a closed linear subspace of d(a, p) with symmetric basis,
then all symmetric bases in Y are equivalent.

Proor. Let {y,} be a symmetric basis of Y. By Corollary 5, {y,} is equivalent
either to the unit vector basis {e,} of I? or to a block basic sequence of type I in
d(a, p). In the first case, it is clear that all symmetric bases in Y are equivalent.
Otherwise, we may assume that y,= XP=*!'  ox,, n=1,2,---, such that

m,., o, # 0 where {x,} is the unit vector basis of d(a,p). Let z, = L2,
By, n=1,2,-- be another symmetric basis of Y. Since {z,} and {e,} are not
equivalent, lim,, ., §, # 0. By Proposition 4 and the symmetricity of {z,}, we

have {z,} > {y,}. By the same argument, {y,} > {z,}. Q.ED.

4. d(a, p) with exactly two nonequivalent symmetric basic sequences

In this section, we give a necessary and sufficient condition that d(a, p) has
exactly two nonequivalent symmetric basic sequences.

DerINITION. Let {s,} and {t,} be two sequences of nonnegative numbers. We
say that {t,} dominates {s,}, denoted by ¢, > s,. if there exists a positive number
A such that s, £ At,, n =1,2,---. We say that {s,} is equivalent to {t,}, and write
Sg~t,ifs,>t,and t, > s,.

PROPOSITION 7. Let {v;} and {w,} be sequences of nonnegative numbers and let
S, = Xi=qUpty= 2o W,n=1,2,---. Thent, >s, if and only if there exists A>0
such that L2, B, £ A X2, Bw; for all nonincreasing sequences {f;} of non-
negative numbers.

The proof is obvious.
LeMMA 2. Let d(a,p) and d(b,p) be Lorentz sequence spaces. For each

n=12,lets,= 2i_ a;,t,= X, b;wherea = (a,,a,,~-) and b=(by, by, ).
Then d(a, p) is isomorphic to d(b, p) if and only if s, ~ 1,.

Proor. Let {x,} and {y,} be the unit vector basis of d(a,p) and d(b,p), re-
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spectively, By Proposition 7, s,~ 1, if and only if there exist A > 0, B > 0 such that
A2 ofb, £ 3 afa, < BXX_,afb, for every nonincreasing sequence {a,}.
Since {x,} and {y,} are symmetric, this means that s, ~ t,if and only if {x,} ~ {y,}.
Finally, notice that {x,} and {y,} are unique, up to equivalence, symmetric bases
in d(a,p) and d(b, p) respectively. Then d(a, p) is isomorphic to d(b,p) if and
only if {x,} ~ {y,}, i.e., if and only if s, ~ 1,. Q.E.D.

PropPOSITION 8. Let d(a,p) be a Lorentz sequence space. For o= X2 j0,X,
ed(a,p), let v,= %72 0fa; ; where {a; ;};-1,; ... (respectively, {a; ;};-1;..) is a
subsequence of {a,} for i=1,2, - (respectively, j=1,2,..-). Then {v;} is
decreasing to zero,

Proor. Notice that from the hypothesis, a;,; < a;,; a;,; < a,,; for h < j, and
a; ;< a;,i,j=1,2,--. Therefore, {1;} is decreasing. For any ¢ > 0, choose N and
M such that X7y, 0fa; <¢/2 and ay <e/2 Ej-vzlozj-’. Then for every i =2 M,

= 3N P © P P © P
v; =X -qofa + E e 0fa S a8+ Xy afa; <e.

Q.E.D.

DEFINITION. Let 0 # a = X2, a,x, € d(a, p) with o; 2 o, = -+ = 0. For each

n= 132""’ let S, = E'il=lai’ Ssta)': {Zla?(sni - Sn(i—l)) where Sg = 0! wf’d) =
s9— 5 and 5§ =0.

PROPOSITION 9. For every aed(a,p), s\V< n”oc””, S2 w®=4 00 and
(Wi} is a sequence decreasing to zero.

Proor. Clearly s < nfa|? and 2 w{” = + co. For a fixed n, we have
Smatye = S and 25, = 50013 + Sw-1y for k=1,2,--«. Thus ko, (Sen+ 130
— St 1y-1)) = St 19k = S = %=1 (S — Spq-1y) and by Proposition 7 with
B =y, we get s, =5 and 25 > 5, + 5, Hence {w!®} is a decreasing

sequence of nonnegative numbers. Now,

n—1

o n ©
wiP= X azf( Z -y — X a(n—l)(i—1)+)') = I ol
=1 j=1 i=1 i=1

(2)

Thus lim,,_, , w," = 0 follows from Proposition 8. Q.E.D.

LEMMA. 3. If for every acd(a,p) with ay 20, 2 - 20 and || =1, there
exists B, > 0 such that s < B,s,, n = 1,2, -, then there exists
B > 0 such that for all a, || o “ =1, in d(a,p), s{9< Bs,,n=1,2,---

Proof. For every fixed n, let a”= (Su — Sue-1))/ 5w k =1,2,3,-. Then
a® = (@P,ad,,al, - Yeco\I% Let d=(Z2; ®d@™,p)., and let
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{x{};<1.2.... and {x,} be the unit vector basis of d(a®, p) and d(a, p), respectively.
Define T,:d(a,p)—d by

© ©
T;l ( z aixi) = (0,"',0, z aixgn), Oa"’)
i=1 i=1

n’thplace

for all o = X2, a;x; e d(a, p). Then if ¢y Z oty = -+ = --- 2 0, we have

® wPls,— 5, (2)
e T El

< B, forall n = 1,2,---. By the uniform boundedness principle, there exists B > 0
such that sup,| T, ]] < B'/% Thus for every ae d(a, p), | «| =1, we get 5,°< Bs,,
n=1,2,--. Q.E.D.

THEOREM 5. Let d(a,p) be a Lorentz sequence space. Then SUp;<,i<+ow

Swc /S48 < + oo if and only if for every aed(a,p), a, Z o, =+ 20, uan =1,

s~ s,

PROOF. Let a= X, «,x,€d(a, p) such that |« = 1. Clearly we always have
sy 2 ofs,. Suppose sup, smk<to SulSiSk = B<+oo. Then s, =X (Su
— S,i-1)) S Bs,(X¥_ a) = Bs,s, for all n,k = 1,2, -. Fix n. By Proposition 7, we
get Bs, = Bs,( %2 afa) = T2y ol (s, — Spu-1)) = s,,) Hence s ~ s,,.

Conversely, suppose s,~ s, for all ae d(a,p), || =1 and o, Z oy 2 -+ 2 0.
By Lemma 3, there exists B > 0 such that for all |« | = 1, 5,7< Bs,, n =1,2,-.
For each k, let y; = (1/s)'? if i < k and y; = 0 if i > k. Let y = X%, ¥;x;. Then
|7] =1 and 5,”=s,/s,. Hence s, < Bs,s;, n,k =1,2,---. This completes the
proof of the theorem. Q.E.D.

LEMMA 4. Let o= X7 a,x,ed(a,p) such that || =1 and 0, 20, 2 -,
2 0. If the block basic sequence y, = Xf2t! o, x;, n=1,2,- is symmetric
then [{y,}] is isomorphic to d(a, p) if and only if sV~ s

Proor. Let {N;};.; ,.. be subsets of the natural numbers, N, such that
N=U?Z,N, NNAN; = for all i#j, and N; =N, i=1,2,--. For each i,
Ni={i,j}j=1.2,.. Letu{¥ = T2 ax; ; where a= L7, a;x; € d(a, p). As we have
seen in the proof of Theorem 2, {y,} is equivalent to {u{™} and || Ef-, u | = s{.
Suppose that [{y,}] is isomorphic to d(a,p). Then [{u{”}] is isomorphic to
d(a, p), and since all symmetric bases in d(a, p) are equivalent, {u{*} is equivalent
to {x,}. Thus || Zf_, u{®| ~ || -, x;|] which means s

~ S,
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Conversely, suppose s ~ s,. Let wi® = s, w® =52, — s, n=2,3,-.- and
w® = W, wi,-+-). By Lemma 2, d(w'®, p) is isomorphic to d(a, p). Let {B,}
be any decreasing sequence of nonnegative numbers, Then

||§ pu) = X ﬁé’( > ocfai,f)
i=1 1

i=1 j

ji=

where forevery i = 1,2,---, N (respectively, for every j), {a;,;}=1.2.... is a decreasing
subsequence of {a,}. Now, for every / and k&,

k 5 I
z ( z ai.j) Ssy= X (skj — Skj-1))-
i=1 j=1 ji=1
For each fixed k =1,2, -+, N, by Proposition 7
k © ©
z ( z “5"“:’1‘) < T af(sy = sg-1) = 5
i=1 \j=1 i=t
Since {,} is decreasing, by Proposition 7 again, | T\, pu® || "< XL, BPw®,
Hence {v¥} > {u®} where {v®} is the unit vector basis of d(w'®,p). Since

{x,} ~ ("} and {u{®} ~ {y,} we get {x,} > {y,}. On the other hand, by Pro-
position 4, {y,} > {x,}. Thus [{y,}] is isomorphic to d(a, p). Q.E.D.

THEOREM 6. In d(a,p) there are exactly two nonequivalent symmetric basic

sequences if and only if SUDj < k<o Sui/SeSk < + 0.

Proor. Let {y,} be a symmetric basic sequence in d(a, p). By proposition 1 and
Theorem 3, {y,} is equivalent either to the unit vector basis of I or to a block
basic sequence of type L. If sup; <, i<+ Sux/SuSk < + 00, by Theorem 5 and
Lemma 4, {y,} is equivalent to the unit vector basis {x,} of d(a, p). Conversely, if
SUP 1 < i<+ Suk/SuS; = + 00, by Theorem 5 and Lemma 4, there exists a block
basic sequence {y,} of Type I which is not equivalent to {x,}. By Remark 3, {y,}
is not equivalent to unit vector basis of I?, Thus, in d(a, p) there are more than two
nonequivalent symmetric basic sequences. Q.ED.

Let us remark that there exists a Lorentz sequence space with infinitely many
nonequivalent symmetric basic sequences. Indeed, it has been mentioned in
[7, p. 378] that the Lorentz sequence space d({1/logn}, p) is isomorphic to the
Orlicz sequence space I, where M(x) = x? /1 + Ilogx l; furthermore, in the same
paper [7, p. 363] it has been proved that I,, has infinitely many nonequivalent
symmetric (Orlicz) basic sequences.

THEOREM 7. There exists a Lorentz sequence space d(a, p) having a subspace
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with symmetric basis which is isomorphic neither to 1° nor to any Lorentz
sequence space.

Proor. Let p 21 and consider the Lorentz sequence space d(a, p) for which
ay=a,=1, a,=1//n(logn)?, n=3,4,--. Let a,=n"%, n=1,2,--. Then
« = {&,} € d(a, p). Define the vectors {u®} as in the proof of Lemma 4. One can
easily see that if [{u{®}] is isomorphic to a Lorentz sequence space, then
{4} is equivalent to the unit vector basis of d(w'®, p). But by definition,

8

=]
Sfxa) = X al(Su— Swa-1)) 2 niz1 afap;, n=12,.,

i=1

and

Consequently,

Tow® i 1 1

Z——2z2X (—— )s(“)é — - )f Z ofay;
i=1 \/j— j=1 \/,— \/J_ﬁ 1 (\/j— \/j:—l i=1
- (=i ke

N _ .~‘_ v . 1'
=\ gy F logj ;=1 G+ Dlog(j+1)

1 1 3

™M=

j

On the other hand

>3 [+2]
" T iven@ircy 4oy Aa

i=1

where d(n) is the number of divisors of n. Since X'_, d(i) ~ nlogn [5, p. 262]
there exists a constant 4 > 0 such that

wz d(n)ari:—l taty = A. E d(n)
ne o Jn i "=2 n(logn)°?
A 1 _ 1 ] 3 d(i)
— a2 L n(ogn)? (n+ D(log(n +1))%2 | =,
2 (logn)’? < 1

nlogn = X < 4 .

n=2 h*(logn)® n=2 h(logn)3?

Hence X2 ,i~ Y7y converges while the sequence {i”Y/ZP}¢d(w'®, p). This
means that [{u,.(”}] is isomorphic to no Lorentz sequence space. To conclude the
proof, notice that [{u{*}] is not isomorphic to I (cf. Remark 3). Q.E.D.
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