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A B S T R A C T  

Let r be a fixed positive integer. A group G has (Priifer) rank r if every 
finitely generated subgroup of G can be generated by r elements and r is 
the least such integer. In this paper we consider groups that are residually 
of rank r. Among other things we prove that a periodic group that is 
residually (of rank r and locally finite) is locally finite and obtain the 
structure of groups that are residually (of rank r and locally soluble). A 
number of examples are also given to illustrate the limitations of these 
t h e o r e m s .  

1. I n t r o d u c t i o n  

Let  r be  a fixed pos i t ive  integer.  A group G has (Pri ifer)  rank  r if every f ini tely 

gene ra t ed  subgroup  of G can be  genera ted  by r e lements  and  r is the  least  such 

integer.  T h r o u g h o u t  this  p a p e r  we shall  say t ha t  a group G has rank  r if, in the  

above  sense, i t  has  r ank  at  mos t  r; no confusion should  arise as a resul t .  

T h e  p r o p e r t y  of having finite r ank  (i.e. r ank  r for some r)  is fair ly decisive 

in a number  of c i rcumstances .  For  example ,  a local ly n i lpo ten t  group of finite 

r ank  is hype rcen t r a l  [10; Sect ion 6.3] and  a local ly soluble group of finite r ank  is 
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hyperabelian and has some term of its derived series periodic and locally nilpotent 

[10; Lemma 10.39]. Also there is the famous theorem of Sunkov [13] that a locally 

finite group all of whose abelian subgroups have finite rank is itself of finite rank 

and is almost locally soluble (i.e. has a locally soluble subgroup of finite index). 

Although rank restrictions on abelian subgroups are not discussed in the present 

article, the fact that a locally finite group of finite rank is almost locally soluble 

is fundamental to our considerations. Another result to be mentioned is that  a 

locally (soluble-by-finite) group of finite rank is almost locally soluble [2], [4]. 

Our concern here is with groups that are residually of finite rank. It is easily 

deduced from Sunkov's theorem that a locally finite group with this property 

is (locally soluble)-by-(residually finite), and somewhat more can be said about 

such a group by considering its locally soluble radical. However, we shall be 

restricting attention to groups that are residually of rank r (which we write as 

res(rank r)) for some finite r, our two main results on groups with this property 

being as follows. 

THEOREM 1: Let G be a periodic group and suppose that G is residually (of 

rank r and locally finite) for some positive integer r. Then G is locally finite. 

THEOREM 2: Let G be a group that is residually (of rank r and locally soluble), 

for some integer r. Then there are subgroups M, N of G with M ,1 N ,~ G such 

that 

(i) M is hyperabelian and locally nilpotent, 

(ii) N / M  is residually (linear of r-bounded degree) and 

(iii) GIN is soluble oft-bounded derived length. 

By "r-bounded" we mean "bounded in terms of r only". This is a convenient 

point at which to state the following result from [12], to the first part of which 

Theorem 2 bears some resemblance. 

THEOREM 3 (Segal [12]): Let G be a finitely generated group that is res(finite 

soluble of rank r). Then G has a normal nilpotent subgroup Q such that G/Q is 

a subdirect product of finitely many linear groups over fields. If, moreover, every 

finite quotient of G is soluble then G is almost nilpotent-by-abelian. 

As indicated in [12], Theorem 3 allows one to deduce results about groups that  

are residually (finite of rank r) without appealing to the theory of analytic p rop  

groups [3]. Theorem 2 is, in part, proved by adopting a similar approach. In 

the case where G is itself locally soluble and res(rank r) we obtain easily from 

Theorem 2 and Zassenhaus' theorem on soluble linear groups [10; Theorem 3.23] 
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that G is locally nilpotent-by-(soluble of r-bounded derived length). That such 

a group G is hyperabelian is already known from work of Amberg and Sysak [1]. 

The following result shows that a little more can be said. We recall that a group 

G is called rad ica l  if it is the terminus of an ascending normal series with locally 

nilpotent factors. 

THEOREM 4: Let G be a group that is residually of rank r. The following are 

equivalent. 

(i) G is locally soluble. 

(ii) G is hyperabelian. 

(iii) G is radical. 

It is easy to find a locally finite group that is res(rank r) but not almost locally 

soluble, for example the direct product of infinitely many copies of some finite 

non-abelian simple group has this property. In general a locally finite group that  

is res(rank r) need not be hyperfinite, even in the soluble case, and so there is 

no obvious analogue of the theorem of Amberg and Sysak mentioned above. 

THEOREM 5: Let p and q be distinct primes and let G = P I Q, where P is of 

order p and Q is an infinite elementary abelian q-group. Then G is res(rank q) 

(but has no non-trivial finite normal subgroups). 

Again with reference to Theorem 1, certainly there exist periodic residually 

finite groups that are not locally finite, for instance the example of Grigorduk [5] 

has this property. The following well-known result is also relevant here. 

THEOREM 6: Let p be a fixed prime, F a countable free group. Then F has a 

descending normal series of subgroups Ni such that F /N i  is a finite p-group of 
O 0  

rank 9 for all i and [~i=1 Ni = 1. 

Theorem 6 suggests the following definition: for a class (or property) P of 

groups, let us say that  a group G is res*(P) if it has a countable descending 

series of normal subgroups Ni intersecting in the identity such that each G/Ni  is 

a 7~-group. Thus a countable free group is res* (finite of rank 9). Clearly a locally 

finite group that is res*(rank r) is of rank r and hence almost locally soluble, and 

one avenue of investigation is that of attempting to determine for which other 

groups G does the presence of the property res*(rank r) imply that  G is almost 

locally soluble. We prove the following. 

THEOREM 7: Let r be a fixed positive integer and let G be a group in which 

every finitely generated subgroup is soluble-by-finite and res*(rank r). Then G 

is almost locally soluble. 
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In particular, therefore, a locally (soluble-by-finite) group G that  is 

res*(rank r) is almost locally soluble and we have a partial generalization of 

the theorem of Cernikov referred to above (see also [4]). Such a group G need 

not, however, be of finite rank, even in the case where G is finitely generated and 

soluble. 

THEOREM 8: The group G = Z ~ Z is res* (rank 2) (but of infinite rank). 

It is easy to see that  a group is residually of rank 1 if and only if it is abelian; 

however, if a group G is res*(rank 1) then it is a subcartesian product of count- 

ably many locally cyclic groups and therefore of cardinality at most 2 ~~ A 

res*(rank 1) group of precisely this cardinality is of course the group of p-adic 

integers. In contrast, the direct square of a nontrivial finite abelian group cannot 

be res*(rank 1). There does not seem to be a satisfactory theory in the case 

of (locally) nilpotent groups. An easy example of a nilpotent group that  is not 

even residually of finite rank is the central product of infinitely many copies of a 

non-abelian group H of order p3 (p a prime). If one replaces H here with a free 

nilpotent group of class two on two generators then it is easily shown that  the 

resulting group again fails to be residually of finite rank. Since finiteness of rank 

exerts such a strong influence in the theory of locally nilpotent groups, particu- 

larly in the torsionfree case, where it is known that  a torsionfree locally nilpotent 

group of rank r is nilpotent of bounded rank [10; Lemma 6.37], it is reasonable 
to ask whether there are comparable results for the property res*(rank r). That  

this is not so is indicated by our next result. 

THEOREM 9: 

(i) For each positive integer n there exists a 2-generator, metabelian, torsion- 

free nilpotent group G that is res* (rank 2), nilpotent of class exactly n 

and of rank exactly n + 1. 

(ii) There exists a metabelian, locally nilpotent, torsionfree group G that is 

res* (rank 2) but neither nilpotent nor of finite rank. 

The group G of part (ii) of the above theorem is hypercentral. With some 

further effort we are able to establish the last of our main results concerning the 

existence of examples, namely the following, which shows even more clearly that  

the property res*(rank r) is far from being decisive in this area. 

THEOREM 10: There exists a locally nilpotent group C that is res* (rank 9) but 

not hypereentral (and not even hypercentral-by-soluble). 

In view of the existence of all these examples which, it is hoped, are of interest 
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in their own right, it is nice to be able to conclude this introductory section with 

a pair of results of a "positive" nature. 

THEOREM 11: Suppose that the group G is res*(finite p and of rank r), where p 

is a fixed prime. Then there exist integers c, d that depend only on r such that 

(i) if  G is locally soluble then G is soluble and G (~) is a finite p-group of rank 

r, and 

(ii) if  G is locally nilpotent then G is nilpotent and %(G) is a finite p-group 

of rank r. 

2. P r oo f s  

Firstly, it is easy to see that  the residual properties with which we are concerned 

are all inherited by subgroups; this fact is used without further mention. Suppose 

that  F is a finite semi-simple group of rank r and let N denote the socle of F.  

By the Feit-Thompson Theorem each (non-abelian) simple direct factor of N 

contains a 2-element and so N is the direct product of at most r such factors. 

Further, F / N  embeds in Aut N and, by considering more closely the structure of 

N and using the fact that  the outer automorphism group of a finite non-abelian 

simple group is soluble (the Schreier Conjecture), we deduce the following (see 

[4; Lemma 2.2] for the details of the argument sketched here). 

LEMMA 1: Let F be a finite semi-simple group of rank r and N the socle of F. 

Then there is a normal subgroup E of index at most (rift in F such that N <_ E 

and E / N  is soluble. 

This lemma has two interesting corollaries. For the first of these we need only 

note that  every finite group is semi-simple modulo its soluble radical. 

COROLLARY I: Let G be a finite group of rank r. Then the number of non- 

abelian composition factors of G is bounded in terms of r only. 

COaOLLARY 2: Let G be a group that is res*(finite and of rank r). Then G has 

a normal subgroup N of finite index that is res* (finite soluble and of rank r). 

For the proof of Corollary 2 it suffices to note that among all finite images 

of G of rank r we may choose one that  has a maximal number of non-abelian 

composition factors. 

Proof of Theorem 1: Suppose that  G satisfies the hypotheses of the theorem; 

assuming the result false we may suppose further that  G is finitely generated 

and infinite. Thus G is res(finite and of rank r). Let G / K  be an arbitrary 
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finite quotient of rank r and let S / K  be its soluble radical, N / S  the socle of 

G/S.  By Lemma 1 there is a normal subgroup E of r-bounded index in G 

such that N _< E and E / N  is soluble. Since there are only finitely many sub- 

groups of a given finite index in G we deduce easily from consideration of ap- 

propriate intersections of subgroups that G has a normal subgroup H of finite 

index that contains subgroups L, M with L ~ M ~ H such that H / M  and L are 

res(finite soluble and of rank r) and M / L  is residually (finite of rank r). Further, 

the finite quotients involved in the residual system for M / L  are direct products 

of non-abelian simple groups. 

Now a periodic linear group is locally finite [14; 9.1(i)] and, since H is finitely 

generated, we deduce from Theorem 3 that H / M  is nilpotent-by-finite and hence 

finite, so that M is finitely generated. If M / L  is finite then the same argument 

gives the contradiction that L (and hence M) is finite. Thus M / L  is infinite and 

we may assume that  L = 1 and hence that M is a subcartesian product of finite 

non-abelian simple groups Si of rank r. Certainly no Si has a section isomorphic 

to C v ~C,~ for any prime p and n > r, and so Lemma 4.1 of [15] tells us that there 

exists an integer m such that each Si is linear of degree m. Then, by Lemma 

4.2 of [15], either M is soluble-by-finite or M contains a free subgroup of rank 2. 

But M is periodic and once again we obtain the contradiction that M is finite, 

thus proving the theorem. | 

Next we require the following easy extension of a well-known result. 

LEMMA 2: Let G be a locally soluble group of rank r. Then there exists d = d(r) 

such that G (d) is a direct product of finite p-groups for different primes p. 

Proof." By Lemma 10.39 of [10] there exists n ~ n(r) such that G ('~) is periodic 

and hypercentral. In particular, G (n) is a direct product of p-groups and it now 

suffices to prove the result for p-groups. Suppose that G is a p-group of rank r 

with divisible radical D, which of course has finite index in G since a p-group 

of finite rank is Cernikov. Let C = CG(D); then G/C embeds in Aut D, which 

is linear of degree at most r over the ring of p-adic integers. By a result of 

Zassenhaus [10; Theorem 3.23], G/C has r-bounded derived length. Since C is 

centre-by-finite, C'  is finite and the result follows. II 

Our other requirement for the proof of Theorem 2 is the following. 

LEMMA 3: Let K be the cartesian product of finite p-groups Pj , j  E J, for 

possibly different primes p where each Pj has rank at most r. Then K has a 

normal subgroup M such that M is hyperabelian and locally nilpotent and K / M  

is residually (linear of r-bounded degree). 
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Proof: Let Aj be a maximal normal abelian subgroup of Pj, for each j ,  and 

set A = I-Ijea Aj. Let ej be the exponent of Aj and R = yIjej(Z/ejZ). In 

a natural way, A is an r-generator module for the commutative ring R. The 

conjugation action of K on A commutes with the action of R and there is a 

homomorphism K ~ AutRA induced by conjugation. Since CK(A) = A we 

have an embedding of K/A into AutR A and it follows from [14; Theorem 13.5] 

that  K/A has a normal, hyperabelian, locally nilpotent subgroup M/A such 

that K / M  is res(linear of r-bounded degree). Let Bj be a minimal K-invariant 

subgroup of Aj for each j;  then it is easy to see that l-lie J Bj is central in K and 

that repeating this argument shows that A is in the hypercentre of K and hence 

of M. The result follows. | 

Proof  of Theorem 2: Let {Ki}iel be a collection of normal subgroups of G 

intersecting in the identity such that each G/Ki is of rank r and locally soluble. 

For each i we define Ni = KiG (d), where d is as in Lemma 2, and note that 

Ni/Ki is a direct product of p-groups of rank r. Writing N for the intersection 

of the Ni we observe that each N/N n Ki ~- NKi/Ki  is a direct product of finite 

p-groups of rank r. It follows that N is a subcartesian product of finite p-groups 

of rank r. Since G (d) ~__ N the result is now a consequence of Lemma 3. | 

Before turning to our examples let us deal with Theorems 4, 7 and 11. 

Proof of Theorem 4: The result of Amberg and Sysak [1] mentioned earlier 

indicates that we only need show that (iii) implies (i). Suppose G is a finitely 

generated radical group which is res(rank r) and let {N~)ie~ be a collection of 

normal subgroups of G intersecting in the identity such that each G/Ni has rank 

r. Now G/Ni is a soluble minimax group by [10; Theorem 10.38] and the finite 

residual Ri/Ni of G/Ni is abelian by [10; Theorem 10.33]. Let R = [~iel Ri and 

note that R is abelian since R' < [Ri, Ri] <_ Ni, for each i C I. Furthermore, 

since each G/R~ is residually finite it follows that G/R is residually (finite soluble 

of rank r) and Theorem 3 now implies that G/R is soluble. The result follows. 
| 

Proof of Theorem 7: Let G be as stated. Since the property of being almost 

locally soluble is a "countably recognisable" one [4; Lemma 3.5], we may assume 

that G is the ascending union of finitely generated subgroups Gi, i = 1 , 2 , . . . .  For 

each i, let Ri denote the soluble radical of Gi. It is routine to show that Gi/Ri is 

also res*(rank r) (this only requires that P~ be a maximal normal (derived length 

di)-subgroup for some di); thus Gi/Ri has rank at most r. For each i, Gi/Ri is a 

semi-simple section of Gi+l/Ri+l and Proposition 2.1 of [4] now applies to show 
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that there is an upper bound n, say, for the indices IGi : Ril. The subgroup 

R = (Rill E N} is locally soluble and is easily shown to have index at most n in 

G. The result follows. I 

Our next result states somewhat more than we need but is perhaps of 

independent interest. We let Zp denote the ring of p-adic integers. 

PROPOSITION 4: Let G be res* (~nite p and of rank r), where p is a fixed prime. 

Then 

(i) G is (finite p and of rank r)-by-(torsionfree abelian)-by-(a subgroup of 

OL(r, and 

(ii) G has a normal torsionfree subgroup N such that N is centre-by-(a sub- 
group of GL(r, Zv) ) and G/N is a finite p-group of rank r. 

Proof" Let {Ni}iE• be a descending series of normal subgroups of G intersecting 

in the identity such that G/Ni is a finite p-group of rank r for each i. The group 

= lira G/Ni is a pro-p completion of G and has rank at most r as a pro-p-group 
4-- 

and so there exists an open characteristic uniform subgroup H of G [3; Corollary 

4.3]. Now H is torsionfree [3; Theorem 4.8] and A u t H  embeds in GL(r, Zp) 

[3; Corollary 4.18]. Hence H/Z(H) embeds in GL(r, Zp). Viewing G as a sub- 

group of G in the natural way we may set N = G M H and hence obtain part (ii) 

of the proposition. 

Now let K = Co(H) so that G/K embeds in GL(r, Zp). We have K/Z(H)  = 
K / K  A H ~- K H / H  < G/H, and so K/Z(H)  is a finite p-group. Evidently 

Z(H) <_ Z(K) and so K is centre-by-(finite p) and K '  is therefore finite and 

hence a p-group of rank r. It follows easily that K / K  I is also res*(finite p and 

of rank r), thus the torsion subgroup of K / K  ~ is a finite p-group. Part (i) now 

follows easily on considering G M K. I 

Proof of Theorem 11: Since a locally soluble linear group of degree r has 

r-bounded derived length [10; Theorem 3.23], part (i) of the theorem follows 

immediately from part (i) of Proposition 4. 

Now suppose that G is locally nilpotent. By [14; Theorem 8.2(iii)] there exists 

c = c(r) such that q'c(L) is periodic for every locally nilpotent linear group L 

of degree r. If N is as in part (ii) of Proposition 4, therefore, we have 3'c(N) 

periodic modulo Z(N) and, since N is torsionfree, it follows from [11; 5.2.19] 

that ")'c+l(N) = 1. Clearly the torsion subgroup T of G is a finite p-group, 

and G / T  is torsionfree and a finite extension of NT/T ,  hence %+1(G) ~_ T 
[10; Lemma 6.33]. It follows easily that G is nilpotent, and Theorem 11 is 

proved. I 
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Proof of Theorem 5: Let G be as stated. Then G is residually finite [6; Theorem 

3.2] and it suffices to prove that every finite image of G is res(rank q). Clearly 

an arbitrary finite image H of G is of the form A ~ B where A and B are abelian 

of exponent p and q respectively. If x E H \ A then there is a cyclic image H / N  

such that  x r N, so suppose that x E A. By Maschke's Theorem, A is the direct 

product  of minimal normal subgroups of H and so there is a maximal (proper) 

H-invariant subgroup M of A with x r M. Let C = CB(A/M);  then A I M  is 

a faithful irreducible module for B / C ,  hence B / C  has order at most q (see, for 

example, [9; Proposition II.1]) and A / M  has rank at most q -  1. Finally, x ~ M C  

and H / M C  has rank at most q, and the result follows. | 

Proof of Theorem 6: 

integral matrices 

Let p be a prime and let F be the group generated by the 

For each i, let Hi be the group of all 2 x 2 matrices x over Z/p iZ  such that  

x -~ l m o d p  and let Ni be the kernel of the map F ---+ Hi given by y ~ y modf f .  

Then Ni~=l Ni = 1, F is freely generated by a and b and each Hi has rank at most 

9 (see [10; Vol. 2, p. 179] for further details). Since every countable free group 

embeds in F,  Theorem 6 follows. | 

Proof of Theorem 8: Let G = Z l Z. The base group of G can be identified in 

the usual way with a free ZCoo module of rank 1 and hence with the Laurent 

polynomial ring A = Z[x, x - l ] .  Further, normal subgroups of G contained in the 

base group may be identified with (right) ideals of A and it therefore suffices to 

establish the following. 

CLAIM: There exist ideals I1 , I2 , . . .  of A such that I1 > /2 > /3 > . . . ,  
OO 

nk=l Ik = 0 and A/Ik  is cyclic as an additive abelian group, for each k. 

We require the following lemma where, for elements a, b of A, (a, b)A denotes 

the ideal of A generated by a and b and of course Z[x] is regarded as a subring 

of A. 

LEMMA 5: Let I be an integer, p a prime and a a positive integer such that p ~ a. 

I f  w E Z[x] and w E (pl, x - a)A then w = zp I + A(x - a) for some z E Z, ~ E A 

and this representation is unique. 

Proo~ Let Z[1/a] = {alL t I a E Z, t  > 0}, a s u b r i n g o f Q ,  and define 0 : 

A ~ Z[1/a] via A(x,x -1) , ~ A(a, 1/a). Thus ker0 = (x - a)A. Writing 

w = Alp z + A2(x - a ) ,  where Al,A2 e A, we have O(w) = Al(a, 1/a)p t. Since 
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w e Z[x],O(w) is an integer and hence Aa(a, 1/c~) is also an integer, as p ~ c~. 

Thus  w -- ,~1 (~, 1/a)P Z mod ker O, and we have w = zp I + ,~(x - o~) as required. If  

w = z 'p I + )~'(x - c~), where z' E Z and ,V E A, then (,~ - A')(x - c~) = (z' - z )p  z 

and a simple degree argument  gives ,~ = ,V and z = z ~, which shows tha t  the 

expression for w is unique. | 

We now return to the proof  of the theorem. We use the obvious fact tha t  every 

non-zero ideal of A contains a non-zero element of Z[x]. Let wl, w2 , . . ,  be a list of 

all the non-zero elements of Z[x] and let p be a prime. We now define inductively 

ideals Ik of A as follows. L e t / 1  = (p, x - 1)A and suppose tha t  for some k we 

have Ik = (p~,x -- a )A for some l > 0 and a E Z such that  p ~ a  and 0 < a < p~. 

Let w be the first element in our list tha t  belongs to Ik. As a polynomial  in 

x, w has only finitely many  zeros and so there exists a positive integer m and 

integers b l , . . . , b m  satisfying 0 < bi < p for all i such tha t  w(a  ~) r 0, where 

a ~ = a + b l p  I +b2pl+l+ . . .  +bmp l+m-1. Set I* = (pl+m, x - a ~ ) A  and observe tha t  

I* C_ I k , p  ~ a ~ and 0 < a~ < pl+m. If  w ~ I* then we set Ik+l = I*. Supposing 

tha t  w C I*, we may write w = zp ~+m + A ( x -  a')  for some z E Z,,~ E A, by 

L e m m a  5. Since w(a' )  7 ~ 0 we have z r 0 and hence zp l+m = sp q, where p { s 

and of c o u r s e q  > l + m .  Now set Ik+l = ( P q + l , x - a ' ) A .  I f w  E Ik+l then, 

again by L e m m a  5, we have w = z'p q+l + ~'(x - a ~) for some z' E Z, .X' E A. 

From the uniqueness of the expression for w (in terms of pl+m and x - a ~) we 

deduce tha t  z p  l+m = z ip  q+l, contradict ing the definition of q. Thus  w ~ Ik+l. 

We have now defined Ik for all k, and it is clear tha t  the intersection of all the 

Ik is trivial. Further,  with the above notation,  A / I k  has exponent  at most  pt 

as an addit ive abelian group and is an image of the locally cyclic additive group 

A / ( x  - c~) ~ Z[1/a]  so tha t  A / I k  is cyclic and the claim is established. | 

In fact a little more may be proved: Writing G = A >4 (g), we see tha t  the 

centralizer Ck of each Ik in (g) has finite index in (g) and of course CkIk is 

normal  in G and the Ck's form a descending chain. Further, the intersection of 

all the CkIk is trivial and we have the following. 

COROLLARY 3: Z I Z is res* (finite and of  rank 2). 

Proof  of  Theorem 9: (i) Let n be a fixed positive integer and let A,~ = 

(al) x - . .  x (an) be a free abelian group of rank n. Define an au tomorphism x of An 

via [ai, x] = ai+l ,  1 < i < n, where an+l is interpreted as 1, and set G = A~ >4 (x/. 

Clearly G is ni lpotent  of class precisely n. For any prime p there exists k = k(p) 

such tha t  x pk centralizes An/AP;  then Ix pk, A n l / A  p has rank exactly n + 1 and 

therefore so does G. Now let lr be an infinite set of primes and let p E ~r, Kp = 
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(a~a~l) C. It is easy to see that  Kp p -1 p -1 = (ala 2 ,a2a3 , P -1 . . . ,  a , _  1 an , a~) and hence 

that  An/Kp  is cyclic of order p". I~br each subset a of r let K~ = Npeo Kp (where 

g(p} = Kp). We claim that  K~ = 1. If n = 1 then KB = (aP) a = A p for each 

p E r ,  and the result is clear in this case. By induction on n we may assume that  

K~ ~_ (a,~) and, since K v A (an) = (aP~) for each p, we have g ~  < f~ve~(a~) = 1, 

as claimed. Since A,~/K~ is cyclic for every finite subset a of 7r the groups G / K a  

are all of rank 2 and the result now follows easily. 
OO 

(ii) For each n > 2 let A,~ be as in (i) and let A = D r A n .  Let x be the 
- -  n=l  

automorphism of A that  acts on each An as above and set G = A >4 (x), which is 

clearly non-nilpotent and of infinite rank but locally nilpotent. Now let zh, 7r2,... 

be a sequence of pairwise disjoint, infinite sets of primes. Again as in (i), each A,~ 

has a descending series of (x)-invariant subgroups Ko intersecting in the identity 

such that  each An~K,, is a cyclic 7r,~-group. This easily gives us a descending 

series of (x)-invariant subgroups Ni of A intersecting in the identity, such that  

each A/Ni  is locally cyclic, that  is of rank 1. Again the result follows. | 

As was the case for Theorem 8, there is an improved version of Theorem 9. 

With the notation as in (i), let (J~ denote the centralizer in (x} of An/K~  for 

each finite subset a of 7~. Corresponding to the descending chain of Ko 's  there is 

a descending chain of C,~K~,'s. Each of these is normal in G and their intersection 

is trivial and so G is res*(finite and of rank 2). By choosing our subgroups N~ a 

little more carefully in part  (ii) we can show that  the group G is also res*(finite 

and of rank 2); all we need is for each A/N~ to be finite cyclic (with the N~ still 

forming a descending chain), but it is easy to arrange for this employing what 

might be termed a diagonal argument. It  is convenient to state our conclusion 

in the following manner. 

COROLLARY 4: In each of parts  (i) and (ii) of Theorem 9, the group G is 
res* (finite and of rank 2). 

Finally, we turn to the proof of Theorem 10. First we require some basic 

properties of certain matrix groups. Let p be a prime and n a positive integer. 

We let G -- G(p, n) denote the kernel of the natural map 

GL(2,Z/pnZ)  > GL(2, Z/pZ).  

Then G consists of all matrices of the form 

c l + d  ' 
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where a,b,c,d E p(Z/p~Z). (Clearly each such matrix is invertible since its 

determinant is congruent to 1 modulo the radical p(Z/p'~Z) of Z/pnZ.) 

Therefore G has order (pn-1)4 and, in particular, G is a finite p-group. 

Let D denote the subgroup of all scalar matrices in G. For each i with 1 < i < n, 

let Hi denote the subgroup of G that consists of all matrices of the form (*) where 

a, b,c, d �9 pi(Z/p*~Z), and let Gi = DHi. Then 

LEMMA 6: 

(i) For all i, j with 1 < i, j <_ n, we have [Gi, Gj] < Gi+j, where Gm = 1 for 
all m > n. 

(ii) L e t A  =- ( 1 + ~ 0  ~ ) m o d G j + l  a n d B =  ( ~  ~ ) m o d G j + l .  I f x C G  

and if [x, A], [x, B] �9 Gi+j+l for some i > 0, where i + j < n, then 

x �9 Gi+l. 

(iii) For all i > 0 and j > 1 with i + j < n, the centralizer in G of Gj/Gi+j+l 

is precisely Gi+l. In particular (setting j = O) the subgroups G,~, . . . , G1 
are (all of) the terms of the upper central series of G. 

(iv) G has rank at most 9. 

Proof: (i) Note that  [Gi, Gj] = [Hi, Hi] since D is central in G. Let M2(Z/p'~Z) 
denote the full 2 • 2 matrix ring over Z/pnZ and, for each i with 1 < i < n, 

let M2(i) denote the kernel of the natural ring homomorphism M2(Z/p'~Z) ) 
M2(Z/piZ). Note that  H~ = 1 + M2(i) in the obvious sense and that  

M2(i)M2(j) C_ M 2 ( i + j ) .  Let y �9 Hi and x �9 Hi. Then y = 1 - Y  and 
x -- 1 - X  for some Y �9 M2(i) and X �9 M2(j). Now y-~ = I + y + y 2 +  - , . + Y l  
a n d x  - I = I + X + X  2 + . . . + X  s w h e r e Y z + l = 0 = X  s+l. Thus 

[y,x] = (1 + r + y2 + . . .  + VZ)( 1 + X + X 2 + . . .  + XS)(1 - r ) (1  - X) 

----- (1 + Y  + y 2  + . . .  + y ~  + X  + X  2 + - . .  +X*)(1 - Y -  X) 

mod M2 (i + j) 

= 1 mod M2 (i + j)  

and it follows that  [y, x] �9 Hi+j < Gi+j, thus proving (i). 

(ii) For i = 0 the result is trivial. Assume that i > 0 and that the result holds 

for i - 1. Since Gi+j+l <_ Gi+j we then have x �9 Gi by induction. Suppose for 

a contradiction that  x r Gi+l and that  [x, A], [x, B] �9 Gi+j+l where i + j < n. 

Now [dx, g] = [x, g] for all d �9 D and g �9 G and so it suffices to assume that  

x =  l + d  
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where pi I b, c, d and derive a contradiction. We calculate [x, A] and on exam- 

ining the off-diagonal entries deduce that  pi+l I c, b. On computing Ix, B] and 

examining its (2, 1)-entry we deduce that p~+l I d. Thus x E Hi+l,  and we obtain 

the desired contradiction. 

Finally, (iii) follows easily from (ii), while (iv) is an immediate consequence of 

Lemma 7.44 of [10]. | 

We now define a group C as follows. Let Pl < P2 < "'" be an infinite sequence 

of odd primes and for each ,k >__ 1, let G(A) = G(p~,2 ~) be as above. Further, 

for all A > 1 and all k such that  1 _< k < A, let Gk(A) denote the subgroup 

Gk(p)~, 2~), again as above. Now let H be the cartesian product of all the G(,k) 

and, for each j >_ 1, let Cj be the cartesian product of the G2~-~ (A), a subgroup 

of H. By Lemma 6(i) G2~-~ (A) is nilpotent of class at most 2J (and has derived 
oo C length at most j )  and so C = Uj=l J is locally nilpotent. It is also res*(rank 9) 

by Lemma 6(iv). 

We now show that  C is not hypercentral. For each A and for each k satisfying 

0 < k < ,k, let 

( 01) ( 1 0) A~ k = 1 Jr-p~(,X,k) B~,k = (,~,k) 
' 0 ' p ~  1 ' 

where a(~, k) = 2 ~-(k+l). Then of course A:~,k, B)~,k E G,~(:,,k)(.~) ". G,~(),,k)+l (.X) 
for all k. 

An arbitrary element g of the cartesian product of the G(A) may as usual be 

written as (g),). Let xl  = (Xl,X), where 

xl,~ = P~ for each ~; 
1 

thus xl,~ E G~(~,0)(,~) \ G~(~,0)+I(A). Let n be a positive integer and let A be 

greater than n. By repeated application of Lemma 6(ii), the element x,~,~ = 

[xl,~, Yl,x,. �9 �9 Yn,~] belongs to Gz(x,n) (,k) \ G~(~,~)+I (A), where 

(i) fi(,~,n) = 2 ~-1 + 2  ~-2 + . . .  + 2 ~-(~+1) and 

(ii) Yi,)~ = A;~,~ or B~,i, the choice being the obvious one suggested by 

Lemma 6(ii). 

(Note that  fi(A, n) <_ 1 + 2 + 22 + . . .  + 2 x-1 = 2 :~ - 1 and so x,~,), is indeed 

non-trivial.) For each i > 1, let Yi = (Yi,~), where Yi,), is as above for )~ > i and 

Yi,~ = 1 for ,k < i. Then x~(= [x~,y~,...  ,y~]) is non-trivial for each positive 

integer n. If xl  belongs to the cth term of the upper central series of C for some 

(possibly transfinite) ordinal c, then the above sequence of elements xn gives rise 
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to an infinite descending chain of ordinals starting at a. By this contradiction, 

C is not hypercentral. 

The proof that C (~) is not hypercentral for any positive integer n is essentially 

similar. However, one needs to establish that C (~) contains elements that are 

suitable substitutes for the elements Xl, Yl, Y2, Indeed, (7 (n) . . . . .  ~+1 can be shown 

to contain an element Zl such that 

1 p~ modG2~-,+l(A) for all sufficiently large A, Zl,X -= 0 1 

and substitutes for Yi,~ are obtained similarly. We omit the details. | 

3. C o n c l u d i n g  r e m a r k s  

In this final section we present a few additional results and comments. Firstly we 

note that in the hypotheses of Theorem 1 the condition that the relevant rank r 

images be locally finite may be weakened, as any class of groups for which periodic 

implies locally finite may be substituted here. Trivial though this observation is, 

it allows us to state (for example) a result in which the hypotheses more closely 

resemble those of Theorem 2. 

3.1: Let G be a periodic group that is residually X~, where :E~ denotes the class 

of locally (soluble-by-finite) groups of rank r. Then G is locally finite. 

With the same notation, we also note the following. 

3.2: A periodic group that is res*3Er is locally finite and hence of rank r and 
almost locally soluble. 

We recall that  a locally finite group G of finite rank is not only almost locally 

soluble but has a normal subgroup H of finite index such that H '  is locally 

nilpotent (Lg~). This result is due to Kargapolov [7] who shows further that H 

modulo its Hirsch-Plotkin radical has finite Sylow p-subgroups for all primes p. 

It follows that  a locally finite group that is res(rank r) is res Lg~-by-abelian-by-res 

(finite); more particularly we have: 

3.3: Let G be a locally finite group that is res(rank r). Then there is a normal 

subgroup H of  G such that G / H  is res(of rank r and finite) and H'  is locally 
nilpotent. 

It ought to be possible to say a little more about a locally finite group G that  

is res(rank r), particularly when the locally soluble radical of G is trivial (so that  

G is res(finite of rank r), by Sunkov's theorem). Our final remark on locally 
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finite groups is that such a group is hyperfinite if it has finite rank; this again 

contrasts with the result of Theorem 5. 

Next we record the following result on locally soluble groups. 

3.4: Let G be a locally soluble group that is res* (rank r). Then some r-bounded 

term of the derived series of G is a subcartesian product o# finite p-groups of rank 

r, for different primes p. 

It is the fact that the primes are distinct that distinguishes 3.4 from Theorem 

2--we recall from the proof of Theorem 2 that the subgroup N was easily shown 

to be a subcartesian product of p-groups of rank r, while Lemma 3 gave us the 

indicated structure of N. To establish 3.4 we use Theorem 11. We already know 

that G has a normal subgroup U containing G (a) for some d = d(r) such that 

U is res*(finite nilpotent of rank r). For each prime p, let Rp,i/N, denote the 

p'-radical of U/Ni for each i, where the Ni form the obvious residual system for 

U. Then set Rp = ~i~176 Rp,i; by Theorem 11, U (~) is a finite p-group of rank r 

modulo Rp, for some e = e(r). It now follows easily that U (~) is a subcartesian 

product of such finite p-groups (one for each prime p that  occurs), and 3.4 is 

proved. 

In view of Theorem 8, our next result may be of some interest. 

3.5: Let G be a finitely generated soluble group thai is res*(rank r). If  G has 

no sections isomorphic to Z ~ Z then G has finite rank. 

We have been unable to find an example to show that "sections" cannot be 

replaced by "subgroups" in the above. The proof of 3.5 is easy, though it depends 

on a deep result. With G as stated, let A be a maximal normal abelian subgroup 

such that  G / A  has smaller derived length than G; then G/A  is res*(rank r) and 

hence of finite rank, by induction. The torsion subgroup T of A is res*(rank r) 

and hence of rank r, and if a E A \ T then <a}(g) has finite rank for all g E G, 

since there are no ZIZ sections. In the terminology of [8], A is thus a constrained 

G-module and hence G is minimax. 

Our final remark concerns Theorem 7 and whether one can replace "locally 

(soluble-by-finite)" by "locally 3E" for some more general class 3:. In order to 

apply our current methods of proof, one would probably require a class 3E for 

which finiteness of rank implies almost locally soluble. Certainly the extensive 

class defined by (~ernikov in [2] will not do in this context as his class contains 

all free groups (and Theorem 6 provides a suitable counterexample). 
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