Gap-to-T_c Ratio as a Function of the Fermi Level Shift

S. Ratanaburi,¹ P. Udomsamuthirun,² N. Saentalard,³ and S. Yoksan³

Received 1 August 1996

Within the framework of the BCS theory, the gap-to- T_c ratio $R = 2\Delta_0/kT_c$ is evaluated numerically (Δ_0 is the energy gap at $T=0$ and T_c is the critical temperature) for a superconductor with a van Hove singularity (vHs) in the density of states as a function of the shifts (δ) of the Fermi level with respect to the vHs. It is found that R varies asymmetrically with δ and that the variations are strong near $\delta = 0$. Our numerical calculation shows that the largest R's occur at certain values of $\delta \neq 0$.

KEY WORDS: van Hove singularity; gap-ratio; high- T_c superconductor.

The idea that the density of states (DOS) peaks is important for superconductivity was first considered for A15 compounds [1] that show one-dimensional structures. In high- T_c superconductors, the planar structure of the copper oxide layers lead to a vHs of the DOS that can be coincident or very' close to the Fermi energy (E_F) depending on the doping.

This situation has led many authors [2-8] to consider the possible effect of the logarithmic DOS peak in superconductivity. Tsuei *et al.* [2] showed that there exists a vHs near E_F in YBa₂Cu₃O₇. The angle photoemission spectroscopy studies on Y123, Y124, and Bi2122 [3-5] have found that the vHs is almost located at the Fermi level at the composition of optimum T_c . It was shown in [6] that a maximum T_c with a minimum isotope shift exponent α) occur when the Fermi level lies at the energy of the vHs and T_c decreases while (a) increases as the Fermi level is displaced from the vHs. Sarkar and Das [7] studied the variations of T_c , α , and the pressure coefficient of T_c with the shift (δ) of the Fermi level from the vHs. They also examined the gap-to- T_c ratio (R) for the case $\delta = 0$, and found that R lies within the range from 3.53 to 4.00. The question arises if there is a possibility

to enhance the gap ratio taking into account a nonzero shift of the Fermi level from the vHs.

The purpose of this paper is to extend the study of [7] by evaluating the exact R (numerical) as a function of δ for different sets of parameters. In particular, we would like to examine the change in R as the shift δ is varied.

We compute the zero-temperature gap Δ_0 in the framework of the standard BCS mean field formalism

$$
\frac{2}{V} = \int_{-\omega_D}^{\omega_D} d\varepsilon \frac{N(\varepsilon)}{\sqrt{\varepsilon^2 + \Delta_0^2}} \tag{1}
$$

where $N(\varepsilon)$ is the density of states, ω_D is a cutoff frequency, and V is a constant pairing potential, nonzero only within a range $2\omega_D$ centered about the Fermi level.

The linearized T_c equation can be written as

$$
\frac{2}{V} = \int_{-\omega_D}^{\omega_D} d\varepsilon \frac{N(\varepsilon)}{\varepsilon} \tanh\left(\frac{\varepsilon}{2T_c}\right) \tag{2}
$$

We use the $2D$ vHs form for the DOS [7],

$$
N(\varepsilon) = N_0 \ln \left| \frac{E_F - \delta}{\varepsilon - (E_F - \delta)} \right| \tag{3}
$$

where N_0 is a normalization factor, and $\delta = E_F-E_{\text{vHs}}$ indicates the displacement of the Fermi level with respect to the vHs (E_{vHs}) . This form of DOS is relevant in high- T_c cuprates because the Fermi level shifts with doping, and δ changes correspondingly.

[~]Department of Physics, Chiangmai University, Chiangmai 50200, Thailand.

²Department of Physics, Kasetsart University, Bangkok 10900, Thailand.

³Department of Physics, Srinakharinwirot University, Bangkok 10110, Thailand.

Fig. 1. The ratio R for different choices of the parameter T_c , as a function of δ/ω_D . $E_F = 4000$ K, $\omega_D = 500$ K.

We introduce Eq. (3) into Eqs. (1) and (2) , and obtain the following equation:

$$
\int_0^{\omega_D} \frac{dx}{x} \tanh(x) \ln \left| \frac{E_F - \delta}{2T_c x + \delta} \right|
$$

$$
= \int_0^{2\omega_D / RT_c} \frac{dx}{\sqrt{1 + x^2}} \ln \left| \frac{E_F - \delta}{RT_c x / 2 + \delta} \right| \qquad (4)
$$

From this integral equation the numerical values of R have been evaluated exactly as a function of the parameter δ/ω_D for various values of T_c . We have performed the calculation for the same parameters as that of Sarkar and Das [7], namely $E_F = 4000$ K and ω_D = 500 K.

We can see from the graph R vs. δ/ω_D (Fig. 1) that there is a large departure of R from the canonical BCS value of 3.53 as δ varies. The shift δ , therefore, has a strong influence on R . The plot shows that the variation of R is not symmetric about $\delta = 0$; $(d/d\delta)R$ is positive for underdoped samples and changes signs for the overdoped cases. The general trend is that R decreases for $\delta > 0$ more rapidly than for $\delta < 0$. We

Table I. Value of R Estimates for a DOS with a vHs for Different T_c Values, and $\delta/$ ω_D Where R_{max} Occurs (E_F =4000 K and

ω_0 = 500 K)		
T_c (K)	$R_{\rm max}$	δ/ω_{D}
300	3.912	-0.073
160	3.811	-0.059
130	3.777	-0.055
100	3.740	-0.043
70	3.703	-0.035
40	3.671	-0.021

Ratanaburi, Udomsamuthirun, Saentalard, and Yoksan

note also that as E_F is displaced away from vHs, i.e., $|\delta|$ increases, R decreases, and the value of R always increases as ω_D/T_c decreases. Moreover, as ω_D/T_c increases, R is suppressed and goes to the BCS limit of 3.53.

Our numerical calculation shows also that there is a maximum value of R occurring at a certain nonzero value of δ/ω_D . To find the value of δ/ω_D where R_{max} occurs, we differentiate Eq. (4) with respect to δ/ω_D and set $dR/d(\delta/\omega_D)$ equal to zero, and we arrive at the following equation:

$$
\int_{0}^{\omega_{D}/2T_{c}} \frac{dx}{x} \tanh x \frac{(2T_{c}x + E_{F})}{(2T_{c}x + \delta)}
$$
\n
$$
= \int_{0}^{2\omega_{D}/RT_{c}} \frac{dx}{\sqrt{1 + x^{2}}} + \left(\frac{E_{F}}{\omega_{D}} - \frac{\delta}{\omega_{D}}\right)
$$
\n
$$
\times \int_{0}^{2\omega_{D}/RT_{c}} \frac{dx}{\sqrt{1 + x^{2}} \left(RT_{c}x/2\omega_{D} + \delta/\omega_{D}\right)} \tag{5}
$$

We evaluate R_{max} and δ/ω_D numerically using the two integral equations (4) and (5) . To do that we have to choose three parameters: T_c and the Fermi and cutoff energies. The numerical results are presented in Table I.

We note that the peak position in R shifts to the underdoped region with increasing T_c .

In summary, based on the BCS theory, we have studied the effects of the Fermi level shift with respect to the vHs on the gap-to- T_c ratio. The general behavior of R is that it is largest at some optimum doping, $\delta \neq 0$. We show that there is an asymmetric gap ratio in doped superconductors.

Recently Giraldo and Baquero [9] evaluated the van Hove singularity shift from the Fermi level as a function of composition and found an approximately linear behavior as a function of doping. It is therefore of interest to investigate experimentally the gap-to- T_c ratio as a function of the doping concentration as a quantitative check of our theory.

REFERENCES

- 1. J. Labbe', S. Barisic, and J. Friedel, Phys. Rev. Lett. 19, 1039 $(1967).$
- 2. C. C. Tsuei et al., Phys. Rev. Lett. 69, 2134 (1992).
- 3. A. A. Abrikosov, J. C. Campuzano, and K. Gofron, Physica C 44, 73 (1993).
- 4. D. S. Dessau et al., Phys. Rev. Lett. 71, 2718 (1993).
- 5. K. Gofron et al., Phys. Rev. Lett. 73, 3302 (1994).
- 6. C. C. Tsuei et al., Phys. Rev. Lett. 65, 2724 (1990)
- 7. S. Sarkar and A. N. Das, *Phys. Rev. B* 49, 13070 (1994).
- 8. J. M. Getino, M. de Llano, and H. Rubio, Phys. Rev. B 48, 597 (1993)
- 9. J. Giraldo and R. Baquero, *Physica C* 257, 160 (1996).