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AUTOMORPHISMS OF GROUPS 
AND OF SCHEMES OF FINITE TYPE 

BY 

HYMAN BASS' AND ALEXANDER LUBOTZKY 

A B S T R A C T  

We show first that certain automorphism groups of algebraic varieties, and even 
schemes, are residually finite and virtually torsion free. (A group virtually has a 
property if some subgroup of finite index has it.) The rest of the paper is devoted 
to a study of the groups of automorphisms Aut(F) and outer automorphisms 
Out(F) of a finitely generated group F, by using the finite-dimensional 
representations of F. This is an old idea (cf. the discussion of Magnus in {11]). In 
particular the classes of semi-simple n-dimensional representations of F are 
parametrized by an algebraic variety So (F) on which Out (F) acts. We can apply 
the above results to this action and sometimes conclude that Out (F) is residually 
finite and virtually torsion free. This is true, for example, when F is a free group, 
or a surface group. In the latter case Out (F) is a "mapping class group." 

1. Automorphisms of schemes of finite type 

Let  k be  a c o m m u t a t i v e  r ing.  Le t  V be  a s c h e m e  of f ini te  p r e s e n t a t i o n  o v e r  k, 

and  Autk  ( V )  its g r o u p  of k - s c h e m e  a u t o m o r p h i s m s .  

(1.1) THEOREM. Suppose that k = Z. 

(a) Autk  (V) is residually finite. 
(b) If  V is flat over Z then Autk  (V) is virtually torsion free. Hence there is a 

bound on the orders of the finite subgroups of Autk  (V) .  

Reca l l  t ha t  a g r o u p  F is residually finite if its s u b g r o u p s  of f in i te  i n d e x  h a v e  

tr ivial  i n t e r sec t i on .  E q u i v a l e n t l y  the  n a t u r a l  m a p  f r o m  F to its profinite comple- 

tion 
I ~ =  lira F/N 

<...-- 
I'/N finite 

is in jec t ive .  
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To say that V is fiat over Z signifies that its local rings are flat over Z, i.e. 

torsion free as Z-modules. 

(1.2) COROLLARY. Let k be arbitrary and let F be a finitely generated subgroup 
of Autk (V). 

(a) F is residually finite. 
(b) If V is fiat over Z then F is virtually torsion free. 

Before deducing (1.2) from (1.1) we give a mildly strengthened version of the 

affine case. 

(1.3) COROLLARY. Let k be a commutative ring, A a finitely generated 
commutative k-algebra, and F a finitely generated group of k-algebra automorph- 

isms of A. 
(a) F is residually finite. 
(b) If A is Z-torsion free then F is virtually torsion free. 
If k = Z then (a) and (b) hold with all of Aut (A ) in place of F. 

In fact, let X be a finite set of k-algebra generators of A and S = S -1 a finite 

set of generators of F. For s E S and x E X we have s (x) = f,.x (X), where f,., (X) 

is a polynomial in X with coefficients in k. Let ko be the subring of k generated 

by all coefficients of f,., for all s E S and x E X ; let Ao denote the ko-algebra in 

A generated by X. Evidently F stabilizes Ao, and acts faithfully on Ao. Since Ao 

is a finitely generated Z-algebra (ko being so), which is Z-torsion free if A is so, 

we are reduced to the case k --- Z, which is just the affine case of Theorem (1.1). 

To similarly deduce (1.2) from (1.1) we require a more sophisticated reduction, 

due to Grothendieck [4]. First, since V is finitely presented over k, there is a 

subring ko of k finitely generated over Z and a ko-scheme Vo of finite type such 

that V---k  (~ koVo as ko-schemes ([4], proposition (8.9.1)). Let (kA) denote the 

family of finitely generated ko-subalgebras of k, ordered by inclusion, and put 

V~ = ka Q koVo. These form a projective system with V ~- lim V~. It follows from 
. . --> 

[4], th6or~me (8.8.2) and the finite presentation of the k~-schemes V~ that 

Homk(V, V)= lim Hom~ (V~, V~). 
....-> 

Consequently also 

(1) Autk (V) = lim Autk~ (V~). 
.....> 
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(If s E Autk(V) then s and s -t come, for some A, from some s~, t~ E 

Homk~(V~, ~z), and then s~t~ and t~s~ become the identity of V~ for some 

Now let F be a finitely generated subgroup of Autk (V). In view of (1) there is a 
A and a finitely generated subgroup Fx of Autk(V~) such that F=  k @k~F~. 
Consider the commutative diagram 

(2) 

q~ 
V , V~ 

\ 
Spec (k) , Spec (k~) 

where W is the schematic closure of the image of V in V~. The group F~ acts, via 

the natural homomorphism F~ ~ F, on V, so that r is F~-equivariant. It follows 

that W is F~-invariant. If 3' E F~ denote by yw the induced automorphism of W, 

and put Fw = {3'w I~' E F~}. Then we clearly have a commutative diagram of 

surjective homomorphisms 

F ( F~ K @ k ~ 7  ~ 3' 

\ /  
7w 

We claim that a is injective (and hence bijective). For suppose that 3' ~ F and 
yw = lw. Then (ls~c(k~,lv, y)  defines an automorphism of the (peripheral) 

cartesian square in (2) so it follows that 1v = k @k~y. 
In conclusion, we have shown that F ~ Fw C Autk~ (W). As a closed subscheme 

of V, W (like V) is of finite type over kx. Since k~ is a finitely generated 

Z-algebra, W is of finite type over Z. Finally it follows from the construction of 

W that, for U open in W, 6w(U)-~  ~Tv(~o-~(U)) is injective. Consequently W is 

flat over Z if V is so. Thus Corollary (1.2) follows by applying Theorem (1.1) to 

Fw C Autz(W). 

(1.4) REMARKS. (1) The properties in (a) and (b) above are well known to 

hold for finitely generated linear groups F C GL.  (k). In fact this is a special case 

of (1.3) if we let such a F act on the symmetric algebra of the k-module k". 
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(2) This suggests extending other results for linear groups to automorphism 

groups like Autk(V). For example, does a finitely generated subgroup F of 

Autk(V) satisfy the "Tits alternative": either (i) F is virtually solvable, or (ii) F 

contains a non-abelian free group? Further, one would like some control over 

the solvable subgroups of Autk (V). A basic example is the automorphism group 

of the polynomial algebra k [xl,. �9 x, ], the so-called integral Cremona group. 

Put F = Aut (V). For every commutative ring F we have the PROOF OF (1.1). 

F-valued points 

V(F) = Mor (Spec (F), V) 

of V, and F acts naturally on V(F). If the ring F is finite then the set V(F) is 

finite. (For instance, if V=Spec(Z[xl,. . . ,x,]) is affine then V ( F ) ~ F " ;  in 

general V is covered by finitely many such affine schemes, since V is of finite 

type over Z.) 

To prove (a) it suffices to show that if s E F acts trivially on V(F) for all finite 

F then s = 1. Let x be a point of V, Ax its local ring, mx = rad(A~), and 

k(x) = Ax/mx. If x is a closed point then k(x) is a finite field. The trivial action 

of s on V(k(x)) implies that s fixes x and hence acts on A~. Since s acts trivially 

on V(A~/m'~) it does likewise on A~/m~. Since n ,m~  = O, s acts trivially on Ax. 

Thus, since s fixes all closed points and acts trivially on their local rings, s = 1. 

To prove (b) we need a little preliminary discussion. Call a subset X of V 

effective if V admits an open covering by affine schemes U, --Spec (A,) such 

that, for each i, the natural map 

A~---~ 11 Ax 
x E X n U  i 

is injective. Our interest in this notion is that if s E F fixes each x E X and acts 

trivially on each Ax then s = 1. (If V is reduced this follows by noting that s acts 

trivially on the ring of rational functions on V, since it does so on enough of the 

local rings therein. In general, one deduces from this that s acts trivially on 

Vre~ C V, hence fixes all points of V, and then one sees easily that s acts trivially 

on each Spec(A,) as above.) 

Let V = U 1 U - - . U U ,  with U~=Spec(A,)  open. Let X = X I U . . . U X ,  

where X~ C U~ is a finite set of closed points such that, for each (~ E Ass (A~), 

C mx for some x E X~. The latter is precisely the condition that guarantees the 
injectivity of A~---~I-lx~• Thus X is a finite effective set of closed points. 

Suppose further that V is fiat over Z, so that each Ai is torsion free. Then for 

each (~ E Ass (A~), A~/~  has characteristic zero. It follows (since Ai is finitely 
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generated over Z) that A i / N  has finite residue class fields of all but finitely many 

possible characteristics. Hence we can choose another finite effective set X '  of 

closed points as above so that 

(*) char (k (x)) ~ char (k (x')) 

for all x ~ X, x '  E X'.  

Let 

and 

A = 1-I Ax, J = r a d ( A ) =  I-I rex, 
x E X  x E X  

Fx = Ker (F--* Aut (V(A/j2))) .  

Then Fx has finite index in F and fixes each x in X, and so acts on A, inducing the 

trivial action on A/ j2 .  

It follows that Fx acts trivially on 

gr (A)  = ( ~  J'/j ,+l = (A / j ) [ j / j2] ,  
r ~ O  

and so acts unipotently on each A/J ' .  By Lemma (1.5) below therefore, the 

image of Fx in A u t ( A / J ' )  is "X-tors ion" ,  i.e. each element has order divisible 

only by the primes char(k (x)) (x C X). Since X is effective Fx acts faithfully on 

A. Since A , J ' =  0 it follows that every finite subgroup of Fx is represented 

faithfully on some A/J ' ,  and so is X-torsion. 

Now if we repeat the above considerations with X '  in place of X we obtain Fx 

of finite index in F whose only torsion is X'-torsion. In view of (*) above 

therefore, Fx fq Fx, is torsion free, and clearly of finite index in F. This proves 

Theorem (1.1). 

(1.5) LEMMA. Let n be an integer >= 1 and A a (Z/nZ)-algebra. 

(a) If x @ A is nilpotent there is a positive integer N such that (1 - x )  "N = 1. 

(b) If  s is a unipotent automorphism of an A-module M then s has order 

dividing some power of n. 

Applying (a) to x = 1 - s E Enda (M) gives (b). 

To prove (a) we can, by the Chinese Remainder Theorem, reduce to the case 

where n is a prime power p'. Choose t > 0 so that x p' = 0. Then (1 - x)"' = 1 - py 

for some y E A .  F6r any z E A  and i > 0  we have (1 - p i z ) "  = 1 --pi+lz' for 

some z'.  It follows that ( 1 - p y ~  ' ' ~ =  1, so ( l - x )  p" = 1 with e = t + r - 1 .  
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(1.6) PROBLEM. Let V be a scheme of finite type over Z and let F = Aut (V). 

For each finite ring F put 

Fv = Ker (F ~ Aut (V(F))). 

These subgroups of finite index define a topology on F analogous to that defined 

by congruence subgroups in the case of linear groups. We shall accordingly call 

this the congruence topology on F. One can thus pose the "congruence subgroup 

problem" for F: Does every subgroup of finite index in F contain some FF as 

above? The answer is almost certainly "no"  in general, but there may be cases 

where one can give a reasonable description of the kernel 

C = Ker (1 ~ ~ F) 

of the map from the profinite completion I" to the congruence completion F. 

2. Automorphisms of groups of finite type 

Let F be a group. We have the exact sequence 

ad  
1 - - > Z ( F ) ~ F  , Aut (F)--> Out (F)--> 1 

where ad (x) :y- ->xyx -~ for x, y E F; its kernel is the center Z(F);  its image 

ad (F) = I Aut (F) 

is the group of inner automorphisms, and Out (F) = Aut(F)/I Aut(F), the group 

of outer automorphisms. 

We recall some familiar results which we shall use. 

(2.1) PROPOSITION (J. Smith [16]). Let F be a profinite group ( = a projective 

limit of finite groups) which is topologically finitely generated. Then its group 

Autc (F) of continuous automorphisms is a profinite group, and hence so also is 
Out c (F) = Autc (F)/I Aut(F). 

Let q be an integer ~ 1. Since F is finitely generated it has only finitely many 

open subgroups of index =<q; their intersection Fq is therefore open, and 

F = limq F/Fq. The functoriality of the Fq's shows that the groups Aut (F/Fq) 
4---- 

likewise form a projective system, and the natural map 

Autc (F) ~ lim Aut (F/Fq) 
<.-.- 

q 

is easily seen to be an isomorphism. Since ad: F----~AutC(F) is continuous, its 

(compact) image is closed, so Out c (F)= coker (ad) is also profinite. 
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(2.2) COROLLARY (Baumslag). Let F be a finitely generated group. I f  F is 

residually finite so also is Aut (F). 

Indeed since F--~l ~ is injective so also is Aut (F)---~AutC(F). 

Unfortunately the same reasoning does not show that Out (F) is residually 

finite, since Out (F)--~ OutC(l ~) need not be injective. Sufficient conditions for 

this are given in the next proposition. 

Write x - y if x and y are conjugate in F. Call F conjugacy separable if x - y 

whenever x and y become conjugate in all finite quotients of F. 

(2.3) PROPOSITION (E. Grossman [3]). Let F be a finitely generated group 

satisfying 

(a) F is conjugacy separable, and 

(b) if a E Aut (F) and a (x)  ~ x for all x ~ F then a E I Aut (F). 

Then Out (F) is residually finite. 

It suffices to show that Out(F)-~OutC(F)  is injective. Let a E A u t ( F )  and 

suppose that & E I Aut(l~). If x E F then a (x) - x by (a), and so a E I Aut (F) by 

(b). 

(2.4) EXAMPLES. (1) Let F be a free group. Then (a) and (b) are well known, 

even in more precise forms. For (a) see [9], ch. I, prop. (4.8). For (b) see [3], 

lemma 1. 

(2) Let F be a surface group of genus g, i.e. fundamental group of a compact 

orientable surface S of genus g. Then (a) has been proved by Stebe [17], and (b) 

by Grossman [3], using rather involved word and cancellation arguments. This 

case is of particular interest because the mapping class group Iro(Diff(S)) is 

naturally isomorphic to Out(F)  (cf. [1], theorem 1.4). 
We present below another method for proving such results, using the 

representation theory of F. (See Theorem (4.3).) 

(3) Aut  (F) and Out (F) are not very functorial in F. Here is a useful exception. 
Suppose that F is perfect, i.e. Hi(F, Z ) =  0, and let C be the Schur multiplier 

H2(F, Z). Then there is a universal central extension (cf. [12]) 

(e) 1--, C ~ F - ~  1, 

with F also perfect, such that for any central extension 

(e') 1--~ C ' -~ G --~ P -~  I , 

every homomorphism p : F -~  P lifts to a unique homomorphism ff : r - ~  G. This 

is classically applied to lift projective representations p : F---~ PGL,  to ordinary 
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representations t S : F - * G L . .  When applied t o  ( e ' ) = ( e )  one obtains an 

isomorphism 

Aut (F) --- Aut (F, C) 

where the right hand group is the stabilizer of C in Aut (F). This leads to a 

commutative diagram 

ad ~ Aut (F, C) , O u t ( F , C )  >1 

Ill Ill 

F > Aut (F) ~ Out (F) > 1 

If C is characteristic in F, e.g. if F is centerless, so that C is the center of F, then 

Aut (F, C) -= Aut (F) and Out (F, C) = Out (I'). For automorphism questions 

therefore, one can work with F or F, whichever is more convenient. 

3. Automorphisms and representations; groups of type (TI) 

(3.1) PROPOSITION. Let U be a finitely generated group and let x, y E U. The 

following conditions are equivalent: 

(a) x and y become conjugate in every .finite quotient of F. 

(b) x and y become conjugate in F, 

(c) There is an algebraically closed field F of characteristic zero such that for 

every representation p �9 F--> GL,  (F) we have Xp (x ) = Xo (Y). (By definition, 

X,,(z)= Tr(p(z))  for z e F . )  
(d) For every commutative ring k and every representation p "F---> G L , ( k )  we 

have 2(o (x) = Xo (Y). 

(a) ~ (b): For each finite quotient F/N of F put S ( N )  = {z E F/N [ zxNz-I = 

yN} (where xN = x mod N, etc.). Then S = IimNS(N), being a projective limit of 
<--.-^ 

non-empty finite sets, is a non-empty set in F. If z C S then z conjugates the 

image of x in f" into that of y. 

(b) ~ (a): Trivial. 

(c) @ (a): This follows because, over a field F as in (c), the characters of 

finite dimensional representations separate the conjugacy classes in any finite 

group. 

(d) @ (c): Trivial. 

(a) :=), (d): Suppose p : F--->GL,(k) and a = X o ( x ) - x o ( y )  is not zero. Since 

F is finitely generated p ( F ) C G L , ( A )  for some finitely generated ring A C k. 

Such an A is residually finite, so we can find an ideal J of finite index in A such 
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that a E J .  Then the composite F P ~ G L , ( A ) - - - ~ G L , ( A / J )  is a representation 

~r such that X~(x) ~ X~(Y), and so x and y are not conjugate in the finite quotient 
or(F) of F; this contradicts (a). 

Without assuming F finitely generated the implications (a) r (b) ~ (c) �9 (d) 
remain valid. 

(3.2) DEFINITION. Let F be a group, and let x, y E F. We call x and y trace 

equivalent in F, and write x - y, if they satisfy condition (d), and hence all of the 
T 

conditions, of (3.1). We put 

T Aut (F) = {a E Aut (F) ] a (x) T x Vx E F}. 

This is a normal subgroup of Aut (F) containing I Aut (F). We say that F is of type 

(TI)  if T A u t  (F) = I Aut (F). 
Call a E Aut(F) residually inner if & E I Aut (I~). When F is finitely generated 

this is equivalent to saying that a induces an inner automorphism of every finite 

characteristic quotient group of F. If RI Aut (F) denotes the group of residually 

inner automorphisms then evidently 

(1) 

and 

(2) 

I Aut (F) C RI Aut (F) C T Aut (F) 

RI Aut (F) 
I Aut (F) = Ker (Out (F)--~ Out ~ (1~)). 

(3.3) COROLLARY. Let F be a finitely generated group and let F be an 

algebraically closed field of characteristic zero. The following conditions are 

equivalent: 

(a) F is of type (TI). 
(b) In order that ct E Aut(F)  be inner it suffices that p o c~ ~-p for every 

irreducible representation p : F---~ GL,(F) .  

(c) In order that ct E Aut (F) be inner it suffices that Xp o a =Xp for every 

representation p : F-~  GL,  (F). 

The equivalence of (b) and (c) follows by considering Jordan-Holder  series 

and noting that an irreducible representation is determined up to isomorphism 

by its character. 
The equivalence of (a) and (c) is immediate from Proposition (3.1) and 

Definition (3.2). 

Groups of type (TI) have the following agreeable properties. 
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(3.4) COROLLARY. Let F be a .finitely generated group of type (TI). 

(1) Out (F)--~ OutC(l ~) is injective and (therefore) Out (F) is residually .finite. I f  

F is residually finite then 

(3) N,,(F) = F - z c ( r ) .  

(Here N and Z stand for normalizer and centralizer, respectively.) 

(2) Let k be a commutative ring containing Z and let (kF) • denote the group of 

units in the group algebra kF. Then Out (F)---~ Outk_a~(kF) is injective ; equival- 

ently 

(4) N~k,-,~(r) = r .  Z ( k  F) • 

In (1) the injectivity assertion follows from the discussion after Definition 

(3.2), (1) and (2), and the normalizer formula (3) is just a translation of this 

injectivity. The residual finiteness claim follows from (2.1). 

To prove (2), suppose that a E A u t ( F )  becomes inner in kF, i.e. that 

a(x )  = uxu-'  for all x E F  and some u E ( k F )  • Since Z C k  we have Q @ z k ~ 0 ,  

and so k admits a homomorphism to a field F of characteristic zero, which we 

may enlarge to be algebraically closed. Making the base change k ~ F we see 

that a again becomes inner in FF.  It follows now by (c) of Corollary (3.3) that a 

is inner. 

We can now reformulate E. Grossman's results [3]. 

(3.5) PROPOSITION. Let F be a finitely generated group satisfying (a) and (b) of 
Proposition (2.3). Then F is of type (TI). In particular this is so when F is a free 

group or a surface group (Examples (2.4) (1) and (2)). 

Let a E T A u t  (F). Then for all x C F, a (x) - x in I', so a (x) - x in F, by (a), 

so a is inner by (b). 

In order to verify property (TI) we are led to consider stabilizers of characters. 

Explicitly, let F be a group. For each irreducible representation p :F--~ GL,  (C) 

put 

Aut (F)~o) = {a E Aut (F) I P ~ a ~ p} 

(S) = {a E Aut (r) l x o  o = xo}. 

It follows from (3.3) that, when F is finitely generated, 

(6) T A u t ( F ) =  f"l Aut(F)(o) 
p 
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where p varies over all complex irreducible representations of F. Therefore to 

show that. F is of type (TI) it would suffice, for example, to show that 

Aut (F)~o~ = I Aut (F) for some P as above. (See (3.6) below.) 

Let Irr, (F) denote the set of isomorphism classes (P) of irreducible representa- 

tions p : F---~GL.(C). Then 

Out (F) acts on Irr. (F) with stabilizers 

(7) 
Out (F)(o) = Aut (F)~o~/I Aut (F) 

and, when F is finitely generated, 

F is of type (TI) if[ Out (F) acts faithfully 

(8) on I_I Irr. (F) (disjoint union). 

For n = 1 we have the group of linear characters 

X(F) = Irn(F) = H o m  (F, C • 

which acts on Horn (F, GL.  (C)) by tensor product: for P ~ Hom (F, GL.  (C)) and 

X E X ( F )  we have p |  = P "X defined by 

(o | x)(x ) = o(x )x(x ). 

Further Aut(F)  acts on X(F) and on Hom(F,  GL,(C)),  so we can form the 

semi-direct product, 

Aut (F) tx X(F) 

(9) 
(~, x) .  (~', x') = (~~ ~', (x ~ ~')" x') 

which acts on Hom (F, GL.(C))  by 

0o) o ' ( , ~ , x  ) = (o  o,~ ) "  x (=  (o o,~)|  

We can thus form the stabilizer 

(11) (Aut(r)  ~ x(r ) ) (o)= ((a, X)l (o o a ) |  x ~ o}, 

which contains Aut (F)(o)(as those (a ,x)  for which X = 1). 

(3.6) PROPOSITION. Let F be a group and p :F - -*GL,(C)  an irreducible 

representation. There is a homomorphism ~ro making the following diagram 

commute 
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(12) 

we have 

(13) 

and 

(14) 

ad 

Aut(F)~o) 
N 

ad 

(Aut (r)  x X(F)),o , ~ro , PGL.  (C). 

~o (Aut (F)r Cad (NGL.~c~(p F)) 

~ro ((Aut (F) x X(F))(o,) C NmL.,c,(ad p F). 

I f  p is injective then rrp maps Aut (F)(o~ isomorphically onto ad (N~L,Icj(pF)). If 
adop is injective, i.e. if p is injective and F is centerless, then 7to maps 

(Aut (F) ~< X(F))~o~ isomorphically onto Nm1_,~c~(ad p F). 

(3.7) COROLLARY. Assume that F is ]initely generated. Let p : F---~ GL,  (C) be 

a faithful irreducible representation. I f  

NGL.(c~(p F) = (p F)" C• 

for example if 

Np~L,(c~(ad p F) = ad p F 

then F is of type (TI). 

Indeed it follows then from (3.6) that Aut (F)to~ = ad (F). 

One should be able to use this Corollary to give direct proofs of E. Grossman's 

result (Proposition (3.5)) that free groups and surface groups are of type (TI). 

PROOF OF (3.6). Let (a, X) satisfy (p o a ) .  X -= P. Then there is a c~ E GL.  (C) 

such that 

(15) ~p(x)~-'  = p(~x),  x(x)  (x ~ r). 

Since 0 is irreducible, 

(16) ~ro (a, X) = ad (or) E PGL.  (C) 

is well defined. A straightforward calculation shows that 7rp is a homomorphism. 
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If a = ad(x) for some x C F  and 1" = 1 then p ( a ( y ) ) =  p(x)p(y)p(x) - ' ,  so we 

can choose ~r = p(x)  above, whence ~-o(ad (x), 1)= ad(p(x)), which expresses 

the commutativity of (12). The inclusions (13) and (14) are immediately seen 

from (15) and (16). 
Suppose that p is injective. Then if cr E N~L,r there is a unique 

E Aut (F) satisfying (15) with X = 1, so rr o : Aut (F)r ad (NGL.r is an 

isomorphism. 

Suppose further that F is centerless. If (15) holds with ~ a scalar then 

X(X) = p(ax) - 'p(x)  is a scalar in p(F) so X = 1, and so also a = 1. This shows 

that ~r o is injective. Suppose that c r ~ G L , ( C )  and that ad(~r) normalizes 

ado(F). Since adop is injective we can define a E A u t ( F )  by 

ad(cr )ado(x )ad(~) -~- -adp(ax)  for x EF .  We can then define X by 

~rp(x)~r-' =p(c~x) .x(x) .  It is clear then that t ' ~ X ( F ) ,  ( a , X ) E  
(Aut(F) IX X(F))I,~, and ~ro (a, X)=  ad(~r). This proves the Proposition. 

We conclude this section by relating trace preserving automorphisms to "finite 

normal" automorphisms. 

(3.8) DEF~NmON. An automorphism a of a group F is called .finite normal if 

a (N) = N for all normal subgroups N of finite index in F. When F is profinite 

and a is continuous we require this only for open normal subgroups N; it then 

follows for all closed normal subgroups as well, the latter being intersections of 

open ones. 

(3.9) PROPOSmON. Let F be a group, a EAu t (F) ,  and r E A u t  c(l a) its 

profinite completion. Then c~ is .finite normal iff 6 is .finite normal. I f  a E T A u t  (F) 

(a is trace preserving) then ~ is .finite normal. 

The first assertion follows from the bijective correspondence N ~ N between 

normal subgroups of finite index in F, and open normal subgroups in ['. If a E 

T A u t  (F) then, by Proposition (3.1), ~ preserves l~-conjugacy classes that meet 

F, and so d~ is finite normal, again because of the above correspondence. 

(3.10) THEOREM (Jarden and Ritter [7], theorem B). Let F be a group 

presented with d generators and r relations with d >= r + 2. Then every finite normal 

continuous automorphism of F is inner. 

(3.11) COROLLARY. Let F be as in (3.9). I f  F is of type (TI) then every .finite 
normal automorphism of F is inner. 

Let a E Aut (F) be finite normal. Theorem (3.10) and Proposition (3.9) imply 

then that r is inner. Since F is of type (TI), Out (F) embeds in Out (f') ((3.4)(1)). 

Hence a is inner. 
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Corollary (3.11) applies in particular when F is a free group Fd in d _->2 

generators (this is theorem 1 of [8]), or a surface group Fq of genus q => 2. These 

groups are of type (TI) by Proposition (3.5). For Fq we have d - r = 2q - 1 -> 2 
when q _--- 2. (In case q = 1, FI = Z2 and the finite normal automorphisms are 

-+ Id.) In the surface group case we can use the Nielsen isomorphism of Out (Fq)  

with the mapping class group [1] to reformulate Corollary (3.11) geometrically as 

follows. 

(3.12) COROLLARY. Let S be a compact orientable surface of genus q >- 2, and 

let a : S -* S be a homeomorphism. If  a can be lifted to every finite normal covering 

of S then ~ is isotopic to the identity. 

4. Varieties of representations 

Let F be a group generated by a finite set S. Let G be an affine algebraic group 

(over C). Then 

R(F, G)  = Hom (r, G) 

can be identified with a closed subvariety of G s. Let A(F, G) denote the 

corresponding affine algebra. 

The group Aut (G) •  Aut (F) acts on R(F, G), hence also on A(F, G), in the 
a d  

obvious way. In particular G acts by conjugation, via G > Aut (G). Let 

c ( r ,  G) = A(F, G) ~, 

the ring of G-invariants. Assume now that G is reductive. Then C(F, G) is a 
finitely generated C-algebra by a classical theorem of Hilbert-Weyi-Mumford 

(see [13], theorem 1). Hence 

S(F, G) = Spec (C(F, O)) 

is an "approximate" afline quotient of R (F, G) by G. The action of Aut (F) on 

R(F, G) induces an action of Out(F) on S(F, G), or, equivalently, on C(F, G). 

We may apply the results of section 1 to these actions. 

(4.1) EXAMPLE. 

f 

Ro(F, G) = ~p 

! 

Let G = PGL2. In R(F, G) consider the subset 

p is injective ] 

E R (F, G p(F) is a discrete subgroup of PSL2(R) 

PSL2(R)/p(F) is compact. 
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We assume that Ro(F, G ) ~  0 ,  so that F is a Fuchsian group which admits a 

presentation of the form 

F=(a,,b~.. . . ,ag, b~,c~,...,c,, I (~[a~ ,b~] ) (~c , )=c  ~ . . . . . .  c e m = l )  

where the ei are positive integers, g is the genus, and (g ; eb" �9 ", e,,) is called the 

signature of F. One has m = 0 if and only if F is torsion free, in which case F is 

called a surface group of genus g. Our hypothesis makes F centerless, so we can 
identify F with a subgroup of Aut (F). 

The natural projection R ( F , G ) ~ S ( F , G )  sends Ro(F;G) onto the set 

So(F, G) of G-conjugacy classes of R,,(F, G). Since Ro(F, G)  is (clearly) Aut (F)- 
invariant, So(F, G) is Out (F)-invariant. 

(4.2) THEOREM (Macbeath and Singerman, [10], theorem (9.15)). Under the 
assumptions of (4.1) the kernel F~/F of the action of Out (F) on So(F, G) is finite, 
and even trivial except in the following cases: 

Signature of r Signature of F, [r, : r ]  

( 2 ; - )  (0;2,2,2,2,2,2)  2 

(1; e, e) (0;2,2,2,2, e) 2 

(1;e) (0;2,2,2, 2e) 2 
(0;e, e, e ,e)  (e _->3) (0;2,2,2,e) 4 

(O;e,e,f,f) (max (e, f )  => 3) (0;2,2, e , f)  2 
(0; e,e, e) (e _->4) (0;3,3, e) 3 
(O;e;e,e) (e _->4) (0;2,3,2e)  6 
(O;e,e,f) (e =>3, e + f > - 7 )  (0;2, e,2f) 2 

(4.3) THEOREM. Let F be a surface group of genus g. Then the "'mapping class 
group" Out (F) is residually finite and virtually torsion free. 

For g = 1, F-~ Z 2, O u t ( F ) ~  GL2(Z), and the result is clear. Suppose that 

g ~ 2. Then we conclude from (4.2) that Aut (F)/F1 acts faithfully on the afline 

variety S (F, G). Moreover Aut (F) is finitely generated, in fact finitely presented 

(cf. [1], theorem (5.1)), so it follows from Corollary (1.2) that Aut(F)/F~ is 

residually finite and virtually torsion free. Since F1 = F for g _-> 3 the proof is 

complete in this case. For g = 2 we can appeal to Edna Grossman [3] (cf. 

Example (2.4) (2) above) for the residual finiteness of Out (F). Since FJF has 

order 2 we conclude from the following lemma that Out (F) is virtually torsion 
free. 
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(4.4) LEMMA. Let F be a residually .finite group, and N a finite normal 

subgroup. I f  F /N is virtually torsion free so also is F. 

In fact we can choose a normal subgroup H of finite index in F such that 

N N H = {1}. Then H embeds in F/N so H, and hence also F, is virtually torsion 
free. 

REMARKS. (1) It is known that, when F is a surface group of genus g => 2, 

every p E Ro(F, G)  lifts to a homomorphism # : F ~ S L ( R ) ,  uniquely up to 

multiplication by one of the 22s characters in Hom (F, { - I}). This is proved, for 

example, in S.J. Patterson, On the cohomology of Fuchsian groups, Glasg. Math. 
J. 16 (1975), 123-140. 

(2) The fact that Out (F) as above is virtually torsion free can also be proved 

by Teichmiiller theory, as L. Bers pointed out to us. By a theorem of Nielsen, 

every element of finite order in Out(F)  has a fixed point in So(F, G). Thus it 

suffices to produce a F1 of finite index in Out (F) that acts freely on So(F, G). We 

take the subgroup F1 that acts trivially on HI(F ,Z /3 ,  Z) .  If s E F~ fixes 

( p ) E  So(F, G)  then s defines an automorphism of the corresponding Riemann 

surface Ep, and s acts trivially on the elements of order 3 in its Jacobian. By a 

well-known lemma of Serre (S6m. H. Cartan 13 (1960/61), Appendix of the 

expos6 of Grothendieck, pp. 17-18 to 17-20) such an s must be the identity. 

Now let G = GL,. Then we shall use the abbreviations 

(1) 

R.  (r)  = R (F, GL~ ), 

A.  (F) = A (F, GL,) ,  

C. (F) = C(F, GL.  ) = A, (F) sL-, 

S. (r)  = S(F, GL,  ) = Spec (C. (F)). 

In this case we have the following basic results. 

For each t E F define the "character" X ( t ) E  C.(F) by 

(2) X(t):  p ~ Xp(t) = Tr (p(t)) 

for p E R.(F).  

(4.5) THEOREM (Procesi, Sibirskii, Resmyslov). 

(1) ([15], theorem 3.4) C, (F) is generated, as a C-algebra by the characters 

x ( t ) ,  t E F. In fact, if F = (S)  it suffices to restrict t to elements of length 2" - 1 in 

the generators S. 
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(2) ([14], theorem 4.1) S,(F) parametrizes the isomorphism classes (p) of 
semi-simple representations p E R, (F). 

(3) ([14], prop. 5.9) The set Irr,(F) of classes of irreducible representations 
p E R.  (F) is open in S, (F). 

(4.6) PROPOSITION. The kernel of the action of Out(F)  on S,(F) is 
T, Aut (F)/I Aut (F), where 

T, Aut (F) = {a E Aut (F) I Xp ~ a = X, for all p E R,  (F)}. 

We have T, Au t (F )DT,+ ,  Aut(F),  and Y A u t ( F ) =  (" l ,~  T, Aut(F).  Every 
.finitely generated subgroup of Aut (F)/T, Aut (F) is residually finite and virtually 
torsion free. Every finitely generated subgroup of Aut (F)/T Aut (F) is residually 

finite. 

The first assertions are obvious. The last assertion follows from the preceding 

ones. The main assertion, about subgroups of Aut (F)/T, Aut (F), follows from 

the corresponding property of Aut (S. (F)), contained in Corollary (1.2). 

(4.7) REMARKS. We can similarly study Aut (F) itself via its action on R,  (F). 

When this action is faithful then, again from (1.2), we conclude that finitely 

generated subgroups of Aut (F) are residually finite and virtually torsion free. In 

order for Aut(F)  to act faithfully on R,(F)  it suffices that F have a faithful 

representation p ~ R,  (F), or, more generally, that, given x fi 1 in F, there is a 

p E R,  (F) such that p (x) ~ 1. 

5. Schemes of representations 

In order to obtain the results of (4.6) and (4.7) for the full automorphism 

groups, in place of their finitely generated subgroups, one would like to invoke 

Theorem (1.1) in place of its Corollary (1.2). In order to justify this we must 

realize the varieties used as schemes of finite type over Z. 

Let the group F have a presentation (S I W) where S is a finite generating set, 

W is a subset of the free group based on S, and w(S) = 1 (w ~ W) are defining 

relations among the generators. 
Let G be an affine group scheme of finite type over Z (e.g. GL,) .  Then 

R (F, G)  = : Horn (F, G)  can be identified with the Z-subscheme of G s consisting 

of all p : S --> G such that 

(1) w(p(S) )=l  i n G  for all w E W. 

Note that, indeed, the equations (1) are defined over Z. We have 
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R(F, G) = Spec (A (F, G)) 

where A (F, G) is the quotient of the S-fold tensor product of the affine algebra 
A6 of G by the ideal generated by elements arising from the equations (1). 

For any commutative ring k we put 

A(F, G)k = k |  G), 

R(F, G)k = Spec(A (F, G)~). 

When k = C we thus recover the objects discussed in the preceding section. 

The formation of R (F, G) is functorial, contravariarltly in F and covariantly in 

G (and the reverse for A(F,G)) .  In particular A u t ( F ) x A u t ( G )  acts on 

R(F ,G)  and on A(F,G) .  More precisely, if k is a commutative ring and 
Aut(G)(k)  denotes the automorphisms defined over k of G, then Aut (F)x 

Aut(G)(k)  acts on R(F, G)k and on A(F, G)k. 

To apply Theorem (1.1) to the action of Aut (F) on R(F, G) we are troubled 

by the fact that the latter is not necessarily flat over Z. To correct this we 

introduce 

.4 (F, G) = A (F, G)/T 

where T is the ideal of (Z-)torsion elements in A(F, G). Then the subscheme 
/~ (F, G ) =  Spec (A (F, G)) of R (F, G) is fiat over Z, evidently invariant under 
Au t (F )xAu t (G) ,  and R(F ,G)k=R(F ,G)k  for any Q-algebra k. From 
Theorem (1.1) we have: 

(5.1) PRoPosrnoN. If Aut(F) acts faithfully on /~(F,G) then Aut(F) is 
residually finite and virtually torsion free. This action is faithful provided that, for 
each x ~  1 in F, there is a homomorphism p : F---~ G(C) such that p (x ) r  1. 

Only the last assertion needs verification. Let a E Aut (F), a ~ 1. Then there is 

a y ~ F such that x = y -~a (y ) r  1. Choose p : F---~ G(C) so that p ( x ) / 1 .  Then 
p ( y ) ~  p(a(y)),  so p E R(F, G)(C)=/~(F,  G)(C) is not fixed by a, whence a 

acts non-trivially on/~  (F, G). 

(5.2) COROLLARY. Let F be a finitely generated subgroup of GL,(C). Then 
Aut (F) is residually finite and virtually wrsion free. 

REMARK. One can also deduce such properties of Aut(F) as follows. 
Lubotzky shows in [8] that if F is virtually a residually p-group (for some prime 

p) then the same is true of Aut (F). Now a finitely generated linear group (over 
C) is easily seen to be virtually a residually p-group for at least two (in fact, all 
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but finitely many) primes p, and any group with this property is easily seen to be 

virtually torsion free. 

To similarly study Out (F) via its action on a quotient of R (F, G), we specialize 
now to the case where G = GL, or SL,. We let GL. act on G (in both cases) by 
conjugation. This action factors through PGL,. Since PGL. (Z) is Zariski dense 
in PGL.(C), it suffices to use GL,(Z) to determine fixed points under any 

algebraic action of GL. that factors through PGL, in characteristic zero. Put 

C(F, G) = A(F, G)~ 

It follows from the above remarks that for any commutative ring k which is flat 

over Z (i.e. torsion free) the map 

(2) c ( r ,  G)k = k | c ( r ,  G)--, A(r,  G)?L- (k) 

is an isomorphism, which we shall view as an identification. We also have 

~(r,  G)=  : fi,(r, G)~ = ~ ( r ,  G) n c ( r ,  G)c. 

For each t E F we have its "character" 

X~(t)E C(F, G) 

defined by 

Xc(t):p ~Xo(t)=Tr(p(t)) forp ER(F ,  G). 

Let )?~(t) denote its image in C(F, G). Write 

Ch (F, G) = the subring of C(F, G) generated by all X~(t) 

C--h (F, G) = the subring of C(F, G) generated by all ~,~ (t) 

(t E r),  

(t E r). 

a homomorphism A group homomorphism q~ : F ~ F' induces 

~o* :Ch(F,G)-->Ch(F ' ,G)  carrying ga(t) to XG(~t), and similarly for Ch. 

Consequently q~* is surjective whenever q~ is. Further this shows that Ch (F, G) 
and Ch (F, G) are invariant under Aut (F). 

It follows from Theorem (4.5) (1) that the commutative diagram 

Ch (F, G) C C(F, G) 
$ $ 

Ch (F, G) C C(F, G) 

becomes, after applying C @z - ,  a square of isomorphisms of finitely generated 

C-algebras. 
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The group Out(F)  acts on both C-h (F, G)  and C(F, G)  with the same kernel, 
Tc Aut (F)/I Aut (F), where (in view of (4.5) (2)) 

(3) T ~ A u t ( F ) = { a E A u t ( F ) l x o o a = x o  f o r a l l p : F ~ G ( C ) } .  

Thus we can deduce from Theorem (1.1): 

(5.3) PROPOSITION, Suppose that Ch (F, G) is a .finitely generated Z-algebra. 
Then Aut (F)/TG Aut (F) is residually .finite and virtually torsion free. 

Using functoriality in F, the finite generation of Ch (F, G)  will follow in 

general once it is shown when F is any free group. 

(5.4) EXAMPLE. Let G = SLz. The ring Ch (F, SL2) can be viewed as the 

Z-algebra generated by the functions ~,(t): Hom(F, SL2(C) )~C (t ~ F), where 

)? ( t ) : p  ~ Xo (t) = Tr (p (t)). This ring has been long studied, by Vogt [18] in 1889, 

and by Fricke [2] for Fuchsian groups F. Magnus [11] calls Ch (F, SL2) the ring of 

"Fricke characters" of F, and proposes it as a natural tool for the study of 

Out(F),  lamenting however ([11], p. 97) that "we do not know enough about 

automorphisms of rings." 

Let F be a free group with basis {sl , ' - ' ,s~}. Then we have the following 

results. 
(1) (Fricke [2] and Horowitz [5]). The ring Ch (F, SL2) is finitely generated, in 

fact by the 2 d - 1 elements )?(t) where t is of the form t = s~ 1 �9 �9 �9 si,, 1 _-< i~ < �9 ' �9 < 

ip ~d .  
(2) (Horowitz [6]; cf. also Magnus [11]). The action of Out (F) on Ch (F, SL2) is 

faithful for d ~ 3. For d -< 2 the kernel of this action is generated by the class of 

the automorphism e :s~--~ s~ -1 for all i. 

There are further results on the structure of Ch (F, SL2) in Horowitz [6] and 

Whittemore [19], and on its full ring of fractions in Magnus [11]. 

Recall that there is a natural surjection Out (F)--~ Aut (F ~ ----GLd (Z), and 

that this is an isomorphism for d N 2. Thus we conclude from the results above: 

(5.5) COROLLARY. (a) For any .finitely generated group F, Ch (F, SL2) is a 
finitely generated Z-algebra. 

(b) If F is a free group then Out (F) is residually finite and virtually torsion free. 

Of course (b) could also be deduced from (4.5) and (1.2) using the fact that 

Aut(F) is finitely generated. 
When F is free on n generators there is an exact sequence 
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1 --~ K ~ Out (F) ~ Aut (F ~ ) ~ 1 

GL,(Z)  

and Baumslag-Taylor have shown that K is torsion free (cf. [9], ch. I, corollaries 

4.12 and 4.13). This easily implies that Out(F)  is virtually torsion free, since 

GL.(Z)  is so. Incidentally, the Baumslag-Taylor result is raised as an open 

problem in [11]. 

(5.6) REMARK. Let k be a commutative ring and R a finitely generated, not 

necessarily commutative k-algebra. One can study representations 

p:R ~M,(F) into n x n matrices over a commutative k-algebra F. These 

again form the F-valued points of an affine scheme R, (R)  of finite type over k 

(cf. [14]). The group GL,  acts by conjugation giving an affine quotient S , (R)  
which, over a field F, parametrizes classes of semi-simple representations of R 

on F" (ioc. cit.). The group Aut (R)  of k-algebra automorphisms of R acts on 

R,  (R), and induces an action of Out (R)  = Aut (R)/ad (R • on S, (R). Even 

when R is a group algebra ZF these automorphism groups are much larger than 

the groups Aut (F) and Out (F). Still one can use the above methods to study 

them and draw conclusions, such as the following: If the finite-dimensional 

representations p as above separate points in R then every finitely generated 

subgroup of A u t ( R )  is residually finite. Indeed the hypothesis implies that 

Aut (R)  acts faithfully on II, R,(R), so one can apply (1.2). There is no such 
natural condition for Out (R)  to act faithfully on II, S, (R). 
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