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We consider estimation in the class of first order conditional linear 
autoregressive models with discrete support that are routinely used to model 
time series of counts. Various groups of estimators proposed in the litera- 
ture are discussed: moment-based estimators; regression-based estimators; 
and likelihood-based estimators. Some of these have been used previously 
and others not. In particular, we address the performance of new types of 
generalized method of moments estimators and propose an exact maximum 
likelihood procedure valid for a Poisson marginal model using backcasting. 
The small sample properties of all estimators are comprehensively analyzed 
using simulation. Three situations are considered using data generated with: 
a fixed autoregressive parameter and equidispersed Poisson innovations; 
negative binomial innovations; and, additionally, a random autoregressive 
coefficient. The first set of experiments indicates that bias correction 
methods, not hitherto used in this context to our knowledge, are some- 
times needed and that likelihood-based estimators, as might be expected, 
perform well. The second two scenarios are representative of overdisper- 
sion. Methods designed specifically for the Poisson context now perform 
uniformly badly, but simple, bias-corrected, Yule-Walker and least squares 
estimators perform well in all cases. 

K e y  words  Bias correction - Estimation - INAR models - Overdispersion 
- Small sample properties - Time series of counts. 
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1 I n t r o d u c t i o n  

The analysis of time series of counts has received considerable attention 
lately. Recent contributions to this area include e.g. Br~nn~ and Hall (2001) 
and Br~nn~ and HellstrSm (2001). Introductory tracts can be found in the 
econometrics textbook of Greene (2000) and the monographs of Cameron 
and Trivedi (1998) and Winkelmann (2000). An attractive class of mod- 
els from the perspective of time series analysis is the observation driven 
integer-valued autoregressive (INAR) model of A1-Osh and Alzaid (1987) 
and McKenzie (1988). Drawing a close parallel with the well-known class of 
Gaussian autoregressive-moving average processes, it not only offers a rich 
choice of dependence structure but also allows a variety of distributional 
assumptions for the different components of the process. There exist close 
relationships between the INAR class of models and the well established 
field of branching processes with immigration. This is exploited in Jung and 
Tremayne (2003) for testing purposes and will be utilized further in the 
estimation context of the present paper. 

We consider the estimation of certain types of INAR models with a con- 
ditional linear first order autoregressive (CLAR(1)) dependence structure. 
The CLAR(1) structure is useful and often sufficient to capture the depen- 
dence in the data in a variety of practical applications. Moreover, it serves 
as a starting point for the extension to higher order INAR models allowing 
for richer dependence structures. Given the highly nonlinear character of 
these models, the required developments are by no means straightforward. 
These are subject of ongoing research to be reported elsewhere. In the anal- 
ysis of count data a natural first choice for the distributional assumption 
is Poisson. Consequently, we focus here on description and evaluation of 
estimators for the parameters of CLAR(1) models with Poisson marginal 
distributions. In empirical applications, however, extra binomial variation, 
or overdispersion, is regularly found in count data, rendering the restric- 
tive Poisson assumptions inadequate for valid inference. It, therefore, seems 
natural to investigate the robustness of these estimators to deviations from 
the Poisson distribution of forms that will generally be unknown to applied 
workers. It turns out that this question can be addressed quite elegantly 
within the framework of the CLAR(1) class of models described in Grun- 
wald et al. (2000). The negative binomial (NB) model, will be employed in 
our analysis, since it is the parametric model most often used in empirical 
work to capture the overdispersion phenomenon. As part of our investi- 
gations we also employ a random coefficient formulation for the INAR(1) 
model as another means of generating overdispersion. 

Novel features of the paper include: a different proposal for an exact 
maximum likelihood estimator; use of new moment conditions in conjunc- 
tion with conditional and unconditional generalized method of moments 
estimators; and the use of bias correction techniques in this context for 
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what we believe is the first time. The simulation evidence is more compre- 
hensive than any hitherto available in the literature. Our evidence strongly 
indicates that erroneously maintaining the Poisson marginal structure of the 
data when it does not hold extracts a heavy price in estimator performance 
with procedures derived under this assumption. We conclude that some of 
the simplest estimators available are preferable across the range of scenarios 
considered, as long as bias correction is allowed for. 

2 S o m e  i n t r o d u c t o r y  t h e o r y  

2.1 The class of conditional linear AR(1) models 

The general framework considered here is the class of CLAR(1) models in- 
troduced by Grunwald et al. (2000). For the process {Xt; t = O, 4-1, :t:2,...} 
the CLAR(1) structure is defined as 

re(X,-1) - E(Xt ] Xt-1) = a X , _ l  + ~. (1) 

Here a and A are (possibly restricted) real numbers chosen in such a way 
that the value of m(Xt_  1) remains in the admissible parameter space of the 
conditional distribution f (x t lx t_ l ) .  Appropriate restrictions will be given 
below for the specific models used here. 

Alternatively, a stationary first order autoregressive structure can be de- 
fined by means of an exponentially decaying autocorrelation function (ACF) 

Pk ---- c~ Xt-k )  = ak (k = 1, 2 , . . . )  . (2) 

Grunwald et al. (2000) show that under very mild conditions (2) is implied 
by the CLAR(1) structure, but the converse is not true in general. 

The usefulness of the structure (1) is based upon the fact that it includes 
many non-Gaussian AR(1) models that have been proposed in the litera- 
ture. In particular it includes the class of CLAR(1) models with discrete 
support routinely employed for the modelling of times series of counts. In 
this paper we evaluate the properties of various estimators for the param- 
eters of interest under three different scenarios by Monte Carlo methods. 
The first scenario is the fixed coefficient INAR(1) model with a Poisson 
marginal distribution. This is the standard framework usually chosen as a 
starting point for the analysis of time series of counts. It will be discussed in 
some detail in the next subsection. In empirical applications involving count 
data, overdispersion is frequently observed. To show that, under such cir- 
cumstances, different estimators can give quite different results, we give an 
example using real data at the beginning of the penultimate section of the 
paper. This motivates the second and third scenarios employed which use 
negative binomial innovations in the simulations, in the contexts of fixed 
and random coefficient autoregression. While the first set of experiments 
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presupposes equidispersion in the counts, the second and third are repre- 
sentative of the phenomenon of overdispersion. We can, therefore, analyze 
the behaviour of those estimators explicitly derived in the context of Pois- 
son random variables under all three scenarios and give recommendations as 
to which estimators may be preferable when overdispersion of an unknown 
form is suspected in the data. 

2.2 The I N A R ( 1 )  benchmark  model  

The fixed coefficient INAR(1) model introduced by A1-Osh and Alzaid 
(1987) and McKenzie (1988) is defined on the discrete support No by means 
of the difference equation 

X t = a o X t - 1  + W t  (t = 0 , • 1 7 7  (3) 

It is assumed that the fixed parameter a E [0, 1) and that Bit is an indepen- 
dently and identically distributed ( l id)  discrete random variable sequence 
with finite first moment (#w > 0) and second (central) moment (a2w > 0). 
Wt and X t - 1  are presumed to be stochastically independent for all points 
in time. The process generated by (3) is stationary. The discreteness of the 
process { X t }  is ensured by the binomial thinning operation (Steutel and 
van Harn, 1979) 

X t - i  

a o X t - 1  = ~ Yi , t -1  , (4) 
i----1 

where the Yi,t-1 are assumed to be lid Bernoulli random variables with 
P(Y~,t-1 = 1) = a and P ( Y i , t - 1  = O) = 1 - a. Note that subsequent thin- 
ning operations are performed independently of each other with a constant 
probability a and that thinning is a random operation with an associated 
probability distribution. 

In the following we state those properties of the INAR(1) process that are 
necessary to derive the estimators to be considered. Without employing any 
distributional assumption, the unconditional moments of X t are given as fol- 
lows: E(Xt) = # w / ( 1 - a ) ;  and Var(Zt) = ( a # w + a 2 w ) / ( 1 - a 2 ) .  The ACF of 
the process is identical to (2) with the qualification that only positive auto- 
correlation is allowed. Both the regression function E ( X t l X t _ I  ) = a X t _  1 + 
#w and the conditional variance function Var ( X t [ X  t_ 1 ) = a ( 1 - a) X t -  1 + C~2w 
are linear in X t - 1 .  

It can easily be shown that the INAR(1) process is structurally equiv- 
alent to the subcritical Bienaym~-Galton-Watson branching process with 
immigration (BGWI) process; for the definition of a BGWI process see e.g. 
Venkataraman (1982). This fact is exploited in the next section. 
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The properties of the marginal distribution of the INAR(1) process can 
be conveniently summarized by its probability generating function (pgf), 
which is given by (B.2) in Appendix B. By inspecting the pgf of the INAR(1) 
process it turns out that  it satisfies the definition of a discrete self- 
decomposable distribution; see Steutel and van Harn (1979). This class 
contains the Poisson and negative binomial distributions as special cases 
and discrete stable distributions as a sub-class; the former special case is 
a member of this sub-class but the latter is not. Consequently, one can 
choose as the marginal distribution of an INAR(1) process any member of 
the class of discrete self-decomposable distributions. It also turns out that 
the marginal distribution of the INAR(1) process is completely specified 
through the choice of the distribution of the innovation Wt.  If the distri- 
bution of Wt  and the marginal distribution of X t are to be from the same 
family of distributions (as is the case in the linear Gaussian AR(1) model), 
the possible choices are narrowed down to the class of discrete stable dis- 
tributions; see Alzaid and AI-Osh (1988, p. 55) for related discussion. This 
follows directly from a comparison of the definition of the class of discrete 
stable distributions given in Steutel and van Harn (1979) and the pgf (B.2) 
of the INAR(1) process. Since the only discrete stable distribution with a 
finite first moment is the Poisson distribution, its choice for the innovation 
and the marginal distribution of the INAR(1) process can be justified on 
the basis of these theoretical considerations. 

Assuming Wt  "~ Po(A) it is then straightforward to show that X t ..~ 
P o ( A / ( 1 -  a)); see (B.4) and (B.5) for the relevant derivation. The resulting 
INAR(1) process will henceforth be denoted PoINAR(1). 

For estimation and forecasting purposes the conditional distribution 
f ( x t l x t _ l )  plays a key role. Two insightful ways to derive this distribution 
are provided in Appendix B. The resulting form is given by 

f(xtlxt_l) -- ~ Xk-1 ak(1 - a) z t - l - k  exp(-A) 
k)! (5) 

k=O 

= x t _ l !  exp(-)~) C(x~_ l ,  x t )  , 

compare (B.7'). 

3 E s t i m a t o r s  c o n s i d e r e d  

This section is concerned with the estimation of the two parameters of 
interest: the thinning parameter; and the mean of the immigration rate. 
The estimators discussed here have almost exclusively been proposed in 
the context of the INAR(1) model with a Poisson marginal distribution. 
In those cases where no (or only minimal) distributional assumptions are 
used in their derivation, this is indicated in Appendix A. The estimators 
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are grouped according to three broad categories: moment-based; regression- 
based; and likelihood-based estimators. Certain feasible estimators drawn 
from the first category that have been proposed in the BGWI literature 
are not included in this analysis because of their rather unfavourable small 
sample properties. For an extensive discussion of this point see Jung (1999, 
Chapter 4). Outline details of the estimators used are provided in the next 
three paragraphs with a fuller treatment given in Appendix A. 

A standard Yule-Walker estimator for the parameters a and ,~ is the 
initial estimator employed. The precise variant used is given in (A.1) and 
(A.2). As an alternative we include an estimator for A proposed in Greene 
(2000, Chapter 19.9.7) in the group of moment-based estimators to be ana- 
lyzed; this variant substitutes (A.3) for (A.2) and will be denoted (GR). We 
also look at Generalized Method of Moments (GMM) estimators employ- 
ing various combinations of conditional as well as unconditional moment 
restrictions. It turns out that GMM estimation based on the latter type of 
moment restrictions is sometimes numerically unstable and we, therefore, 
give it limited consideration in the subsequent analysis; see Sections A.1 
and 5 for further details. The estimator to be used throughout carries the 
acronym GMM in the following discussion and the conditional moment re- 
strictions employed with it are given in (A.5), (A.6) and (A.7). 

The usual regression-based estimation method in the context of the 
INAR(1) model is the conditional least squares (CLS) method of Klimko 
and Nelson (1978). The estimators are given as (A.9) and (A.10) in Sec- 
tion A.2. Due to the fact that the conditional variance, V a r ( X t l X t _ l )  , of 
the INAR(1) process is not constant over time, weighted conditional least 
squares estimators seem attractive alternatives to consider. This type of 
estimator has been proposed in the branching process literature in the con- 
text of estimating the parameters of BGWI processes. Taking the structural 
equivalence between INAR(1) and subcritical BGWI processes into account 
we can, therefore, use the weighted conditional least squares estimation 
method given in Wei and Winnicki (1989) along with the weighting scheme 
proposed there. These parameter estimators will be denoted WCLS and are 
given in (A.12) and (A.13). A further variant has been advanced by Heyde 
and Lin (1992) in the context of estimating equations principles. This leads 
to a different set of weights that are data determined and provides an an 
asymptotic quasi-likelihood (AQL) estimator. See (A.15) and (A.16) for 
details of the estimators and (A.17) and (A.18) for how the weights are 
determined. 

Two likelihood-based estimation methods are considered that differ in 
their treatment of the (unobservable) starting value, Xo, of the INAR(1) 
process. The conditional maximum likelihood (CML) method treats X 0 as 
given and the relevant likelihood to be maximized is given at (A.21). The 
exact maximum likelihood (EML) method is based on the full likelihood 
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function including an estimate of X 0. Utilizing the time reversibility prop- 
erty of PoINAR(1) (McKenzie, 1988), an estimate of the starting value can 
be obtained by means of the backcasting method see e.g. Box, Jenkins and 
Reinsel (1994). Further details are provided in Section A.3 at (A.24), (A.25) 
and the surrounding discussion. 

4 S imula t ion  des ign  

We initially conducted a series of Monte Carlo experiments to assess the 
small sample properties of the various estimators outlined in Section 3 un- 
der the scenario of the PoINAR(1) model. These simulations are designed 
to resemble situations typically encountered in empirical research. Series of 
short and moderate length consisting of low counts were generated using the 
PoINAR(1) model described in Section 2.2. The biases and mean squared 
errors (MSE) of the various estimators discussed in Section 3 are computed 
using realistic parameter combinations of the dependence parameter a and 
the mean of the innovation process A. Details pertaining to the simulation 
design are presented here and a discussion of the results constitutes the next 
section. 

The design parameters for the main body of simulations were chosen as 
follows. The level of the process E(Xt) was fixed at 5 in order to ensure 
the generation of low level count series. We experimented with other (low) 
values for the mean of the process and found qualitatively similar results. 
The dependence structure of the INAR(1) process is governed by the pa- 
rameter a and this was allowed to vary in the range [0.2, [0.1], 0.9]. Due to 
the functional relationship between the mean of the process and the value 
of the parameters a and A, the value for the latter parameter necessarily 
varies in the range from 0.5 to 4. 

The sample sizes T used were 50, 100 and 500, with the main discussion 
below focussing on the intermediate value, since many salient points arise 
in this context. For T = 500 all estimators generally show minimal biases 
when estimating either a or A; full details are available from the authors on 
request. Higher sample sizes were, therefore, not employed. The simulations 
were carried out using programs written in GAUSS Version 3.2. 

In order to prevent the inclusion of simulated data sets that are likely 
to lead to inadmissible estimates for a we used a filtering device in the data 
generating process. One possible filter would be to employ a suitable test of 
randomness (see Jung and Tremayne, 2003) and filter out those series that 
do not exhibit a significant dependence structure. An even simpler type of 
filtering device is to look at the first order sample autocovariance of the 
data set. Should this not be positive, the generated series is not used and is 
replaced with a new realization. This second type of filter is used here. The 
results stemming from the use of both filters are broadly similar. Of course 
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these filters are able to prevent results with negative estimated values of a 
only for those estimators that directly rely on the first order autocorrelation, 
viz. YW, GR and CLS. These and most other estimators may nevertheless 
produce inadmissible results. For the calculation of summary statistics of 
interest, we simply discarded these invalid estimation results for the esti- 
mators concerned. (Alternatively, trimmed estimators could have been used 
but this would not change the overall picture.) Some details of the number 
of invalid results that have been discarded are reported below. 

The class of likelihood-based estimators is the only group of estimators 
explicitly able to prevent inadmissible estimates. In the process of optimiza- 
tion of the likelihood function, either a constrained optimization routine can 
be used, or a suitable parameter transformation can be undertaken. Due to 
the availability of the well known MAXLIK routine in Gauss, we chose the 
latter approach in the simulations and transformed the parameters a and A 
as follows: ~ -- In[a/(1 -a) ] ;  and ~ = In(A). The resulting estimates for ~ and 

were then transformed back via: a = exp(~?)/[1 + exp(~?)]; and A = exp(~). 

The results of 5 000 simulation experiments are exposited by means of 
graphs and tables whose entries summarize the outcomes through the bias, 
percentage bias and mean squared error (MSE) for the 8 estimators. 

5 R e s u l t s  for t h e  P o I N A R ( 1 )  m o d e l  

The YW, GR, CLS, WCLS, AQL, CML and EML estimators are compared 
for the PoINAR(1) model (using Poisson innovations) in the first Monte 
Carlo experiment. We also discuss GMM based on both unconditional and 
conditional moment restrictions. The results for sample size 100 were found 
to be representative for the various simulation designs and are therefore de- 
scribed in detail. The results for smaller (larger) sample sizes lead to higher 
(smaller) biases and MSEs but not to different conclusions. 

The tendency of the different estimators to produce negative estimates 
for a differs markedly. While YW, CLS and GR are not affected by this 
problem, WCLS, AQL and GMM are, but to differing extents. For a weak 
dependence structure (a = 0.2) WCLS produces invalid estimates for the 
parameter a in about 4% of the cases. As the dependence increases this 
number rapidly decreases to zero. 

In contrast to this behaviour, the AQL estimator does produce (rarely) 
negative estimates for the parameter a, but these can occur no matter how 
large within the chosen range is the true value. This behaviour is undesirable. 
With regard to the two GMM estimators that based on the unconditional 
moment restrictions, invalid estimates of a occur about 5% of the time; 
GMM based upon conditional moment restrictions also suffers from this 
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defect but very rarely. For moderate values of the dependence parameter 
(say 0.3 < a <_ 0.8) the bias properties of GMM based on unconditional 
moment restrictions are very good and parallel those based on conditional 
moment restrictions. This, however, is not the case for either a = 0.2 or 
a = 0.9 and, therefore, in view of greater numerical instability difficulties 
encountered with the former we do not report it further. The acronym GMM 
will henceforth be used to denote the estimator based on conditional moment 
restrictions. 

Y W  G R  C L S  W C L S  A Q L  G M M  C M L  E M L  

a 

B i a s  0 .3  - 0 . 0 2 1 3  - 0 , 0 2 1 3  - 0 . 0 2 1 3  - 0 . 0 1 8 8  - 0 . 0 2 0 0  - 0 . 0 0 0 1  - 0 . 0 1 2 8  - 0 . 0 1 0 5  
0 .5  - 0 . 0 2 8 0  - 0 , 0 2 8 0  - 0 . 0 2 7 8  - 0 . 0 2 6 3  - 0 . 0 2 6 5  - 0 . 0 0 3 0  - 0 . 0 0 8 1  - 0 . 0 0 5 1  
0 .7  - 0 . 0 3 2 2  - 0 . 0 3 2 2  - 0 . 0 3 1 9  - 0 . 0 3 2 0  - 0 . 0 2 9 6  - 0 . 0 0 1 9  - 0 . 0 0 4 9  - 0 . 0 0 2 3  
0 .9  - 0 . 0 4 1 2  - 0 . 0 4 1 2  - 0 . 0 3 8 7  - 0 . 0 3 9 8  - 0 . 0 3 7 6  - 0 . 0 0 0 8  - 0 , 0 0 2 7  - 0 . 0 0 1 4  

% - B i a s  0 .3  - 7 . 0 8  - 7 . 0 8  - 7 . 0 9  - 6 . 2 7  - 6 . 6 5  - 0 . 0 2  - 4 , 2 6  - 3 . 5 0  
0 .5  - 5 . 6 0  - 5 . 6 0  - 5 . 5 7  - 5 . 2 6  - 5 . 3 0  - 0 . 6 1  - 1 , 6 1  - 1 . 0 3  
0 . 7 1 - 4 . 6 0  - 4 . 6 0  - 4 . 5 6  - 4 . 5 8  - 4 . 2 3  - 0 . 2 8  - 0 , 6 9  - 0 . 3 3  
0 .9  i - 4 . 5 8  - 4 . 5 8  - 4 . 3 0  - 4 . 4 2  - 4 . 1 8  - -0 .09  - -0 .30  - 0 . 1 6  

M S E  0.3  0 . 0 0 9 7  0 . 0 0 9 7  0 . 0 0 9 7  0 . 0 1 1 7  0 . 0 1 0 0  0 .0085  0 .0086  0 . 0 0 8 6  
0 .5  0 . 0 0 9 2  0 . 0 0 9 2  0 . 0 0 9 2  0 . 0 1 0 6  0 . 0 0 9 5  0 .0059  0 . 0 0 5 4  0 . 0 0 5 4  
0 .7  0 .0071  0 .0071  0 .0071  0 . 0 0 7 5  0 . 0 0 7 3  0 . 0 0 2 7  0 .0022  0 . 0 0 2 2  
0 .9  0 . 0 0 4 9  0 . 0 0 4 9  0 . 0 0 4 6  0 . 0 0 4 8  0 . 0 0 4 9  0 . 0 0 0 4  0 . 0 0 0 4  0 . 0 0 0 3  

B ia s  3 .5  0 . 1 0 3 4  
2.5 0 . 1 3 6 4  
1.5 0 . 1 5 6 4  
0 .5  0 . 2 0 2 0  

- 0 . 0 4 2 1  0 . 1 0 4 0  0 . 0 9 1 7  0 . 0 9 7 5  - 0 . 0 6 2 2  0 .0612  0 . 0 4 5 1  
0 . 0 0 4 8  0 . 1 3 5 9  0 .1281  0 . 1 2 9 2  - 0 . 0 4 7 2  0 . 0 3 6 2  0 . 0 1 8 0  
0 . 0 0 2 5  0 .1551  0 .1556  0 . 1 4 3 5  - 0 . 0 2 3 8  0 . 0 1 8 4  0 . 0 0 3 0  
0 .0091  0 .1915  0 . 1 9 6 8  0 . 1 8 6 3  - 0 . 0 0 2 8  0 .0084  0 . 0 0 0 8  

% - B i a s  

M S E  

3.5 2 .96  
2.5 5 .45 
1.5 10 .43  
0.5 40 .41  

3.5 0 , 2 7 4 7  
2.5 0 , 2 5 1 7  
1.5 0 , 1 8 7 8  
0 .5  0 , 1 3 0 7  

0 .71  2 .97  2 .62  2 .79  - -1 .78  1.75 1.29 
0 .19  5 .44 5 .12 5 .17  - -1 .89  1.45 0 .72  
0 .17  10 .34  10 .37  9 .57  - -1 .59  1.23 0 .20  
1.81 38 .30  39 .37  37 .26  - -0 .57  1.67 0 .17  

0 . 3 5 5 8  0 . 2 7 5 0  0 . 3 2 2 0  0 . 2 8 1 9  0 .3045  0 .2439  0 . 2 4 3 2  
0 . 1 7 8 0  0 . 2 5 0 7  0 . 2 8 5 7  0 . 2 5 7 9  0 .1762  0 . 1 5 0 5  0 . 1 4 8 7  
0 . 0 6 5 5  0 .1872  0 . 1 9 7 3  0 . 1 9 4 4  0 . 0 7 0 0  0 . 0 5 8 6  0 . 0 5 7 3  
0 . 0 1 2 0  0 .1244  0 . 1 2 9 9  0 .1311  0 , 0 1 0 4  0 . 0 0 9 3  0 .0086  

Table 1 Bias, percentage bias and MSE for the estimators 5. (top panel) and ~. 
(bottom panel) of the PolNAR(1) model at T --- 100. 

The biases of representative estimators are depicted in the upper pan- 
els of Figure 1 (and the subsequent figure in a different context). Table 1 
provides a fuller account, including the MSE, for some of the combinations 
of a and A, together with the percentage bias in each estimator of both 
parameters. To economize on the use of space, only a representative sample 
of simulation results is presented. Further results can be obtained from the 
authors on request. It clearly emerges that GMM, CML and EML perform 
well for both a and fl with respect to bias as well as MSE. Of the two max- 
imum likelihood estimators EML has small but discernible advantages over 
CML. Moreover, the advantages are even evident at T = 500 and so we 
would, on balance, advocate the use of the more complicated EML in the 
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Figure 1 Bias of representative estimators (upper panels) and bias corrected es- 
timators (lower panels) for a and A in the PoINAR(1) model for T = 100. 

context of a PoINAR(1) model. 

The group of estimators containing YW, GR, ~LS, WCLS and AQL all 
exhibit a downward bias for a of approximately 5% at sample size 100. In 
view of the association between the estimators for a and A, the estimates of 
the latter for these five estimators are generally upward biased, except for 
GR which has almost no bias. Observe that for large values of a the bias in 
A can be quite high, e.g. around 40% for a = 0.9 and A -- 0.5. This is true 
for YW and the regression-based estimators, in which context there are rare 
instances of inadmissible estimates with WCLS and AQL. 

Reducing T to 50 basically doubles all biases and increases the inad- 
missible results for WCLS to about 10% of the replications (almost all for 
a = 0.2, 0.3) and 7% for AQL, which are spread across all values of a. These 
arguments may mitigate against the use of these two regression-based esti- 
mators in samples of this size. For sample sizes less than this we would not 
recommend that an INAR(1) model be fitted to data because of the unac- 
ceptable finite sample properties that eventuate. It can be noted in passing 
from our Monte Carlo experiments that the sample size needed to obtain 
a reliable estimate of the parameters a and A seems to be inversely related 
to the level of dependence found in the data. Freeland (1998, Chapter 4) 
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reports the results of a small simulation experiment similar in spirit to as- 
pects of our own. His findings are not at variance with ours and he also has 
a short discussion of asymptotic efficiency. 

Summarizing our results in the case of the PoINAR(1) model, the likelihood- 
based estimation methods, GMM and possibly GR could be recommended. 
At this stage, certain of the moment-based and regression-based estimators 
might be regarded as inferior because of their finite sample biases. But these 
may be amenable to treatment by bias reduction methods and it is to this 
issue that we turn in the next section. 

6 Bias  c o r r e c t i o n  in t h e  P o I N A R ( 1 )  m o d e l  

The results of the last section indicate that the group of estimators com- 
prising of YW, GR, CLS, WCLS and AQL may be unpromising because of 
unfavourable bias properties stemming from the estimation of the parame- 
ter a. But looking at the biases at different sample sizes it has already been 
mentioned that a doubling of T leads to a halving of the bias. Therefore, 
it may be the case that the bias function can be approximated by a linear 
function of T -1 . Moreover, the bias of estimators of a may be well approx- 
imated by a linear function of the parameter. This is suggested by some of 
the entries in Table 1; see also the upper panels of Figure 1. 

Bias correction in Gaussian AR(1) models has attracted the attention of 
researchers for many years, beginning with Kendall (1954) and Marriott and 
Pope (1954). See also Andrews (1993) and MacKinnon and Smith (1998) for 
more recent contributions and Shaman and Stine (1988) for work extend- 
ing the approach to higher order autoregressive models. An approximately 
unbiased estimator for the dependence parameter in the Gaussian AR(1) 
model has been derived by Orcutt and Winokur (1969) using Monte Carlo 
techniques. Given the links between the Gaussian AR(1) model and the 
PoINAR(1) model afforded by the CLAR(1) framework, it is of interest to 
see if bias correction methods used in the Gaussian context also improve 
performance in the PoINAR(1) case. We, therefore, consider the following 
bias corrected estimator 

1 
~" = T-~- 3 ( T S .  + 1) (6) 

for the parameter a, where ~. indicates the following estimators of a for 
which bias correction is available, viz. YW, GR, CLS, WCLS and AQL. 
Corresponding estimators ~. arise naturally from using ~~ rather than ~. 
in their construction. 

In order to evaluate the effects of the bias correction scheme (6) un- 
der the PoINAR(1) scenario, we conducted a Monte Carlo experiment. The 
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simulations were carried out along the lines of Section 4, but using the bias 
corrected versions of the above mentioned estimators. The lower panels of 
Figure 1 depict the results for certain estimators and some results are pre- 
sented in more detail in Table 2 for T - 100. At this sample size the bias in 
all five estimators of a disappears for all levels of interest (except, in fact, 
for a = 0.2, the results for which are not explicitly given). With respect to 
the estimation of the parameter A it can be observed that for YW, CLS, 
WCLS and AQL the bias in these estimators also disappears. 

Y W  

Bias  0 .3  - 0 . 0 0 2 3  
0 .5  - 0 . 0 0 3 1  
0 .7  - - 0 . 0 0 1 3  
0 .9  - - 0 . 0 0 4 8  

% - B i a s  0 .3  - 0 . 7 7  
0 .5  - 0 . 6 2  
0 .7  - 0 . 1 8  
0 .9  - 0 . 5 3  

M S E  0 .3  0 . 0 0 9 9  
O.5 O.O090 
O.7 O.O065 
0 .9  0 . 0 0 3 4  

B ia s  3 .5  0 . 0 0 8 7  
2.5 0 . 0 1 1 7  
1.5 0 . 0 0 1 3  
0 .5  0 .0191  

Q - B i a s  3 .5  0 .25  
2.5 0 .47  
1.5 0 .09  
0 .5  3 .82  

M S E  3.5 0 . 2 7 6 2  
2.5 0 .2431  
1.5 0 . 1 6 9 2  
0 .5  0 .0888  

G R  C L S  W C L S  A Q L  

- 0 . 0 0 2 3  - 0 . 0 0 2 4  - 0 . 0 0 0 2  - 0 . 0 0 0 1  
- 0 . 0 0 3 1  - 0 . 0 0 2 9  - 0 . 0 0 1 3  - 0 . 0 0 0 5  
- 0 . 0 0 1 3  - 0 . 0 0 0 9  - 0 . 0 0 1 1  0 . 0 0 1 9  
- 0 , 0 0 4 8  - 0 . 0 0 2 5  - 0 . 0 0 3 5  - 0 . 0 0 1 6  

- 0 . 7 7  - 0 . 7 8  - 0 . 0 5  - 0 . 0 1  
- 0 . 6 2  - 0 . 5 8  - 0 . 2 6  - 0 . 1 1  
- 0 . 1 8  - 0 . 1 3  - 0 . 1 5  0 .26  
- 0 . 5 3  - 0 . 2 8  - 0 . 3 9  - 0 . 1 7  

0 . 0 0 9 9  0 .0099  0 .0121  0 . 0 1 0 4  
0 . 0 0 9 0  0 .0090  0 .0105  0 . 0 0 9 3  
0 .0065  0 .0064  0 .0069  0 . 0 0 6 8  
0 .0034  0 .0032  0 .0034  0 .0038  

- 0 . 0 6 9 4  0 .0093  0 .0165  - 0 . 0 0 0 2  
- 0 . 1 1 7 4  0 .0113  0 . 0 2 6 6  0 .0064  
- 0 . 1 4 6 2  - 0 . 0 0 0 1  0 .0288  - 0 . 0 0 0 1  
- 0 . 1 4 4 8  0 .0094  0 .0434  0 . 0 1 9 2  

- 1 . 9 8  0 .27  0 .47  - 0 . 0 1  
- 4 . 7 0  0 .45 1.06 0 .26  
- 9 . 7 4  - 0 . 0 0  1.92 - 0 . 0 0  

- - 2 8 . 9 7  1.88 8 .68 3 .85 

0 . 3 5 5 8  0 .2764  0 .3270  0 . 3 0 0 3  
0 .1865  0 .2421  0 .2770  0 . 2 4 8 7  
0 . 0 8 2 5  0 .1689  0 .1747  0 . 1 9 1 4  
0 . 0 3 3 6  0 .0858  0 .0856  0 . 0 9 7 0  

Table 2 Bias, percentage bias and MSE for the bias corrected estimators ~. and 
~o of the PolNAR(1)  model at T = 100. 

This is not true for the GR estimator where a limited downward bias 
(though up to 30% at a = 0.9) is introduced by virtue of the bias correction 
scheme. The bias reduction proposed, therefore, does not aid the perfor- 
mance of GR; without it a is estimated with bias but ,~ not, whilst with it 
the reverse obtains. 

At sample size 50 the same results broadly hold, though a serious up- 
ward bias in ~ when a = 0.9 of between 20 and 30% can arise with YW 
and the regression-based estimators. At this smaller sample size WCLS and 
AQL give inadmissible values some 20% of the time spread across all true 
values of a. Even YW and CLS exhibit this tendency 8 - 12% of the time 
(with 5, > 1). Of course at a = 0.9 the bias correction scheme introduces 
an approximate 8% upward correction at T = 50. Thus bias corrected esti- 
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mates of a larger than one may not be surprising. 

The conclusions from our simulation studies under the PoINAR(1) sce- 
nario can now be updated as follows. The likelihood-based methods perform 
very well, as does GMM. After applying the bias correction scheme, YW 
and CLS both work well. The other regression-based estimators behave less 
satisfactorily because of the evident instability in the estimation results re- 
ported. 

7 Effects  of  o v e r d i s p e r s i o n  

The framework of the class of CLAR(1) models with discrete support is 
employed now to model the phenomenon of overdispersion in time series 
of counts. Extra binomial variation is a common phenomenon in observed 
count data. We first present an example of a count data set exhibiting 
overdispersi0n and estimate the parameters of an INAR(1) model using 
bias corrected Yule-Walker and CLS estimators on the one hand and by 
maximum likelihood on the other. This will be seen to provide strong mo- 
tivation for the remaining discussion in this section. We use monthly strike 
data published by the U.S. Bureau of Labor Statistics for the period Jan- 
uary 1994 to December 2002, a total of 108 observations. The counts consist 
of the number of work stoppages leading to 1 000 workers or more being idle 
in effect in the period. The observations range from zero to 14 ongoing work 
stoppages in a particular month and have a sample mean and variance 4.94 
and 7.92, respectively. The first 10 sample autocorrelations are provided in 
the top panel of Table 3. They decay exponentially suggesting a CLAR(1) 
model may be appropriate. This is corroborated by the sample partial au- 
tocorrelation function (not shown). 

! ! 
k I 1 2 3 4 5 6 7 8 9 10 I 

[ I S A C ( k )  0.573 0.346 0.153 0.117 0.029 0.009 - 0 . 0 2 8  - 0 . 0 8 4  - 0 . 0 1 6  0.048 

& Y W  -- 0 .6049 (0.0818) ~YW = 1.9536 (0.4020) 
a C L  s = 0.6103 (0.0813) ~ C L S  = 1.9410 (0.4027) 
a C M  L = 0.5061 (0.0561) ~ C M L  = 2.4603 (0.2989) 
~ g M L  = 0.5069 (0.0549) ,XCM L = 2.3937 (0.2917) 

Table 3 Sample autocorrelations (SAC) for various lags k (top panel) and esti- 
mation results (bottom panel) for the strikes data. Asymptotic standard errors are 
provided in parentheses. 

The lower part of Table 3 provides estimates for the Yule-Walker (YW) 
and the conditional least squares (CLS) estimators with bias correction and 
maximum likelihood estimates based on the conditional (CML) and the 
exact (EML) likelihood function. Asymptotic standard errors are given in 
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parentheses. Note that the YW and CLS estimates, while being close to one 
another, differ by about 20% from the two maximum likelihood estimates. 
In the simulations reported in Section 6 (and also in Section 5) it is rare 
indeed to find such divergence of individual estimates from one to another 
based on the same realization of data. This real data set does, of course, 
exhibit overdispersion and one is led to question whether it is wise to rely on 
the assumption of equidispersion inherent in Poisson innovations in making 
recommendations on the desirability of estimators. The evidence of Sections 
5 and 6 is predicated on this assumption; this section relaxes it and provides 
convincing evidence explaining what is seen in Table 3. 

Following Grunwald et al. (2000) we choose two types of models from 
the class of CLAR(1) models as exemplars of the situation of overdispersion. 
These are: the fixed coefficient first order autoregression; and the random 
coefficient autoregression, both with a NB innovation distribution. These 
models have previously been discussed in some detail by A1-Osh and Aly 
(1992) and McKenzie (1986). In what follows we briefly present the two 
types of models and list some of their properties. Then the design param- 
eters for further Monte Carlo experiments will be outlined and, finally, the 
behaviour of the various estimators under both overdispersion scenarios will 
be described. As a practical matter, a user of these models will not know 
the distribution of the (unobservable) innovations. But any application of 
GMM, or likelihood-based estimators, for example, needs to make distri- 
butional, or at least moment, assumptions. The computations summarized 
below assume a misspecified Poisson form for the innovations, rather than 
their true overdispersed form. As might be expected, we find evidence of 
deleterious effects on estimators based on assuming particular aspects of 
innovation behaviour erroneously. 

The first type of model is of the form (3) but with Wt ". NB(n,p). The 
resulting marginal distribution is not necessarily NB, but exhibits overdis- 
persion which is relevant for our analysis. Note that the interpretation as 
the estimation of the mean of the innovation process by means of the es- 
timators ~. (where the notation is as introduced in (6)) is retained by the 
fact that, under the NB specification, E(Wt)  = / k  = np/(1 -p).  The second 
type of model is the random coefficient autoregressive model 

X t = a  t o X t _ l + W t  (t = 0 , + 1 , + 2 , . . . )  . (7) 

It is assumed that the random variable a t is beta distributed in order to keep 
the range of its possible values between 0 and 1 and so the notion of thin- 
ning is retained (McKenzie, 1986). The innovation Wt is again NB(n,p). 
The resulting marginal distribution of X t is not of central interest, but the 
fact that the process (7) is able to introduce overdispersion into the simu- 
lated counts is. What should be noted in passing is the possibility that the 
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random coefficient autoregression introduces an extra source of overdisper- 
sion compared with the fixed coefficient model with NB innovations. 

We generated data sets under both models and investigated the be- 
haviour of the estimators given in Section 3. The design parameters of these 
experiments were chosen in such a way as to parallel the simulations un- 
der the PoINAR(1) scenario, but with the presence of overdispersion in the 
data. Note that  the level of overdispersion now depends on the parameters 
of the negative binomial as well as that of the beta distribution. Since these 
parameters are changed across the different experiments in order to gen- 
erate various degrees of dependence, the level of overdispersion varies; it is 
between 2 and 3 in the fixed coefficient and 3 and 4 in the random coefficient 
cases, respectively. 

In the fixed coefficient CLAR(1) model with a NB innovation distribu- 
tion, the mean of process remains 5, as it does under the random coefficient 
scenario. The thinning parameter a was allowed to vary from 0.2 to 0.9 as 
previously. Fixing p to 2/3, the index parameter n of the NB innovation 
distribution was then chosen according to n = 5/2.  (1 - a). (This relation- 
ship is easily derived using the fact that the mean of the process was set 
to 5 and the mean of the NB innovation distribution used is n p / ( 1  - p) . )  
Results are again based on 5 000 simulation runs for T = 50, 100,500, but 
we discuss the T = 100 case only. The same set of estimators discussed 
under equidispersion continues unchanged under both overdispersion sce- 
narios. Recall that  those expressly derived using properties of the Poisson 
distribution (e.g. GR, GMM, CML and EML) are being employed in sit- 
uations for which they were not expressly designed. It is of interest to see 
how this impinges upon their performance. Where applicable, bias reduc- 
tion methods can continue to be employed, if desired. 

In the random coefficient CLAR(1) model with a NB innovation distri- 
bution the following design parameters for the Monte Carlo were used. To 
mimic the dependence structure of the experiments above now requires us 
to use combinations of the two parameters of the beta distribution in such 
a way that  the mean thinning rate goes from 0.2 to 0.9 in steps of 0.1. The 
scMe parameter of the NB distribution was again set to 2/3 while the index 
parameter, n, was computed according to n = 5/2. [1 - E(at)], where E(at) 
is the mean of the beta distribution. 
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F i g u r e  2 Bias of representative estimators (upper panels) and bias corrected es- 
timators (lower panels)/or a and A in the CLAR(1) model with NB innovations 
and random coefficient autoregression /or T = 100. 

Y W  GR CLS WCLS AQL GMM CML EML 

/ 

Bias 0.3 --0.0179 -0 .0179  --0.0180 --0.0100 --0.0104 -0 .0613 --0.1068 -0 .1056  
0.5 --0.0281 --0.0281 --0.0276 --0.0306 --0.0222 --0.1076 --0.1464 -0 .1444  
0.7 --0.0325 --0.0325 --0.0318 --0.0350 --0.0268 -0 .1395 -0 .1349 --0.1322 
0.9 --0.0411 --0.0411 --0.0381 --0.0440 --0.0383 -0 .0897  --0.0351 --0.0330 

%-Bias 0.3 - 5 . 9 6  - 5 . 9 6  - 5 . 9 9  - 3 . 3 3  - 3 . 4 6  -20 .43  -35 .59  -35 .19  
0.5 -5 .63  - 5 . 6 3  --5.51 -6 .11  - 4 . 4 3  -21 .52  -29 .28  -28 .88  
0.7 -4 .65  --4.65 - 4 . 5 4  -5 .00  - 3 . 8 3  -19 .93  -19 .27  -18 .89  
0.9 - 4 . 5 7  --4.57 - 4 . 2 4  - 4 . 8 9  -4 .25  - 9 . 9 6  - 3 . 9 0  - 3 . 6 6  

MSE 0.3 0.0096 0.0096 0.0095 0.0140 0.0105 0.0102 0.0157 0.0155 
0.5 0.0089 0.0089 0.0088 0.0144 0.0100 0.0174 0.0256 0.0251 
0.7 0.0074 0.0074 0.0072 0.0114 0.0083 0.0240 0.0219 0.0212 
0.9 0.0050 0.0050 0.0045 0.0068 0.0077 0.0102 0.0020 0.0019 

A 

Bias 3.5 0.0839 5.4000 0.0852 0.0460 0.0461 0.7158 0.5340 0.5244 
2.5 0.1411 3.3951 0.1384 0.1549 0.1128 0.9043 0.7415 0.7274 
1.5 0.1515 1.7645 0.1475 0.1655 0.1229 0.9570 0.6676 0.6511 
0.5 0.1971 0.5408 0.1841 0.2150 0.1878 0.5147 0.1789 0.1701 

%-Bias 3.5 2.40 154.29 2.43 1.31 1.32 20.45 15.26 14.98 
2.5 5.65 135.80 5.53 6.19 4.51 36.17 29.66 29.10 
1.5 10.10 117.63 9.83 11.03 8.19 63.80 44.51 43.41 
0.5 39.42 108.16 36.83 43.01 37.56 102.94 35.78 34.03 

MSE 3.5 0.3368 33.6792 0.3387 0.4579 0.3621 0.8085 0.5430 0.5303 
2.5 0.2925 13.8195 0.2916 0.4421 0.3236 1.0781 0.7949 0.7704 
1.5 0.2219 4.0433 0.2185 0.3317 0.2474 1.1437 0.6597 0.6333 
0.5 0.1444 0.4998 0.1368 0.2011 0.2422 0.4319 0.0948 0.0863 

T a b l e  4 Bias, percentage bias and MSE /or the estimators ~, (top 
panel) and ~o (bottom panel) o/ the fixed coefficient autoregressive 
model with NB innovations at T = 100. 
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Some results of the Monte Carlo experiments under both the fixed and 
random coefficient autoregression scenarios with no bias correction method 
applied at this stage are provided in Tables 4 and 5 for T = 100. For il- 
lustrative purposes Figure 2 depicts representative results for the random 
coefficient autoregression case only. The likelihood-based estimators CML 
and EML under the overdispersion scenarios are based on the wrong likeli- 
hood, although they might be considered quasi-likelihood (compare continu- 
ous models based on a Gaussian likelihood). But it clearly emerges from the 
simulation results that both CML and EML evidence wholly unsatisfactory 
performance. This includes high biases in estimating the dependence struc- 
ture as well as the mean of the innovations. A similar problem is found with 
GMM. So, in essence, all 3 estimators that did well with no bias correction 
under the PoINAR(1) model fail completely when extra binomial variation 
of either type is present. 

Y W  G R  C L S  W C L S  A Q L  G M M  C M L  E M L  

Bias  0 .3  - 0 . 0 1 9 1  - 0 . 0 1 9 1  - 0 . 0 1 8 9  - 0 . 0 0 8 6  - 0 . 0 1 2 1  - 0 . 0 6 1 2  - 0 . 1 1 1 3  - 0 . 1 1 0 1  
0 .5  - 0 . 0 2 8 2  - 0 . 0 2 8 2  0 . 0 2 7 9  - 0 . 0 2 6 8  - 0 . 0 2 2 8  - 0 . 1 0 6 2  - 0 . 1 5 6 4  - 0 . 1 5 4 5  
0 .7  - 0 . 0 3 3 2  - 0 . 0 3 3 2  - 0 . 0 3 2 4  - 0 . 0 3 2 8  - 0 . 0 2 7 2  0 . 1 4 2 0  - 0 . 1 5 0 5  - 0 . 1 4 7 6  
0 .9  - 0 . 0 4 3 0  - 0 . 0 4 3 0  - 0 . 0 4 0 8  0 . 0 4 3 6  - 0 . 0 3 8 2  - 0 . 1 0 6 4  - 0 . 0 4 4 3  - 0 . 0 4 2 3  

% - B i a s  0 .3  - 6 . 3 7  - 6 . 3 7  - 6 . 3 2  - 2 . 8 7  - 4 . 0 5  - 2 0 . 4 0  - 3 7 . 0 7  - 3 6 . 7 0  
0 .5  - 5 . 6 4  - 5 . 6 4  - 5 . 5 7  - 5 . 3 6  - 4 . 5 7  - 2 1 . 2 5  - 3 1 . 2 7  - 3 0 . 8 9  
0 .7  - 4 . 7 5  - 4 . 7 5  - 4 . 6 2  - 4 . 6 9  - 3 . 8 8  - 2 0 . 2 9  - 2 1 . 4 9  - 2 1 . 0 8  
0 .9  - 4 . 7 7  - 4 . 7 7  - 4 . 5 3  - 4 . 8 4  - 4 . 2 5  - 1 1 . 8 2  - -4 .92  - 4 . 7 0  

M S E  0.3  0 .0108  0 . 0 1 0 8  0 . 0 1 0 7  0 .0142  0 . 0 1 1 4  0 .0111  0 . 0 1 6 9  0 . 0 1 6 7  
0 .5  0 . 0 1 0 2  0 . 0 1 0 2  0 .0102  0 . 0 1 4 7  0 .0112  0 . 0 1 8 3  0 . 0 2 9 3  0 . 0 2 8 7  
0 .7  0 . 0 0 8 0  0 . 0 0 8 0  0 . 0 0 7 9  0 .0108  0 . 0 0 8 9  0 .0255  0 . 0 2 6 9  0 . 0 2 6 0  
0 .9  0 . 0 0 5 4  0 . 0 0 5 4  0 . 0 0 5 0  0 . 0 0 6 8  0 . 0 0 6 9  0 .0141  0 . 0 0 3 2  0 .0031  

A 

Bias  3.5 0 . 0 9 1 9  5 . 8 2 5 7  0 . 0 9 1 6  0 . 0 4 0 9  0 . 0 5 7 6  0 . 7 2 2 6  0 . 5 5 1 3  0 . 5 4 1 6  
2 .5  0 . 1 3 8 4  3 . 7 5 1 6  0 . 1 3 6 7  0 . 1 3 2 0  0 . 1 1 1 7  0 . 9 0 4 4  0 .7781  0 . 7 6 3 8  
1.5 0 . 1 5 7 8  2 .0925  0 . 1 5 5 6  0 . 1 5 9 8  0 .1299  1 .0017  0 .7452  0 . 7 3 0 6  
0 .5  0 . 2 0 5 4  0 . 6 7 2 6  0 . 1 9 7 0  0 . 2 1 5 3  0 . 1 8 6 4  0 . 6 2 6 0  0 . 2 2 9 5  0 . 2 1 8 2  

q - B i a s  3 .5  2 .63  166 .45  2 .62 1 .17 1.65 20 .65  15.75 15.84 
2.5 5 .54  150 .07  5 .47  5 .28  4 .47  36 .18  31 .12  30 .55  
1.5 10.52 139 .50  10 .37  10 .65  8 .66  66 .78  49 .68  4 8 . 7 0  
0 .5  41 .08  134 .51  39 .40  4 3 . 0 6  37 .28  125 .20  4 5 . 8 9  4 3 . 6 3  

M S E  3.5 0 .3532  3 8 . 9 9 5 8  0 . 3 5 2 6  0 . 4 4 6 9  0 . 3 7 0 6  0 . 8 2 3 7  0 . 5 6 5 7  0 .5542  
2.5 0 . 3 0 5 9  16 .6189  0 . 3 0 8 0  0 .4262  0 .3305  1 .0904  0 . 8 6 8 8  0 . 8 4 3 3  
1.5 0 . 2 3 6 3  5 .5844  0 . 2 3 8 3  0 . 3 2 2 7  0 . 2 6 8 5  1 .2549  0 . 7 9 1 3  0 . 7 6 4 4  
0 .5  0 . 1 4 9 3  0 . 7 3 9 6  0 .1454  0 . 2 0 3 8  0 .2121  0 .5921  0 .1434  0 . 1 3 2 0  

Table 5 Bias, percentage bias and MSE for the estimators ~~ (top panel) and ~o 
(bottom panel) of the random coe~eient autoregressive model with NB innovations 
at T = 100. 
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The bias correction scheme (6) is now applied to all moment-based esti- 
mators except GMM, for which it is unavailable, and to the regression-based 
estimators. The low biases in a (< 3% downward in almost all cases) are 
noteworthy. Tables 6 and 7 and the lower panels of Figure 2 summarize the 
relevant Monte Carlo results. Additionally, there are only small upward bi- 
ases for A for all remaining estimators except GR, unless A = 0.5; see Table 
7. It is, perhaps, worth noting in passing that Tables 4 and 5 indicate that 
biases of the order of 20% occur with CML and EML for moderate values 
of a, whereas Tables 6 and 7 indicate that YW and CLS exhibit almost no 
bias for such values. This is congruent with the evidence from the empirical 
example at the beginning of this section. Finally, AQL and, to a lesser ex- 
tent, WCLS give inadmissible results up to 14% of the time, spread across 
all true values of a. Even YW and CLS are affected by this phenomenon 
about 5% of the time for the lowest dependence structure analyzed. On bal- 
ance though, the overall performance of the two last mentioned estimators 
is quite satisfactory. 

8 Conc lus ions  

We have examined a wide range of estimators for the two parameters of 
first order autoregressive models for count data. The performance of these 
estimators is assessed in three different frameworks: under equidispersion; 
under overdispersion resulting from negative binomial innovations; and, fi- 
nally, overdispersion is additionally induced by random coefficient variation. 
In the first situation likelihood-based estimators based upon assuming Pois- 
son innovations work extremely well at sample sizes from 100 upward, as 
does an estimator based upon a conditional Generalized Method of Moments 
approach. In this case other moment-based and regression-based estimators 
perform in quite predictable ways. But they frequently evidence downward 
bias in estimation of the parameter governing dependence structure and 
concomitant upward bias in the innovation mean. It turns out that many of 
these bias problems can be attenuated, and often eliminated almost entirely, 
by use of simple bias correction techniques. 

Where overdispersion is present in data those estimators specifically de- 
signed for the Poisson context no longer perform well. This may be impor- 
tant because it indicates that the Poisson assumption is not innocuous and 
that it will not be appropriate to maintain the notion that it can continue 
to be used when it does not hold. We do not recommend this approach with 
low integer counts as a means of providing an acceptable basis for a pseudo- 
likelihood function, for example, a course of action sometimes adopted with 
the Gaussian specification in a continuous world. In turns out, however, that 
our evidence quite strongly indicates that bias corrected estimates based on 
suitable Yule-Walker and least squares approaches perform appealingly in 
all cases considered. 
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A p p e n d i x  A 

A.1 M o m e n t - b a s e d  e s t i m a t o r s  

For the PoINAR(1) model the Yule-Walker (YW) estimators for the param- 
eter a is just the first order sample autocorrelation. Jung (1999, Chapter 4) 
discusses several variants of this estimator. It turns out that in small and 
medium size samples the following version is to be recommended 

(T 1) -1 T 
ay~ = , (A.1) 

T_ 1 T E t = l ( X t  -- 2 )  2 

where R = T -1 ~-']~T=I Xt. 

Estimation of A is based on the moment condition arising from the 
marginal distribution and is E(Xt) = A/(1 - a )  

T 

~Yw = (1 - 5yw ) T -1 E X t "  (A.2) 
t = l  

The YW estimators serve as a benchmark in many studies concerned 
with the estimation of the parameters of the INAR(1) model. 

Greene (2000, Chapter 19.9.7) proposes a method of moments esti- 
mator based on the following two moments: Var(Xt) = A/(1 - a); and 
Cov(X t, Xt-1) = aA/(1 - a ) .  While the resulting estimator for a is identical 
to the the Yule-Walker estimator (A.1), a new estimator for A results given 
by 

T 

~aR = (1 - ayw ) T -1 E ( X t  - )~)2 . (A.3) 
t = l  

Generalized Method of Moments (GMM) estimation in the context of 
the PoINAR(1) model has been introduced by Brs  (1994); the close 
relationship to the Yule-Walker and method of moments estimators is dis- 
cussed by the author and a range of moment conditions is provided. In 
principle both unconditional as well as conditional moments can serve as 
a basis for the GMM estimation. We experimented with both types and 
found that, in general, the conditional moments fulfil the moment restric- 
tions more satisfactorily as compared to their unconditional counterparts. 
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That is to say, for moderate values of a the behaviour of the two vari- 
ants is very similar but this is not the case when a takes extreme values of 
0.2 and 0.9 in our experiments. In addition we found numerical instability 
problems in the course of the estimation process of GMM based on uncon- 
ditional moment restrictions. Consequently, we exclude estimators based on 
the unconditional moments from our detailed analysis and concentrate on 
Generalized Methods of Moments estimators based on conditional moment 
restrictions in the latter part of the paper. 

In general such estimation is based on minimization of the quadratic 
form 

QGMM = m(0)'~7~r-lm(0) , (A.4) 

where ~1" is a symmetric, positive definite weighting matrix and m(0) is 
the vector of moment conditions. Usually the estimation is carried out in 
two steps. In the first step Vr is set to the identity matrix I .  The resulting 
GMM estimators 0 are consistent, but not necessarily efficient. In a second 
step 0 is used to obtain Vr which, in turn, leads to second step efficient 
estimators for the parameters contained in 0. For further details see e.g. 
Greene (2000, Chapter 11). Preliminary work not reported here, and the 
findings of Br~.nn~s (1994), suggest that the gain of using -~r instead of I 
in (A.4) is negligible. We, therefore, report only GMM results based on the 
first-step estimation. 

We experimented with various conditional moment restrictions and found 
the following three to work best: 

(i) conditional first moment condition 

E ( X  t - a X t - 1  - A[Xt-1) = 0 ; (A.5) 

(ii) conditional variance condition 

E [ (X  t - a X t - 1  - A) 2 - a(1 - a ) X t _ l  - A I X t _ , ]  = 0 ; (A.6) 

(iii) and conditional covariance of X t and X t - 1  condition 

E [ ( X  t - a X t _ l  - A ) . ( X t _ l - a X t _ 2 -  A ) l X t _ l , X t _ 2 ]  = O .  (A.7) 

For information we report that the unconditional moment restrictions that  
we found most satisfactory were based upon: the unconditional first moment; 
the unconditional uncentred second moment; and the uncentred uncondi- 
tional sample analogue of 
E ( X  t " X t - 1 ) .  
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A.2 Regre s s ion -based  es t imators  

The conditional least squares (CLS) estimator of Klimko and Nelson (1978) 
was used by Winnicki (1988) and Wei and Winnicki (1989) to estimate the 
parameters of a simple BGWI process. In the course of the derivation of 
the CLS estimators for this kind of problem only minimal distributional 
assumptions are employed (see Wei and Winnicki, 1989). As a result we ex- 
pect the CLS estimator to be quite robust with respect to deviations from 
a Poisson assumption in the INAR(1) model. 

The CLS estimator is based on the criterion function 

Q ( 0 )  = :~-~(X t - E (X t l ~ ' t _ l ) )  2 , (A.8) 
t 

where ~-t-1 -- X t -1  in the PoINAR(1)  mode]. Q ( 0 )  has to be minimized 
with respect to the parameters a and ,k in the PoINAR(1) model. The 
resulting estimators can be derived explicitly and are of the following form 

T T X 
^ ( T  - 1) EtT=2 X t X t _  1 - ~ t = 2  X t  ~ t = 2  t -1  (A.9) 
a c c s  ~ 2 

and 

) ~cLs = ( T -  1) -1 Xt  - &cLs ~-'~Xt-1 �9 (A.10) 
t=2 t=2 

The CLS estimator has been studied among others in A1-Osh and Alzaid 
(1987), Brs  (1994) and Park and Oh (1997). 

As provided in Section 2 the conditional variance of X t l X t _ l  is not con- 
stant in the PoINAR(1) model. To explicitly account for this heteroskedas- 
ticity several weighted conditional least squares estimators have been pro- 
posed in the literature. The appropriate criterion function to be minimized 
takes the form 

[Xt - E(Xtlgvt_l) ] 2 (A.11) 

(see Winnicki, 1988, where a motivation for the estimators is provided). In 
the general setting of the BGWI process Var(X t [~t-1) = c2Xt-1 + d2, where 
c 2 is the variance of the offspring component (in our INAR(1) notation that 
of the Bernoulli distributed Yi,t's) and d 2 is the variance of the immigration 
rate. Since under the minimal assumptions employed in the BGWI literature 
both variances are unknown, Winnicki (1988) and Wei and Winnicki (1989) 
propose simplified weights given by ( 1 + X t_ 1 ) - 1/2. The resulting estimators, 
hereafter WCLS, (with the appropriate modification of the multiplicative 
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factor involving the sample size, to compensate for the loss of degrees of 
freedom) are as follows 

^ ~>-~f= 2 X t  ~-~'~T= 2 (1 + X t - 1  ) -1  - (T-1 )~-~f=2Xt ( l+Xt_ l )  -l 
awcLs  

~WCLS -- 

E~=2(1 + Xt_l) E{=2(1 + Xt_l) -1 - -  ( T -  1) 2 
(A.12) 

T X ) - 1  Et:2 t - ~ , T : 2 x t ( l + X t - 1 )  -1 -V 'T  X v'T ~t=2 t~t=2 Xt-1(l+Xt-1 
T 1 T 1 ~-~t=2( + Xt-1) ~-~t=2( + Xt-1) -1 - (T - 1) 2 

(A.13) 

An alternative, equivalent way of writing (A.13) is given by 

A~cLs = 1 + Xt_l)  - t  x (A.13') 

x~(1 + x,_~) -~ - a ~ s  Z x~_~(1 + x~_~) -~ . 
t=2 t=2 

Estimators of this type are considered in Br~nn&s (1994). 

The general principle of estimating equations (Godambe, 1960, and sub- 
sequent papers) has been applied to the estimation of branching processes 
with immigration by Heyde and IJin (1992). (The paper is reprinted in 
part in Heyde, 1997, Chapter 5 under the heading "Asymptotic Quasi- 
Likelihood".) Under minimal distributional assumptions the estimation is 
based on the vector-valued quasi-score estimation function 

[~C~=, x , - l ( c2x~-~  + d: ) -~(X,  - aX~_~ ~)] 
QT = [ ~-~T=,(c2X,_I + d 2 ) - l ( X t - a X , _ , -  A) (A.14) 

using the martingale {~,ts= 1 X s - E(X~I~-s_,)}, where 5rs_l is an appro- 
priate filtration. Here c 2 denotes the (unknown) variance of the offspring 
distribution and d 2 the (unknown) variance of the immigration distribution. 

Note the close relationship to the WCLS estimators discussed above. 
The difference lies in the fact that, instead of the simplified weights (1 + 
Xt_l) -1/2, here (c2Xt_l + d2) -1/2 are used and the unknown variances are 
replaced by consistent estimators. (Heyde and Lin, 1992 term these asymp- 
totic quasi-likeliilood (AQL) estimators). 

Closed form solutions for the AQL are given by 
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YT" w-'  Ef__~xtx,_,w;' - Ef=~x,~;-' v.T x ,,,-' t = 2  t L~t----2 t - - I  t ^ 

aAql .  = 

and 

~AQL 

(A.15) 

Z[=~x,,,,: '  EL~ x?_,,,,;' - ZL~x,x,_, , , , ; '  Zf=~ x,_,,.,,;' 

ET=2W'tl ET=2X2~ I "W: 1 - ('~7''T X W - I ' ~2  - k~t=2 t - 1  t ) 

(A.16) 

with the weights wt = d2X t_ l + d  2. Consistent estimators for the parameters 
c and d are provided by 

( T -  1) E T = 2 x t _ I  f i ~ -  E T = 2 x t _ I  ft2t ~ =  

- (zS x,_ Et=~Xt_l 1) 2 
E,-_~ x ,_ ,  - ET=~ x ,_ ,  

,) X _l- x,_,): 

(A.17) 

(A.18) 

where we take fit = Xt  - fzcLsXt-1 - ~cLs. Again an appropriate correc- 
tion to the multiplicative factor involving the sample size is introduced, 
to compensate for loss of degrees of freedom. Note that in the case of the 
PoINAR(1) model the unknown variances of the offspring as well as the 
immigration distribution can be derived explicitly. But using these values 
in QT instead of c and d may destroy the robustness of the approach and 
we did not pursue this. 

A.3 L ike l ihood-based  e s t i m a t i o n  

Maximum likelihood estimation for the PoINAR(1) model is based upon the 
fact that the joint density fXo ..... x r ( x o , . . . ,  xT[a, A) can be factored, due to 
the Markov property, as 

T 

fXo  .... x T ( X o '  ' '  " ' XT]a '  )~) = fXo ( x 0 ) "  f x l l x o ( X l l X O )  1-I  f x t L x t - I  ( X t l X t - 1 )  ' 
t----2 

(A.19) 
where fxo (Xo) is the (marginal) density of the starting value X 0. The re- 
sulting unconditional, or exact, log-likelihood function g(a, A]X0,... , XT)  is 
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then given, apart from irrelevant constants, by 

T 

g(a, A lXo,. . .  , XT)  = In [fxo (Xo)] +lnlfx,, Xo (Xl tXo)] +~[]ln[fx,,x,_, (xt Ix,-1)] 
t----2 

(A.20) 

Since X 0 is not observable, the standard approach in the literature is 
to condition the likelihood function on this pre-sample value and maximize 
the conditional likelihood function. Employing the Poisson assumption for 
X t the conditional likelihood function (apart from irrelevant constants) for 
the PoINAR(1) model can be shown to be (A1-Osh and Alzaid, 1987) 

T 

g~(a, A I X 1 , . . . , X T )  = - ( T -  1)A + Z l n [ C ( X t - I ' X t ) ] '  
t----2 

(A.21) 

where C(x t_ l ,  xt) is given explicitly in (B.7') below. 

The score functions of the conditional likelihood function are given by 

Ogo = ~ C(Xt_I,X ~ - 1) 
0A t=2 C---~t-~'XT) - ( T -  1) (A.22) 

and 

Ogr = ~ (X  t - aXt_x)  - A[C(Xt_I,X t - 1 ) / C ( X ~ _ l , X t )  ] 
Z.., Oa 
t----1 

a(1 - a) 
(A.23) 

In small and medium sized samples the information about the unob- 
servable starting value X 0 and its incorporation into the likelihood func- 
tion should lead to improved estimation results. AI-Osh and Alzaid (1987) 
provide the exact likelihood function and set the starting value X 0 to the 
mean of the process. We use the spirit of their approach but a different 
means of accounting for the presence of X 0 by utilizing the time reversibil- 
ity property (McKenzie, 1988) of the PoINAR(1) process. This can easily 
be demonstrated by means of the bivariate pgf given in the companion 
appendix as (B.8). It follows immediately that the inverse regression func- 
tion E(Xt-I[Xt)  is linear in X t in the same way that E(Xt[X~_I) is. This 
property of the PoINAR(1) process will be used in in the context of maxi- 
mum likelihood estimation using a backcasting algorithm (Box, Jenkins and 
Reinsel, 1994, p. 218) to obtain an estimate )i0 for the unobservable starting 
value of the series. 

Since the minimum mean squared error one-step ahead predictor for X 0 
is of the form 

X0 = E(X0[X1, . . . ,XT) = aX1 + A (A.24) 
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a data coherent integer value will almost never arise. Our proposal is to use 
the mode of the conditional distribution of the back forecast f(XolXl; &, A). 
The mass points of this distribution can be computed directly via 

where 

/(XolXl) = ~ ak(1 - a) x~ exp(-A) (~-1 --~) ! 
k = 0  

= Xo! exp(-A) C*(xo, xl) , 

(A.25) 

m" a k (1 - a )  x ~  A . 1 - ~  

C(zo, X0 = ~ k~ (71 : ~ .  i 7 o - ~ . '  (A.25') 
k = 0  

and m* = min(x0, Xz) for different values of x 0. The value with the highest 
probability mass is chosen as Xo (Freeland and McCabe, 2003a, call this 
procedure point mass forecasting.) 

On the basis of a Poisson assumption for X t the exact likelihood function 
(apart from irrelevant constants) is then of the form 

g(a')~'fC~ ' XT)--A(al-a-2---------/)+ )f0 In ( 1 - - A  a ) +  ln[C()~0, X1) ] 

T 

- ( T -  1)A + ~ ln[C(Xt_l,Xt) ] . 
t----2 

(A.26) 

The score functions for the exact likelihood can be compared to those 
for the conditional likelihood (A.22) and (A.23). They are given by 

)(o C()~o, X 1 - 1) 0 ~  egg _ a - 2 +  + + - -  (A.27) 
oh 1--=-~ -7- c(X0, x1) oh 

and 

ae (xl  - a2o) - ~[C(~o, x l  - 1) /C(2o,  x l ) ]  
Oa a(1 - a) 

A )~0 0~o (A.28) 
(1 - a) ----------~ + ~ + 0 a  " 

To obtain the exact maximum likelihood (EML) estimators, numeri- 
cal procedures have to be employed. The EML-estimators are, of course, 
asymptotically equivalent to the CML-estimators, but may differ in finite 
samples. Likelihood-based estimators are also studied in Freeland and Mc- 
Cabe (2003b). 
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Appendix B: Probability generating functions 

The probability generating function (pgf) P of the thinning operation (4) 
can easily be obtained to be 

P~ox~_~ (s) = Px~_, (PY,,~_~ (s)) 

= Taxi_, (1 - a + as) . (B.1) 

The pgf of the INAR(1) process {Xt}  is given by 

Px~ (S) = Px~_~ (1 - a + a s ) .  Pw~ (S) , (B.2) 

where Pw~(S) = exp[-A(1 - s)] is the pgf of the innovation process Wt. 

In contradistinction to Gaussian processes, a knowledge of the first and 
second order moments does not suffice to describe the dependence structure 
of the process entirely. Note that, due to the Markovian property of the 
INAR(1) model, the relevant tool for this purpose is the bivariate distribu- 
tion function, or the bivariate pgf which is given by 

Px,x~_ , ( s~ , s2)  - -Px t_~(s , (1  - a - a s 2 ) ) . P w ~ ( S 2 ) .  (B.3) 

Assuming Wt ~ Po(A) with A > 0 the marginal distribution of the 
process {X t }  can than be derived (see A1-Osh and Aly, 1992) by inserting 
the pgf of Wt into (B.2). The functional difference thus obtained 

Px,  (s) = exp f-A(1 - s + a - as + a 2 - a2s + . . .  + a T - a T s)] 

x PXo(1 - a T + aTs) (B.4) 

= exp [--1A~a (1-- s)( l  -- aT-1)] " T~Xo(I -- aT + aTs) , 

then has to be solved iteratively. For T --* c~ we obtain the result 

Px~(s) = e x p  [ - 1 A ~ a  ( l -  s)] , (B.5) 

which shows that X t ,.~ Po(A/(1 - a)). 

One way of obtaining the conditional distribution f (x t t  Xt_l) of the 
PoINAR(1) process is via the conditional pgf :PxtLxt-1 (s). This is the prod- 

uct of the pgf of a binomial random variable and the pgf of the innovation 
process 

Px Lx _I (s)  = " P w ( s )  
(B.6) 

= [as + (1 - a)] X'-~ .exp f-A(1 - s)] . 
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Jung (1999, p. 45-47) demonstrates how to obtain f ( x t l X t _ l  = Xt_l) by 
means of an appropriate series expansion of the conditional pgf. 

A second possibility that is computationally less cumbersome is as fol- 
lows. Since (B.6) indicates that the conditional distribution f (x t]  x~_ 1) is a 
convolution of a binomial distribution and a Poisson distribution, the appro- 
priate formula for the probability distribution of a convolution of discrete 
random variates (see Kotz and Johnson, 1982 p. 187) can be applied. The 
resulting form is 

f (xt ]Xt_l)=~-~(X~-l)ak( l-a) x'-'-k 
k=O 

= xt_l! exp(-A) C(Xt_l ,  xt)  , 

exp(-A) 
Ax,-k 

(x t - k)! (B.7) 

where 

m ak (1 - a) x ' - l - k  A ~ ' -k  

-- Z (7,: k=O 
and m = min(xt, x t_ 1)" 

(B.7') 

The bivariate pgf of the PoINAR(1) process is given by (for its deriva- 
tion see Alzaid and A1-Osh, 1988) 

px, ,x ,_ , (s , ,  s~) = G , _ ,  ( s , ( 1 -  a - as2))  �9 ~w,(s~) 

( = expk (1 a) 

exp k (1 a) 

(B.8) 

and is clearly symmetric in its arguments sl and s2. 
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