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D U N F O R D - P E T T I S  O P E R A T O R S  O N  L 1 
A N D  T H E  R A D O N - N I K O D Y M  P R O P E R T Y  

B Y 

J. B O U R G A I N  

ABSTRACT 

Using the duality between Dunford-Pet t i s  operators  on L t and Pet t is -Cauchy 
martingales,  we prove that the  Dunford-Pe t t i s  operators  f rom L t into L t form a 
lattice. We show also that a Banach space X has the Radon-Nikod~m property 
provided the Dunford-Pe t t i s  members  of Le(L ~,X) are representable.  The  
lifting of dual valued Dunford-Pe t t i s  operators  is investigated. Some remarks  
are included. 

Introduction 

[0, 1], m will be the Lebesgue space. For each n E N, we let ~ be the finite 

algebra of subsets of [0, 1] generated by the intervals kk  = [ ( k -  1)2 -n, k2 -n] 

where k = 1, • •., 2 ". We use the notation E,  for the conditional expactation with 
respect to En. Let X be a fixed Banach space. By X-valued martingale, we mean 

a sequence (~n) in L~:[0, 1] so that ~n = En [~÷~]. The martingale (~n) is uniformly 

bounded provided supn 11 ~. 1]~ < o0. 
It is well-known that the uniformly bounded X-valued martingales correspond 

to the operators Le(L ~, X). This correspondence is obtained by taking 

T(~o) = lirn f ~ (t)¢ (t)dt if (~.) is the martingale 

and 

~.(t)  = 2-n ~ h,~k(t)T(h,~k) ifT:L~-->Xistheoperator 
k 

(the Haarfunction h,~k is the normalized characteristic function of I,~k). 
For more details, we refer to [5]. 
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Duntord-Pettis operators and Pettis-Cauchy martingales 

Let us recall that T : Y ---> X is a Dunford-Pettis  (D-P) operators, provided T 

maps weakly convergent sequences on norm onvergent sequences. For 1 _---p 

=< ~, ip : LP---> L 1 will be the canonical injection. The next result is essentially 

known (cf. [7]), but we take it up for the sake of completeness. 

PROPOSITION 1. For an operator T : L I---> X, the following assertions are 

equivalent: 

(1) T is a Dunford-Pettis operator, 

(2) Ti, is a compact operator for some 1 < p <= % 

(3) Ti~ is a compact operator. 

ProoF. (1) ~, (2). Because the L"-ball is weakly compact in L ~ for p > 1. 

(2) ::> (3). Obvious. 

(3) ::> (1). If T is not D-P, then there is a weakly nullsequence (¢.) in L ~ and 

e > 0  such that I IT( 'p , ) I [>~-Let  8=kel lTII  -~. By passing eventually to a 

subsequence, we may assume lien [~on] II1 < 8. Since (~ . ) i s  uniformly integrable, 

there is some constant K > 0 with II ~ - ~,, I1~ < 8, taking ~b. (t) = ~. (t) if 

I¢.(t) l<=K and $ . ( t ) = 0  otherwise. Define t/n = Sn--En[$. ] .  It is clear that 

II '7~ I1~ ---- 2K and lim.~® r/. = 0 tr(L ®, L t). 

Now lifo. - ~. I1~_-< II,p. - ¢,. II~ + IIE.[¢,o]ll~ =< 2lI,P~ - ~,. II1+ IIE.[~dll~ < 38 and 
hence II T(,7.)II > ~ - 3 8  II zll = ~/4. Since l i m . _ ®  i®(~%) = 0 tr(L 1, L®), Ti® is not 
compact. 

If ~ E L~x, we introduce its Pettis norm III ~ II1 by 

Ill ,Ill=sup { f  i<,(t),x*>l dr; x*~  x ' ,  IIx'll -< 1}.  

We say that an X-valued martingale (~:,) is Pettis-Cauchy, provided (~.) is a 

Cauchy-sequence for the Pettis norm. 

For our next purpose, we need the following property. 

PROPOSITION 2. The martingale (~.) is Pettis-Cauchy if and only if 

lim,~® II f s¢-~- II = 0, whenever (¢.)  is an L ®- bounded weakly nu II sequence in L 1. 

PROOF. Suppose (~.) not Pettis-Cauchy. Then there is 8 > 0 and an increas- 

ing sequence (nk) so that Ill,n.-~.~-.111 > ~  for each k. Fix k. Let x ~ E X *  

satisfy IIx ~ II = 1 and f I(~.~ - ~. .... x ~)1 > & It is possible to find a E.~-measurable 

function e~ such that II e~ I1~-- 1 and 
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Consequently ][f(~:,~ - ~,~_,). ek [1 > & If we define ¢~ = e~ - E~_,[e~], then 

[[ ¢~ [[~ =< 2, lim~_~ ~ = 0 weakly and Ilf II > & 
Let now conversely (q,) be a weakly null sequence in L 1 and 8 > 0 such that 

I[~0.[[~-_<l and lim.[[f~.q&[l>& It is straightforward to find an increasing 

sequence (n~) so that 

I l l '  .... ~.~11<~ and Ilf,. .ll >~.  

Thus for each k we have 

l Ill II I(~-k - ~ ..... x*)l --> (~.~ - ~.~_)q~.~ > ~ ,  for some x~ E X*, 

Consequently 

completes the 

THEOREM 1. 

Pettis-Cauchy 

I lx* l l  = 1. 

Ill - ¢.~-, Ill > 8/e  for,all k and (~,) is not Pettis-Cauchy. This 
proof. 

A uniformly bounded X-valued  martingale (~.) is 
iff the corresponding operator T : L ~ ~ X is D-P .  

PROOF. (1) If T is not D-P, then by Proposition 1 we get an L®-bounded 

weakly null sequence (q~,)in L 1 for which lim,o=ll T(q&)l I > 0. We may assume 

without restriction that ~0, is E.-measurable. Then T(~0.) = f ~:.. ~0. and Proposi- 

tion 2 asserts that (~:,) is not Pettis-Cauchy. 

(2) Suppose now (~0,) an L=-bounded weakly null sequence in L 1 and 

l i m . ~ I l f  ~:.. ~. l[ > 0. Clearly f so.. ~o. = T(E .  [~.]) and (E. [~.]) is still a weakly 
null sequence. Hence T is not D-P, completing the proof. 

D - P  operators  f rom L ~ into L ~ 

We say that an operator T : L '  --> L '  is positive if T(~p) _-> 0 whenever ~ E L 1 

and ~ -> 0. It is well-known that this gives a lattice ordering of ~ ( L  1, L 1). More 

precisely, we have tha t  

T+(q~) = sup{T0#); 0 -  -< ~b <- ~o} and I T I ( ~ ) =  sup{T(~,); I~bl _-< ~} 

for ~pEL 1, q~>0. 
Denote by ~ the Borel-o'-algebra of [0, 1] and consider for each n the product 

tr-algebra 6 .  = ~ ,  @ ~ on [0, 1] x [0, 1]. 

Assume T : L z ~ L ~ an operator and (~:., E,)  the corresponding martingale. It 

is clear that if A E ~ , .  for some m and we define ~/, by r / . ( t ) (u )=  

& ( t ) ( u ) . x A ( t , u ) ,  then (rl.,E.).--m is still a uniformly bounded LLvalued 

martingale. This allows us to introduce the operator TA(~)=  

lim,~®f 71.(t)~(t)dt (~ E L1). 
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PROPOSITION 3. Let T E .LP(L ', L ') and A E U ,  ~. .  
(1) TA <<- T +. 
(2) If T is D-P, then TA is also D-P. 

PROOF. If A E ~m, then A = t.J k (I.,k x Ak), where Ak ~ £ for each k = 

• . - ,2 m. Consequently A has also the form A = I..J, (S, × P~), where (S~)C E~ 

which had to be obtained. 

I T  

and (P~) is a measurable partition of [0, 1]. 

(1) Fix n _-> m and ¢p _-> 0, ~ £.-measurable.  Then 

= ~ T ( , .  Xs.). Xe, < ~ T+(*)- Xe, = r+(~), 
i i 

as required. 

(2) By Theorem 1 and Proposition 2, it is enough to show that 
l im.~.[[f r/.~. [[ = 0, if 0¢ . ) is  L~-bounded and weakly null in t ' .  Now 

]lf ,..ll=flf 
<= ~ f l ~..~ ,~.(t)(u)~.(t)dt[ du = 2-" ~ [ [ f  ¢.h,.,k~.]l 

and (h,.,k~0.) is weakly null for all k = 1 , . . . , 2  m. Since ( g )  is Pettis-Cauchy, 
Proposition 2 completes the proof. 

It is clear that we may associate to each L '-valued martingale (¢., X.) the real 

martingale (f. ,@.), taking f . ( t , u ) =  ~.(t)(u). This gives the identification of 

37(L', L ') and the real martingales (f,, 6 . )  for which sup, IIf If. (t, u)l du 11~ < oo 
holds. 

PROPOSmON 4. Assume ([,, 6 . )  L '-bounded. Then give e > 0 there is some 
m E N and some A E 6, .  such that [[/+ - f.xa [I, < e for all n >= m. 

PROOF. W e  may consider m so that ll[;.U,>sup. Uf+.U,-e. The set a = 

[f,. => 0] belongs to ~r,. For n => my we have far,  = far,, = [[Y.dll, Consequently 

I I / : -  £x"  I]' = f,, If"'+ fa f+ n [ f .  <Ol 

f. L L+[ = -  f -+  f -+  f : - - -  f. f . = l l f . l l ,  I l fa l l ,<e, 
n [ l .  _-> Ol 



38 J. BOURGAIN Israel J. Math. 

THEOREM 2. Let T E ~ ( L  t, L ' )  and ((;,) the corresponding martingale. 
(1) The operator T ÷ is determined by T÷(q,) = lim.~=f /~,(t)÷~o(t)dt. 
(2) If T is D-P, then also T ÷ is D-P. 

PROOF. Choose e > 0 and let m and A be as in Proposition 4. Consider the 
martingale (r/,,E,)._-m as above. If n _--> m and q~ E L  ®, we find 

]IS (;'(t)+q~(t)dt- S ""(t)'p(t)dtll, = f lf [f:(t'u)- f"(t'u)xA (t'u)]q~(t)dtl du 

=< I l l :  - f . xA I1,11 I1 = < II - 

This proves that S(~p)= l im.~®f !~.(t)÷q~(t)dt exists for ~p E L ®. But since 

II s(q, )11, <-- lim f I1~- (t)*ll, I ~o(t)l dt <= lira ( I1~, (t)lt, I ~0 (t)l dt <= II Tllllq' II,, 

the operator S extends to L 1. In fact, the above computation shows that for each 
e > 0  there exists some A ~ U , ~ .  such that I I Z ~ i ~ - S i q l <  ~. Applying 
Proposition 3 and Proposition 1, we see that if T is D-P  then $i® is compact and 

hence S is D-P.  
It remains to prove that S = T ÷. Obviously S -_> T +. Conversely, fix ~0 E L ®, 

~0 => 0. Because TA (q,) =< T+(~p) for all A E U .  ~ .  (Proposition 3), also S(q~) _-< 
T*(q~) holds. A density argument completes the proof. 

An immediate consequence is 

COROLLARY 3. The ideal of the D - P  operators in ,~(L 1, L 1) is a sublattice. 

A characterization of the Radon-Nikodym property 

We refer again the [5] for the following theorem: 

THEOREM 4. Let X be a Banach space, T E ~(L1 ,X)  and (~.) the corres- 
ponding martingale. Then the following conditions are equivalent: 

(1) T is representable, i.e. there exists some ~ ~ L x  such that T(~0)= 

S for e L 1. 
(2) (~,) converges in L ~x. 
(3) (~.) converges a.e. 

The Banach space X is said to have the Radon-Nikod~m property (RNP) 
provided any T E ,,~(L', X)  is representable. The purpose of this section is to 
show that we may restrict ourselves to Dunford-Pettis  operators. This solves a 

question raised in [5]. 
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We will prove more precisely the following 

THEOREM 5. Assume T E ~ ( L  1, X )  not a D - P  operator. Then there is a D - P  

operator D E .~(L 1, L 1) so that the operator TD is not representable. 

So fix T:L1--~ X failing the Dunford-Pett is  property. 

PROPOSITION 5. There exist a measurable subset f~ of [0, 1], a weakly null 

sequence (~,) in L 1 and e > 0  satisfying 

(1) m(f~)>0, 
(2) II ~,, II---< 1, 
(3) lim, II T(f,p,)ll--> e Ilflll if f E L I (~ )  and f >= O. 

PROOF. By Proposition 1, there is a weakly null sequence (¢,) in L 1 and e > 0 

so that II'P, IP --<1 and II T('p,)II--- > 2~ for each r. It is easily verified that the set 

5( = / f  E L1; f => 0 and lim II T(f~,)II---- ~ Ilfll,/ 
t r / 

is a closed convex cone. Since 1 ~ 5(, a separation argument provides some 

g E L ® satisfying f g  > f f g  whenever f E 5(. Because 0 E 5( we have f g  > 0  and 

consequently 1"1= [g >0 ]  has positive measure. Clearly f f g  <=0 for f E  5(. It 

follows that f =  0 or f ~  5( if f > - 0  and s u p p f  CII .  

PROPOSmON 6. Assume f l , ' "  ",fd a finite set in L 2 and B <oo such that 

ll/,ll2_-<n O < - i < - d )  and I([,,[j)l<--B2d -2 ( l < = i ~ j < - d ) .  Then E,I(A,g)I_- < 

B X/-}-d holds, whenever tlg I1~--< 1. 

PROOF. Since 

we have 

and thus 

= B ' l l g  II~- 2B2 ~ I<g,A>l 2+ ~ <g,A)<g,A><L,A> 
i i,j 

nallg II 2 >= ~ ( 2 B 2 -  IIf~ 1122)1(g,~)12- ~ (g,f~)(g, fJ)(f~,fJ) 

82 ~ I (g,f,)l 2 -  n2d--2 ~ IIg II~llf,, I1~11~ 112 

I(g,/,)12 ~ 2B 2. 
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Consequent ly  

I<g,~>l =< B x / ~ ,  
i 

as required.  

PROPOSITION 7. Let  f~, (~p,) and e be as in Proposition 5 and take 0 < 6 < 

m (~).  There is a system (q,,,k),a~_~ ~2. in L ~(ft) [ulfilling the [ollowing conditions: 

(1) ~b.,k ----> O, 

(2) 6 <llff,~kll,<2, 

0)  II ¢,,,~ ll~ ~ (4/3)", 
(4) l[ T(q,.+l,2~-,- 't'-+,,2k)ll > ~a/2, 
(5) 2q&k = qs.+a,2k+~ + qs.+~,zk, 

(6) Y-k l<6.+,.2k-~- q,.+L2k, g>I----<2(4X/2/3)" i f  llgll=_- < 1. 

PROOF. We introduce the ~b,~k (1 --< k =< 2") by induction on n. Take  q,o.~ = X,. 
Suppose now 4',~k (1 = k =< 2") obta ined and $ + ~ < II ~ I1~ < 2 -  ~ for some 

> o. Combining the facts 

!irr2~ ~,, = 0 or(L ', L®); 

lim {[ T(~.~,)I[  > ea for each k, 

it is possible to obtain functions ~k (1 _<- k _-< 2") in the sequence  (q~,), satisfying 

(i) I (~b,~k, rlk )1 < ~, 
(ii) I(q&k~k, 6,~17/1) 1 < (2/3) 2" for k g 1, 

(iii) H T(6..ETIk)II > e& 
This construction is complete ly  straightforward and we let the reader  check the 

details. 
It is clear that the functions 

1 (1 1 

are positive members  of L®(~I). 

(2) follows f rom (i), (4) f rom (iii) and (5) holds obviously. Since I O,+Lzk-~l, 

I qs-+L2~ I are bounded  by }1 q&k I, we get 
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and the same for II ~b.+l,2k I]~. So it remains to verify (6) or 

N I(~b,~k'qk, g)l =<3 for Ilg 11®_-- < 1. 
k 

Using (ii), we see that fk = ~b,~kr/k, B = (~)" and d = 2" fulfil the conditions of 
Proposition 6. This completes the proof. 

PROOF OF Tr~EOREM 5. By (2) and (5) of Proposition 7, we may define 

D E ££(L ~, L ~) taking D(h,~k) = qJ,~k. The martingales (~.) and (st,.) correspond- 
ing to D and TD respectively are given by 

s c . ( t ) = 2 - " ~  h,~k(t)~b..k and sr.( t)=2-"~'~ h..k(t)T(~b..k). 
k k 

Fixing n, (6) yields that 

II1¢.+~-~:. III = sup f I(¢.+~(t)-¢.( t ) ,g) ldt  
Ilgll®--<l J 

: 2-"-2  s u p  Zllhn+l,2k_l-hn+l,2kllll(l~n+l,2k_l-I~tn+l,2k, g ) l ~ ( ~ )  n " 
I1~1/~_-< 1 k 

Therefore E. III ~.+~- ~. III < ® and hence (~¢.) is Pettis-Cauchy. By Theorem 1, 
D is a D - P  operator. 

On the other hand, TD is not representable since similar computation yields 

f ll¢.+l(t)- ¢.(t)lldt = Uh.+,,zk_~- h.+l,2k U, llZ(qJ.+,,zk-~- ~O.+~,2k)l[ 2 - . - 2 ~  
k 

> - ~  (using (4) of Proposition 7). 

Of course the operator TD of Theorem 5 is D-P.  This provides a new 
characterization of the RNP. 

COROLLARY 8. I f  a Banach space X fails RNP, then there is a D - P  operator 
T : L ' ---> X which is not representable. 

A factorization problem for Dunford-Pettis operators 

For later use, let us show the following property of Pettis-Cauchy martingales. 

PROPOSIXION 8. Let X be a Banach space, (~.) a Pettis-Cauchy X-valued 
martingale and (x*) a w*-null sequence in X*.  Then 
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lim,~= sup f 1 (6 ( t ) , x* ) ld t  = O. 

PROOF. It is no restriction to assume (x*) bounded by 1. 

Suppose lim, sup, f I(~. (t), x*)l dt > 8 > 0. Applying the Lebesgue theorem 

on dominated convergence, we see that for a fixed n lim,~® f l (~, (t), x *) I dt = O. 
It is now routine to find increasing sequences (rk) and (n~) such that 

f I (~,k, X ~k+l)[ ( 6/2 and f 1(¢-~.,, X *~.,)1 > 6. Consequently 

f 111 ~"k+l--~"k Ill e ](~nk+l--~.k,X~k÷l) l)2 foreach k, 

a contradiction. 

PROPOSmON 9. Let d E N be fixed. Then for any r there exists a set ~d~ of 4 d 

functions such that 
(1) [Igll=- < 1 for any r and g ~ %, 
(2) E , _ , [ g ] =  0 i f g ~ , ,  
(3) sups~,  (f, g) ~ sups f~..ff - 2 -d I[f[l~, whenever f ~ L ~ and f >-- O. 

PROOV. For i = 1 , . . . , 2  ~ and s an integer, write s - i  provided s---i  

(mod2~). For each r and i =  1 , . . - , 2  ~, let ~O',= 2- 'E,. ,h, , , .  Define ~, ={g~J= 
q/ , -  ~'); 1 _-< i, j =<2~}, which has 4 a members. Clearly IIg~ll=~ < 1. Remark that 
g~= 2-'  E,.~ (h, . , -  h,,,_~+j) and hence E,-d[g~ j] = 0. Now assume f a positive L '  

function and 1 -< s -< T. If we take i = 1,. • -, 2 d so that s -= i, then (f, qJ~) >= f~...f. 
Since [[flll= Z~ (f, ~0~), there must be some j = 1 , "  ",2 a with (f, qJ~)_-<Z-a/Ifll~. 
Therefore also (3) holds. 

PaoPosirIOr~ 10. I f  (~,) is a uniformly bounded positive L~-valued 
Pettis-Cauchy martingale, then 

!im sup f (sup f~,, ¢ , ( t ) ) d t  =0 .  

PROOf. Assume sup, II~-II=---< B and fix e > 0. Take an integer d so that 

2% _--- B and let the qd, satisfy the conditions of Proposition 9. We deduce from 

(3) that for each r and t 

supf~ ¢.(t)<-sup(~.(t),g)+ 2-aJl¢.(t)}ll 
,.s g~% 

----< ~ "l(~:- (t), g)l + 2-aB- 
gE% 
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Therefore 

f (sup f,,. a max f l(¢n(t),g)fdt+e. 
It follows easily from (1), (2) of Proposition 9 and Proposition 8 that the first term 

of the second member in the above inequality tends to 0 uniformly over n for 

r ~ o0. Since ~ > 0 was choosen arbitrarily, the proof is complete. 

M[O, 1] is the space of Radon measures on [0, 1]. If # is a Radon probability 

measure on [0, 1], then L ~(/z) will be viewed as a subspace of M[O, 1]. In fact, any 

separable subspace of M[O, 1] is contained in some L l(/z)-subspace. 

Consider the family .~ of all subintervals of [0,1]. If we let II/.t II~ = 

supra, I#( I ) l ,  then 1[ II, is a weaker norm on M[0, 1]. Let Mo be the normed 

space M[0, 1], II II, and W: M[0, 11--' Mo the identity map. 

The next result will be used to show a more general fact. 

PROPOSrnON 11. If TE.~(L~,L ~) is a D-P operator, then WT is 
representable. 

PROOF. It follows from Theorem 2 that we may assume T a positive D-P 

operator. Let (~:., E.)  be the L Z-valued martingale corresponding to T. Fix p, q 

and r. 

For any t E [0, 1] and I E ,9, 

--< 1 ( 6 ( 0 -  scq (t), E, [X,])I + 1(6 (t), x, - E,[x,l)f + I(¢q (t),x, - E,[x,])t 

<-II(E, o6)(t)-(E,o¢q)(t)ll~ + 2sup f, 6 ( t ) + 2 s u p f , .  srq(t). 
s , . s  s ,~ 

Hence 

f ll6(t)-¢,(t)ll, at<-II(Ero6)-(E, oCq)lh+4sup f (sup f,,., ,.(t,)dt. 

Since (so,) is Pettis-Cauchy, Proposition 10 asserts that r can be taken big enough 

to make the second term small. For fixed r, the first term tends to 0 for p, q--* 0% 

since (E, o¢.). ranges in a finite dimensional subspace of L ~. 

THEOPJSM 7. If TE~(L~,M[O, 1]) is a D-P operator, then WT is 
representable. 

PROOF. Since the range of T is separable, T ranges in some L ~(/.t) subspace 

of M[0, 1]. Decomposing ~ in its atomic and diffuse part, L ~(/z) can be viewed as 

a subspace of l ~ • L ~(v), where v is a diffuse Radon probability measure and for 
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convenience m ,~ u. Now 11 has the Radon-Nikod~m property (cf. [5]) and 

therefore we may assume T ranging in the L ~(v)-component. It is easily verified 

that the map ~ : [ 0 , 1 ] ~ [ 0 , 1 ] ,  ~ ( x ) = u ( [ 0 ,  x]) is a homeomorph ism and 

moreover  m = ~(v). Thus the map U : L I ~ L ~ ( t , ) ,  U ( f ) = f o ~  is an isometry. 

Because ~ maps intervals on intervals, also the map V:Mo---~Mo,  V(A) = ~-~(A) 

is an isometry. We obtain clearly the following scheme: 

L ~ 
T W 

L l ( u )  > Mo 

I v  

L 1 > Mo 

Since U - 1 T  is D-P ,  W U - 1 T  is representable by Proposition 11 and hence also 

WT. This completes the proof. 

Theorem 7 has an interesting aspect which we will discuss later. Let us come to 

the purpose of this section. It is well known (and not difficult to see) that the 

following property is true. Assume X a Banach space, Y a subspace of X and 

T : L 1 --~ Y* an operator.  Then there exists a factorizing opera tor  T '  : L ~ ~ X*,  

such that T = i* T '  where i : Y ~ X is the canonical injection. (T '  is generally 

not uniquely determined.)  

It seems to us a natural question whether  or not T '  can be made D-P ,  if we 

assume that T is a D - P  operator .  As we will show, this problem however  has a 

negative solution. Thus the lifting property for Pet t is-Cauchy martingales in 

dual spaces does not hold. 

For convenience we replace the Lebesgue space [0, 1] by the Cantor  set A with 

the Haa r  measure.  Take  X1 = C(A) = X2 and X = X1 E) X2. Denote  i~ : X ,  --~ X 

the injection and 7r~ : X ~ X~ the projection (a  = 1, 2). The Haarfunct ions h,,k 

on A will be  viewed as members  of X~. Consider a system ( e , ~ k ) , ~ 2 -  in X2 

equivalent to the /2-basis, i.e. 

a,~ke,.k = a~,, for scalars a,~k. 
n,k  

Consider the closed aubspace Y of X spanned by the vectors 

y,~k = 2 - " h ~  + e,,k (n E N, 1 _--- k =< 2"). 

We regard L~(A) as a subspace of X*  and let j :L~ (A) - - -~X  * be the injection. 

Consider the operators  R :X*--.~ ! 2, R ( x ~ )  = (x *(e,,.k )),,.k and S : Y*---~ l ®, 

S(y*)  = (y*(y~k)),~k. The  opera tor  W : X *  ~ Mo(A) is as previously (the inter- 
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vals in subspace are the intersections of intervals in [0, 1] with A). We obtain the 

following diagram: 

L ' ( a )  ' x *  '" s X* ~ ' Y*' ~ 1 ~ 

x *  ..,v~; x~* ®x~* o~.,; Mo(A) @ l ~. 

The existence of the factorizing U is clear from the fact that for x * = (x T, x *) in 

X* we have 

Ix*(y,.k)[-< I x*(2-"h,~k)l + [ x ~*(e,~k)I =< [[ W(x*)][ + IlR(x ~)[[, 

since 2-"h,~k is the characteristic function of an interval in A. 

PROPOSITION 12. I f  T = i*rr*j, then 
(1) S T  is not representable, 
(2) T is Dunford-Pettis. 

PROOF. 

~. = 2-" ~ h,,kT(h,,k), 
k 

So for y E Y we obtain 

and also 

T and S T  are represented by the respective martingales 

~ ' =  2-" Z h .~ST(h~) .  
k 

f l(~.+l(t)- ~ . ( t ) , y ) ld t  = 2 -"-1 ~ [(T(h.+, .zk-l-  h.+l,2k), y)[ 
k 

f ll~'~+t(t)- ~'(t)[ldt = 2 - " - ' ~  tIST(h.+l,zk-,- h.+,,zk)H. 
k 

(1) For  each k 

I[ST(h.+,,2k-,- h.+,,2k)[I-- -> (r(h.+l.2k-i-  h.+Lzk ), Y.+,,zk-l) 

----> 2-"-'(h.+l.2k-~ -- h.+l,zk, h.+,.2k-l) = 1. 

Hence  JIU÷,-  ~c'dll -> ~. 

(2) If JJy ]J ~ 1  and y = E.,~a.y,,. then E.,~aZ.., = ][ zrz(y)}[z _---1. For  each k, we 
obtain 
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(T(h.+L2k-1- h.+,,2k), y) = ~ 2-'a.., (h~+1.2k-1- h.+1,2k, h.,.> 
r,s 

Thus 

f l(~.+x(t)- (; . ( t ) ,y) ldt  

= ~'~ 2-'a,.,(h.+l,2k-1- h.+l.2k, h.,,). 
r > n , s  

<=2-'-' ~, 2-'la,.,IEl(h,+~.2k_,--h.+L2k, h,.,)l 
r > ~ s  k 

<=2-" ~'. 2 - ' la . , l~  (h~k,h,.,) 
r > ~ s  k 

= 2 " l a , . . I  
r > n , $  

< 4-' a 2 < -". 
s = l  / \ r,s 

Since the ball of Y is w*-dense in the ball of Y**, we find that III Ill --< 
(~/2)-". Consequently (~,) is Pettis-Cauchy and thus T is D-P.  

PROPOSITION 13. I[ T'  E ~L#(L t, X*) is a D - P  operator, then Si * T' is repres- 

entable. Consequently, T does not admit a D - P  [actorization. 

PROOF. Since 12 has RNP, Ri* T' is representable for any T' E ~ ( L  ~, X*). If 
now T' is D-P,  then also i * T' is D-P.  Regarding M(A) as subspace of M[0, 1], it 
is an easy exercise to deduce from Theorem 7 that Wi*T '  is representable. 
Taking the above diagram into account, this clearly completes the proof. 

REMARKS. (I) From Theorem 1, it is obvious that for a space X the following 
properties are equivalent: 

(1) Any T • .o97(L ~, X)  is D-P.  

(2) Any uniformly bounded X-valued martingale (~:,) is Pettis-Cauchy. 

They are fulfilled for three well-known classes of spaces: 
(A) the RNP spaces, 
(B) the Schur spaces, 
(C) duals X* such that l t~_X (cf. [6]). 

(II) Theorem 7 has the following consequence, which is in fact a reformula- 

tion of Proposition 11. 

COROLLARY 8. Consider the operator O : L  1---, C[0, 1] given by O([ ) ( s )=  

f~f(t)dt.  I f  now T : L I---, L ~ is D-P ,  then O T  is representable. 
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PROOF. If B[0, 1] is the space of the bounded functions on [0, 1], we may 

clearly consider the operator  t)  : Mo---~ B[0, II, O(l~)(s) = ~[0 ,  s]. 
The following scheme together with Proposition 11 will provide us the 

required result: 

L 1 T L I  O )  C[0, 1]' -~ B [0, 1] 

I l ° 
MI w ~ Mo 

(III) Let us call a tree in a Banach space X a bounded system (Xn, k)n,l~ik~2 n in 

X such that 

(1) 2x,~k = Xn+l.2k-1 ~- Xn+l,2k, 

(2) inf,.k IIx,+,.2k-,- xo+,.2~ I1>0. 

It is clear that if we take (q,,~),~k as in Proposition 7 and x,~k = Tq,,,k, then (X,~k),~k 
is a tree in X. This proves that X has the tree property whenever there exists a 

non-Dunford-Pet t is  operator  T : L '  ~ X (in fact, this can be obtained a bit more 

directly). Recently [3], it was shown that the failure of RNP does not imply the 

existence of a tree in general. (For other partial results, we refer to [1] and [2].) 
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