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FREE SETS FOR 
NOWHERE-DENSE SET MAPPINGS 

BY 

URI AVRAHAM 

ABSTRACT 

We give some consistency results on the existence of uncountable free sets for 
nowhere-dense set mappings. For example, we prove that it is relatively 
consistent with ZFC and Martin's Axiom that any nowhere-dense set mapping 
defined on the reals has an uncountable free set. 

§0. Let A be a set, a function f: A ~ P(A) is called a set mapping. (P(A) is 

the power set of A.) X C A  is said to be free iff for all x ,y  E X ,  x ~  y 

x ~ f(y) .  A classical result says that if x is an infinite cardinal <IAI and 

I f(a)l < K fo r  all a e A, then a free set of cardinality ]A I exists ( L ~ i r  and 

Hajnal, see [5]). The game is to require f(a) to be small and to ask for a large 

free set. We will concentrate in the case where f is defined on the set of real 

numbers R, and f(r) is nowhere-dense for all r G R (call such f a nowhere-dense 
set mapping) and we ask for an uncountable free set. This type of question, 

requiring f(a) to be small in another sense than cardinality, is very interesting 

because it leads to consistency results. It was asked by P. Erdfs  and A. Hajnal in 

their list of unsolved problems [2]; problem 38A reads: Assume that [ is 

nowhere dense in R. Does there then exist a free subset of power 1~1? S. Hechler 

gave a consistency answer, assuming CH (continuum hypothesis) he showed 

there exists a nowhere-dense set mapping f defined on R with no uncountable 

free set (f(r) is even a monotonic sequence converging to r). See [3]. On the 

other hand, [4] remarks the following. If one adds l~z Cohen reals (forcing with 

finite conditions) then the set G of the Cohen reals added is a Luzin set: For any 

set F of first category F f'l G is countable. So, by restricting to the set G, we get 

that in this model every set mapping f such that f(r) is of first category for all 

r E R, has a free set which is of second category and of power the continuum. 

This follows by L~hr -Ha jna l  because, restricted to G, the notion of "first 

category" and the notion of "countable cardinality" coincide. But this is also 
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why that answer is not completely satisfactory - -  the whole motivation of the 

question was to ask something different from the question answered by L ~ r  

and Hajnal. So, in §2 we show the consistency of ZFC with Martin's Axiom and 

2 "0 = 1~I2 (hence there are no Luzin sets) of 

(*) Every nowhere-dense set mapping has an uncountable free set. 

In §1 we show the consistency of ZFC with non CH (2 "o having any reasonable 

value) with the negation of (*). This was asked by Hechler in [3] and [4]. 

As an appetizer let me say that any question you can ask seems to be 

untouched: Get a model with no Luzin sets and any nowhere-dense set mapping 

has a free set of cardinality continuum. Ask the free sets to be of second category 

(always with no Lusin sets). What with set mapping having as values first 

category set? Measure zero sets? Get the consistency of Martin's Axiom with the 

negation of (*). What about functions defined on pairs? etc. 

I would like to thank M. Magidor, M. Rubin, S. Todor~evi6 and W. Weiss for 

helpful discussions. 

§1. A nowhere-dense set mapping with no uncountable tree set is consistent 

with ~CI- I  

We assume in this section that --1CH holds and our aim is to add (generically) 

a nowhere-dense set mapping f which does not have uncountable free set. As 

our forcing posets add new reals, it is necessary to iterate the generic extensions 

so that finally f will be defined on all the reals. Let us first describe how the 

nowhere-dense set f(r) is generically obtained for a particular real r. 

For r E R, P, is the natural forcing poset for adding a nowhere-dense set 

which includes r, so a condition in P, gives a finite number of reals which are to 

be in the nowhere-dense set, and a finite number of open (rational) intervals 

included in the complement of that set. More precisely: 

1.1. DEF]Nrnor~. P, is the collection of all p = (p ' ,p*)  such that p ' C  R is 

finite with r E p',  and p* is a finite collection of (nonempty) rational intervals 

such that p ' n  ( U  p * ) =  O (in particular r ~ p*, this is the main point). The 

partial order is defined naturally by p =(p ' ,p*)=<q = (q',q*) (q is more 

informative than p) iff p '  C_ q and U p * C U q *. 

Let P, be a V-generic filter over P,. It is readily checked that for each interval 

/, {p = (p', p *) E P, I for some rational interval ] C / ,  J ~ p*} is a dense subset of 

P,. Hence U {p'l (P', P*)~ P, for some p*} is a nowhere-dense set, denote this 

set by f(r) and you can see how our generic set mapping function f with no free 

uncountable sets is constructed. For any p, q E P,, if p* = q* then p and q are 
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compatible by (p' U q ' ,p*) .  Hence, as there are only countably many rational 

intervals, P, satisfies the c.a.c. (countable antichain condition - -  any collection of 

pairwise incompatible members of P, is countable). Moreover  P, satisfies 

property K; any collection of cardinality N~ of members of P, contains an 
I 

uncountable subcollection every two members of which are compatible. So 

forcing with P, does not collapse cardinals. It is also clear that forcing with P, 

adds a new real. (The set of rational intervals which belong to p* for some p E i 6, 

is not in the ground model.) 

1.2. DEFINITION. Let S C_ R be a set of reals. Ps is the collection of all finite 

functions h defined on S such that for r E domain of h, h(r )E  P,. The partial 

order is defined componentwise, i.e., h _-<g iff D o m(h )C_ D o m(g )  and for 

r E D o m ( h ) ,  h(r)<=g(r) in P,. 

The proof that Ps satisfies property K uses the classical A-system argument 

applied to the domain of the functions involved (see [5] appendix). We also need 

the fact that iteration - -  taking direct limits at limit stages - -  of posets satisfying 

property K, satisfies property K (see [6]). 

Now if/Ss is V-generic filter over Ps, we get for r E S a generic filter over P,, 

namely P, = {h(r) lh E Ps } which we call/ss N P,. The nowhere-dense set thus 

obtained from P, is denoted by f(r), so the domain of f is S. 

To make the proof easier, let us first prove that in V '~ the function f, does not 

have an uncountable free set, then we will have to iterate these forcings so as to 

define f on all of the reals. So suppose p II- "(r, I i < col) is a free set for f " .  For 

each i < to~ pick p, => p and a real s, E S such that p~ IF "r~ = s, ", by enlarging p~ 

further we can assume that s, E Dom(p,) .  Now find an uncountable J C_ to1 and a 

finite sequence ( [~ , . . . ,  [ ,  ) of sets of rational intervals such that 

(1) {Dom(p,) I i E J} is a A-system, say Dom (p,) = {al, • • ", a~,} and s, = al,  and 

for i, j E J ,  a i = a ~  ~ l = m .  
(2) p,(a'k)=(p',,k, [k ). (By definition we also have a'kEp'~.k.) 
Now take any i~  j in J. 

Define p, Upj as follows. D = Dom(p~ Ups) = D o m(p , )U D o m(p s )  and for 

a E D if a E Dom(p,)  I-/Dom(ps) then let p,(a) = (X, [~ ) it follows that pj (a)  = 

(Y, fk), then we have (p, U p , ) ( a ) = ( X U Y , [ k ) .  In case a E D o m ( p , )  
-Dom(pj) (Dom(pl) -Dom(p~))  we let (p, Upj ) (a )=p , (a )  (=p~(a)) .  So 

p, U pj C Ps. 
NOW we define p * >  p~ U pj such that p* IF "r, @ f(r j )"  and this is a contradic- 

tion. For all a / sj, p *(a) = (pl U pj) (a). But for a = st, say (p, U Pt) (sl) = (Z, f~), 
define p*(sl) = (Z U {s.}, Il). This is O.K. because s, ff U / 1  (as s~ = a~l). 
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Assume V - -  the universe we start with - -  satisfies the negation of CH. We 

will i terate posets of the kind Ps, starting with PR, and define the function [ on 

the newly created reals so that finally (after to, many steps) the function f is 

defined on all the reals and has no uncountable free set (as we shall see). 

1.3. DEFINITION OF THE ITERATION. Set Q0 = O, So = R. Define by induction 

on a =< to1, a > 0, posets Q~ and names S~ in V °~ such that Q.  is a set of finite 

functions q defined on finite subsets of or, such that q(s c) is a name in Qe (for 

> 0), defined by: 

(1) q ( 0 ) E  P ,  (R is the set of reals in V). So Q1 is essentially P, .  

(2) If o~ is limit then q E Q~ ift q is a finite function such that all 3' < a, 

q [ y E Q~. (q [3" is the restriction of q to 3".) 

(3) If a = fl + 1 then Q~ is the set of all functions q such that Dora (q )  C_ a, 

q [fl E Q,  and if fl E D o m ( q )  then q [ fl II- q(f l )  E Pso. 

(4) So is a name in V °o such that ~ IF "So is the set of all reals which are not in 

V %  for any/3  < a ."  In case a = 1 we get OIF °' "S~ is the set of all reals which 

are not in V" .  

Finally Q = Q .  is the desired poset. A projection from Q on Qv is naturally 

defined by q --> q [ 7. 

1.4. CLAIM. Any  real in V ° is in V %  for some 3" < to1. 

The proof  of the claim is standard and uses the fact that Q satisfies the c.a.c. [ ]  

So for any real r in V °, looking at the minimal a such that r E V °~ we get that 

either r E R v or r E S~ for some a < to~. Hence  f ( r )  is defined at stage Q~+I (or 

at Q~ if r ~ R) .  f ( r )  is a nowhere-dense set in V ° because the proper ty  of being 

a nowhere-dense set is absolute. Before proving that [ has no uncountable free 

set, let us show that the conditions in Q can be assumed to be of a more  explicit 

nature. 

1.5. DEFINITION. For each 1 _--__ a < tol choose a fixed name ~-~ ~ V °~ such 

that OIF "¢,  :1S~ I---> S~ is a one-to-one onto function". Let h be  a name in V °., 

q E Q~ such that q IF"h E P s " ,  (q, h)  is explicit iff there exists a finite set 

{~, • •., Srm} of ordinals and there exists a collection { L , ' "  ", [ ,  } such that L is a 

finite set of rational intervals, such that 

(1) q IF " D o m ( h )  = {¢, (st0, .- ., ~'~ (~:s)}" and 

(2) q IF "if h (z~ (~))  = (p',  p *) then p * = L "  

1.6. LEMMA. The set of conditions q E Q such that, for a E Dom(q ) ,  

(q I a, q (a))  is explicit is a dense set in Q. (We call such q explicit.) 
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PROOF. Let  q E Q be given. Induct ively we will construct  q = q,,<_-q, <= 
• - • _<- q, a sequence  (which will turn out  to be finite) increasing in Q, as follows. 

Assume q, is constructed.  Let  a, E Dora(q , )  be the least such that  (qi I ot~, q~(a,)) 
is not  explicit. Now define q~+, such that 

(1) q~+,(a) = q~(a) for  all a > a~. 

(2) qi+, > q, and (q,+, l a,, q,+,(a~)) is explicit. 

A momen t  of reflection shows this is possible. As the sequence  a~ is decreasing,  

at some finite i the definit ion breaks,  hence q~ ( a )  is explicit for all a E Dora  (q~) 

and q, is as required.  [ ]  

1.7. MAIN LEMMA. There is no uncountable free set for f. 

PROOF. Assume to the cont rary  that q IF "(r~ I i < oJ1 ) is a free set for  f " .  For  

each i < ~o~ pick q'i _-> q and a, < o~1 such that q'~lF "r~ E S~, ".  Then  pick q~ => q'~ 

such that 

(1) al E Dom(q , )  and q~ is explicit. 

(2) q~ IF"r, E Dom(q~(a,))" and even for some ordinal  sc~, q~ IF "r, = z~, (~:i)E 

Dom(q,(a,))". 
Now we can pick J C ~o~ uncountab le  such that 

(1) {Dom(q~)l i  E J} is a z~ system with kernel  A. D o m ( q ~ ) =  

{a(0, i), . . ., a(n, i)} with a(l, i) < a( l  + 1, i) and A = {a(k, i) l k < 10}. A n d  i < ]  

a(n , i )<a( l , , , ] ) .  
(2) For  l _-< n, as q~ is explicit, we have a finite set of ordinals and a finite 

--I collection of finite sets of rat ional  intervals {~:tl", • •. ,  s¢~,} and { i t , . .  ", I,,,} as in 

Defini t ion 1.5 (notice that  we wrote  m~ and not  m,.,, ['~ and not  [~", since we can 

assume these do not  depend  on i by the pigeon hole  principle). 

(3) For  any l <= n ( { ~ ' , . . . ,  ~ , } : i E  J) form a A system with kernel  {~ ' l  k E 

A ~} for some fixed A ~ C m~ + 1. 

(4) For  some fixed l _---n and k _-< m~, for  all i ~ J  q, IF"r, = r ~  (~)"  where  

a = a(l, i) and ~ = ~:~' (recall we called a, a, ; and ~, ~ ). 

Now pick i < ] in J, we shall define an extension q* of q~ and q, such that  

q* IF "r~ ~ f(r~)" (a contradict ion) .  Set D o r a ( q * )  = Dom(q i )  U Dom(q j ) .  T h e  

definit ion of q*(/3) is inductive.  We also prove  inductively that  q*l/3---> ,/,I/3, 
q~ I/3. The re  are four  cases: 

Case f l E A  and f l # a j .  Define q * ( f l )E  V% such that q * l f l i - " q * ( / 3 ) =  
q,(/3) U qj(/3)". T o  prove  that this is possible we must show that  q*l/3 ~- "q,(/3) 
and qj(/3) are compa t ib le" ;  this follows because qi and qj are part  of a A system 

and because  ~ #  ~:' ~ z~ (~) # ~-~ (~'). 
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Case [3 E A and [3 = aj (hence also/3 = a, ). To shorten notation, let us agree 

that if p = ( p ' , p * ) E P ,  and s is a real, then s E p  can be written instead of 

s E p ' .  
Now in this case, by (4) qj II- "rj = ~-~ (~J)" ,  denote ~J  by ~. Define q *(/3) E V% 

such that q * l / 3 1 l - " q * ( / 3 ) > - _ q , ( / 3 ) , q A / 3 )  ' '  and such that q*lajll-"T~(g~')~ 
q*(/3)(z~(~:))". For this to work we should show that q1 I/3 IF "~'~(~') ~ 1,3 f~," 

but this holds by the definition of P,. Then, when the definition of q* is 

completed, we will get 

q* II-"r, = ~'~, ( ~ ' )  ~ q*(a,)(r~ (~)) = q*(a,)(rj)" 

so that q* ll-"r~ E / ( r j ) " .  

Case / 3 ~ A  and ~ # a j .  If 13EDom(q , )  set q*(/3)=q~(/3), while if 

/3 E Dom(qj)  set q*(/3) = qj(/3). Because/3 ~ A, one and only one of these cases 

o c c u r s .  

Case/3 ~_ A and/3 = aj. In this case, as i < j, we have ot~ < aj. So that in V%, 
• ~. ( ~ ' )  is a real. Hence we can define q*( /3)E  V% so that q*l/3 IF "q  *(/3) _--> 

qj(fl)" and q*1/31t-"I" i., ~. (~ :k)~q*( /3) ( r~(~i ) )  ''. So finally we will again have 

q* II- r, ~ / ( r , ) .  []  

§2. Results with Martin's Axiom 

2.1. DEFINITION. We call a set mapping f a sequence mapping if[ for all 

r ~ R, [(r) is a sequence with limit r. 

We are interested in free sets for sequence mapping defined on set of reals of 

cardinality ~tl, because on higher cardinalities we can use the Lfizhr-Hajnal 

theorem mentioned in the introduction. 

2.2. THEOREM. Martin's Axiom +2"o>N1 implies that whenever f is a se- 

quence mapping defined on uncountable A C R, there is a subset of A free for f 

and uncountable. 

PROOF. Let P = {p _C A I P is finite and free for [}. First we prove that P 

satisfies the c.a.c. So we are given a collection {p~ I a <col } C P and have to find 

p~ and p~ compatible. Uniformise the p~ as possible, so we can assume for some 

n < oJ I P~ I = n for a < 001, also assume the p~ form a A system, then by throwing 

out the common part of the A system we can assume the p~ are actually disjoint. 

Set p~ = { a ~ ' < a T < - . .  <aT}  (increasing real numbers) and choose rational 

intervals I~', 1 =<i_= n, such that aTE IT and IT N [ ( a T ) = O .  By taking a 
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subcollection and reenumerat ing it we assume IF = L for all t~ < to,, i = 1 , . . . ,  n 

(i.e. a fixed sequence of rational intervals is good for all a < to~ and hence for 

i ~  ], a7 ~ [(a~)  because a T E  I~ = I f  is disjoint f rom [(a~)). 
Now we define by induction on i =< n uncountable sets A~, B~ C oJ~ such that 

for i > 0  

a E A ,  and / 3 E B ,  ~ { a ~ , . . . , a T } U { a f , . . . , a f } E P .  

The definition is as follows: A0 = B0 = to1. Suppose A N ,  Bi-1 are constructed, for 

each /3EBi-1  find a rational interval J~ such that J ~ n f ( a ~ ) = O  and 

J~ N{aTI a E A,_I} is uncountable.  (Here  we use the fact that f is a sequence 

mapping and A~-I is uncountable.)  Then define uncountable B~ C B~ ~ such that 

for some J, J~ = J for all /3 E B~. Next,  for any a T E  J t~ E A~_~ (and there are 

uncountably many such a 7) choose a rational interval L with L O f ( a  7) = O and 

L O {a,~l/3 e B;} uncountable.  Now find uncountable A~ C A,_~ such that for 

s o m e / ,  I = L for all t~ ~ A,. Set B~ = {/3 E B~ I a ~ E  I},  then B~ is uncountable.  

It  follows that for o tEA~ and /3EB~, a ' ; ~ f ( a f )  and a ~ . f ( a ' ; ) .  Hence 

{ a T , . . . , a T } U { a f , . . . , a f } G P .  

Before applying Martin 's  Axiom we have to specify what are the dense sets we 

use, that will provide us with an uncountable filter G C P and then U G is 

uncountable and free. Actually we find p E P and look at {p' E P I P' >= P} = P'. 

The following lemma was used in [1] in a similar context. 

2.3. LEMMA. Let P be an uncountable poset satisfying the c.a.c. Then there 

exists p E P such that, setting P' = {p ' ~ P [ p '  >= p}, every generic filter over P' is 

uncountable. 

PROOF. It  is enough to find p E P which forces the generic filter to be 

uncountable.  Assume,  in order  to get a contradiction, that for any p E P, 

p IF " the  generic filter is countable".  Then there exists a name [ such that for any 

p E P, p It- " f :  l~10 ~ G is on to"  where G is the canonical name of the generic 

filter. Now because P satisfies the c.a.c, we get a countable set C such that for 

any n < No, if for some p*, p E P, p IF " [ ( n )  = p * "  then p* E C. Any p*  E P - C 

gives a contradiction because p * IF " p  * ~ G "  hence for some n < N0 and p => p*, 

p IF " f ( n  ) = p *" [ ]  

Now we return our at tention to the case f is a nowhere-dense set mapping. 

2.4. THEOREM. The following is consistent with ZFC. 

2 No = 1'I2 + Martin's  Ax iom + (*). 
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PROOF. We start with V = L so that ~ holds. The iteration will be an to2 

long iteration of c.a.c, posets of cardinality ~tl so that CH holds at each stage of 

the iteration. The diamond is used to tell which is the poset to force with next. 

All this will be made clearer with more details; let us concentrate now on the 

successor stage. 

2.5. LEMMA. Assume CH. Let f be a nowhere-dense set mapping. Then there 
exists a c.a.c, poser P of cardinality l,t~ such that in V P f has an uncountable free 
set. 

PRooF. We can assume f(r) is closed (simply take the closure of f(r)). The 
only use of CH is to obtain a Luzin set L C R. So L O N is countable for every 

nowhere-dense set N. Let  P = {p C L I P  is a finite free set for f}. We will show 

now P satisfies the c.a.c. Let  {p~ I a < col } C_ P be given. As before (Theorem 2.2) 

assume, w.l.o.g, that the p~ are pairwise disjoint and of the same cardinality n. 

Say p~ = {aT," • -, a :}  enumerated in increasing order. As f(r) is closed, we can 

find rational intervals L , ' "  ", L (not depending on a, without loss of generality) 

such that a T E L  and for ]# i ,  L n f ( a T ) = O .  So again, if p~ and p~ are 

incompatible, it is only because for some 1 < i < n, {aT, a~} is not free. Again we 

define by induction on i < n uncountable sets A~, B~ C oJ, such that 

a EA, , /3  EB~ ~ { a L " ' , a T } U { a f , - " , a f } i s f r e e .  

Ao = Bo = o~. Assume A~_~,B,_~ are defined. Given any uncountable set 

A C R we can, by throwing countably many reals out of A, assume the following 

hold: For  any (rational) in terval / ,  if A n I #  O then A O I is uncountable. So 

we stipulate all of our uncountable sets of reals have this property.  For each a ~, 

/3 E B~_~ pick a rational interval I~ such that 

( A = { a T I a E A , _ I } ) A I ~ # O  and I ~ n f ( a ' , ) = O .  

This is possible to find because A C L is uncountable, hence of second category, 

and [(r) is closed and nowhere dense. Now for some interval /, I~ = I for 

uncountably many /3 E B~-l, say B~_~ is the collection of all these indexes. 

A O I #  O hence even uncountable. Repeat  now the other  way around; for each 

a T ~ A n I  find J~ a rational interval with [(aT) n J ~ = O  and 

J~ O{a,~I/3EB;_,}#O (hence uncountable). So we get an interval J and 

A~ C A H  uncountable such that for a EA~, a T E A  0 1  and J~ = J .  Define 

B~ C B~_~, uncountable such that/3 E B~ ~ a ~ E  J. [ ]  

Now we iterate with finite support (i.e. taking direct limit at limit stages like 

[7]) forcing posets like P and the length of the iteration is ~o2, so that each 
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intermediate stage is obtained by a c.a.c, poset of cardinality ~11. Hence  C H  holds 

at each intermediate stage and Lemma  2.4 can be used. A problem might arise 

because in an to2 stage iteration one can do ~2 many jobs while there are 2 -2 

many possible set mappings to deal with. This is why we have to use the d iamond 

on ~2 (on the set of ordinals of cofinality to1). 

We give now more  details. Let  (So Iot < to2) be  in L a O sequence. So So C_ a 

and for any X C to2, {a I c f (a)  = to1 and S~ = X M a} is stationary in to2. H(N2) is 

the collection of all sets which have transitive closure of cardinality =< 1~1. Let 

F : ~2 ~ H(N2) be one to one and onto. We define the posets P~, a < to2 such that 

P~ E H(X2) (P~ is the a iteration). Suppose P~ is defined. Look at F" S~ = z. If ~" 

is a name in L L  and Ol1-"~" is a nowhere-dense set mapping"  then define 

P~+I = P~ * P where P is defined using Lemma  2.4 such that in V~+, ~ has an 

uncountable free set (if ~, is not as above define P,÷I so that Martin 's  Axiom 

finally holds). Now let P~ be the direct limit of P~, a < to2. We have to show that 

in V~2 ( . )  holds. Well, let f be a nowhere-dense set mapping in V ~ .  We can 

assume that the values of f are c l o s e d  nowhere-dense sets, and as a closed set 

can be described by a real we can assume f is a function f rom the reals into the 

reals. Now the reals of V"~ have names in H(~I2) (because P,~ satisfies the c.a.c.) 

so we can pick a function 7 such that • C_ H(I~2) and such that for any name of a 

real, r E H(N~), ~(r) is another  name of a real with C~It-"/(r) = ~(r)".  If we let 

T~ = ~" t3 L e~ it follows that for a closed unbounded set C if ot E C and if 

c f (a)  = to~ then ~-~ is in L ~ a nowhere dense set mapping. C '  = {a I r A F " a  = 

I" tq L e• or c f (a )  ~ to1} contains a closed unbounded subset of to2 (this follows 

f rom the following facts: ~" N F " a  and ~" f3 L L  are of cardinality ~I~, they form an 

increasing sequence, continuous at ordinals of cofinality to~ and the union of 

these sequences is ~'). Set X = F-~z. Find a ~ C M C '  c f ( a ) =  o~ such that 

S~ = X f3 a, it follows that F"S~,  = F " X  A a = ~" f3 F " a  = z A L ~  = ~-~ is in L L 

a name of a nowhere-dense set mapping, hence in V~+, f has an uncountable 

free set. [ ]  

RE~t~RKS. (a)* 2 -0 can be given any desired value in Theorem 2.4. This by first 

adding K many Cohen reals and then essentially repeat  the iteration of 2.4, using 

O on K. Observe  that at limit states of cofinality ~Ol, an to1 cofinal sequence of 

reals is a Luzin set. 

(b) If Mart in 's  Axiom holds then one can give a diagonalization argument,  

using the posets P,, to construct a nowhere-dense set mapping which does not 

have any free set of cardinality continuum. 

' Remarked by S. Todor~evi~ and J. Steprfins. 
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