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THE TOPOLOGY OF 
STATIONARY CURL PARALLEL SOLUTIONS 

OF EULER'S EQUATIONS* 

BY 

CARMEN CHICONE 

ABSTRAC'r 

We study the orbit structure of a vector field V defined on a three-dimensional 
Riemannian manifold which satisfies V A curl V = 0. Such a vector field repre- 
sents the velocity of a stationary solution of Euler's equation for a perfect fluid. 
In addition to several other results, we show that if the vector field admits a first 
integral, then each level set is toroidal and the induced flow on the level set is 
either periodic or conditionally periodic. 

I. Introduction 

T h e  equa t i ons  of  m o t i o n  of  an idea l  f luid in a t h r e e - d i m e n s i o n a l  b o u n d e d  and  

c o n n e c t e d  r eg ion  D are  g iven  by  E u l e r ' s  equa t ions  which m a y  be  exp res sed  in 

Be rnou l l i ' s  fo rm as 

OV 
0-7 = V A curl  V + grad  a ,  

d iv  V = 0, 

where  V is the  ve loc i ty  and  a is a func t ion  d e t e r m i n e d  by  the  cond i t ions  tha t  

div V = 0 and  tha t  V is t angen t  to  the  b o u n d a r y .  Us ing  the  vor t ic i ty  e q u a t i o n  

a curl  V 
Ot = [ V, c u d  V], 

whe re  [ , ] is the  L ie  b r acke t ,  A r n o l d  [cf. 2, p. 331] has  shown tha t  if the  flow is 

s t a t iona ry ,  i .e.,  aV/Ot = 0, and  if V A curl  V does  no t  vanish  e v e r y w h e r e  t hen  

the  reg ion  D can  be  p a r t i t i o n e d  in to  invar ian t  cells  which  a re  e i the r  tor i  or  
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cylinders. These cells are obtained as level surfaces of a. Moreover,  on each 

torus the flow lines are all periodic or all dense and on each cylinder the flow 

lines are all periodic. In a remark on this theorem Arnold [2, p. 332] mentions 

that when V ^ curl V = 0 everywhere the flow is very complicated. In particular, 

for the stationary flow given by 

Vx = A sin z + C cos y, Vy = B sin x + A cos z, 

V~ = C s i n y  + B  cosx 

on the three-dimensional torus computer  experiments indicate that some flow 

lines densely fill a three-dimensional region. 

Avez and Buzzanca [4] have shown that if V has constant length and if 

curl V = a V  for some constant a then a connected component  of a level surface 

of a first integral h of V is either a plane, a cylinder or a torus and on the tori all 

orbits are closed or all orbits are everywhere dense. Their  main example is the 

geodesic flow on the unit tangent bundle T~M of a Riemannian surface (M 2, g)  

for which they prove that the geodesic vector field X satisfies 

curl X = - X 

and 

I lx l l  = 1 

with respect to the natural "Sasaki" metric on T1M. 

In this paper we study vector fields X defined on Riemannian three-manifolds 

which satisfy curl X = a X  for some function a. In particular, on a not necessarily 

compact three-manifold we show that a vector field of constant length which has 

an integral h satisfies the theorem of Avez and Buzzanca when cuff X = a X  and 

a is a nonvanishing function. In addition, we show that X has constant length 

and curl X = a X  if and only if X is a contact vector field. 

2. Contact structures and curl parallel fields 

Let (M, g) denote  a Riemannian manifold and let ~ denote the associated 

Riemannian volume form. When M is three dimensional a vector field A on M 

defines a 1-form WA (B)  = g(A ,  B )  and a 2-form iA [1 such that both identifica- 

tions are isomorphisms. With these identifications vector analysis on M is 

obtained from the calculus of differential forms. In particular, if f is a function 

and A is a vector field on M 

df = ~Os,,d t, dOJA = lou,, A f I  and LA £1 = (div A)[ l .  
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With the vector cross product A ^ B given by 

WA ^ OJB = i A ^ a  ~'~ 

all the familiar formulas of vector analysis can be derived by using the exterior 

wedge algebra of forms and the properties of the exterior derivative d and 

interior product i. 

Recall that a 1-form A defines a contact structure on a manifold of dimension 

2n + 1 if A n (dA)" is a volume form. A vector field X is a contact vector field if 

A(X) = 1 and ixdA = 0. It follows easily that X preserves the volume A n (dA)" 

and that X is nonvanishing. Every contact structure has a unique associated 

contact vector field and it is a classical fact that the geodesic flow on the unit 

tangent bundle of a Riemannian manifold is a contact vector field with respect to 

the contact structure given by the Liouville 1-form. 

When M is the unit sphere bundle of an orientable Riemannian 2-manifold, M 

is parallelizable. In particular, if X is the geodesic vector field, Y is the 

perpendicular geodesic vector field and A is the fiber rotation field one has the 

bracket relations (cf. [5]) 

[ X , Y ] = k a ,  [ X , A ] = - Y  and [ Y , A ] = X  

where k is the Gauss curvature of the base manifold. Define the Sasaki metric S 

on M by declaring that (X, Y, A)  is an orthonormal oriented frame field and let 

fX be the associated volume form defined by fl(X, Y, A)  = 1. Then, with respect 

to S, a coordinate free computation yields the equation 

doJx = - ix f~ 

which is equivalent to the statement that curl X = - X .  

Since curl X = - X  for the geodesic field X and since X is a contact vector 

field it is natural to ask for the relationship between contact vector fields and curl 

parallel fields, i.e. vector fields such that curl X = aX. To find this relationship 
we will need the following theorem. 

THEOREM 2.1. Let X be the contact vector field for the contact structure A on the 

(2n + 1)-dimensional manifold M. Then, there exists a Riemannian metric g such 

that g ( . ,  X )  = A and such that the Riemannian volume [l = A ^ (dA) n. 

PROOF. The proof will proceed in two steps. 

(a) There exists a Riemannian metric h on M such that h ( . ,  X ) -  A. 

(b) Let 1)1 be the Riemannian volume of h and f be the positive function such 

that 
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f f l ,  = A = A ^ (dA)". 

Then, there exists an h positive definite bundle homomorphism B : TM---> T M  

such that B X  = X and det B = f2. 

Given (a) and (b), define 

g(U, v)= h(U, BV). 

We have g ( . ,  X ) =  A and the Riemannian volume 1) of g is given by 

1) = (det B)1/2 lq2 = A 

as required. 

To prove (a) note that X is nonvanishing and, therefore, by Darboux's 

theorem there is a locally finite cover {Ua} of M such that in the coordinates 

(x , , - .  -, x~.+,) of U~ 

and 

X =  alax~ 

A = dx l  + x2dx.+2 + " " • + x.+idx2.+1. 

Define a Riemannian metric ha on U. by assigning a smooth positive definite 

symmetric matrix of functions h 0 in the variables ( x l , "  ", xz.+1) to each point of 

U. such that the first row and first column of h0 is (I, 0 , . . . ,  x z , "  ", x.+~). If M is 

three dimensional such an assignment would be 

(0 0 x) 
h0 = 1 . 

x2 1 +x~ 

Let {tpa} be a partition of unity subordinate to the cover {U~} and define 

h = x 4,~ha. 

Let p ~ M and compute 

h(., Xp ) = ~ ¢k~ (p)h,(., alaxO 

as required. 

To prove (b) observe that TM = [X] ~) E where [X] denotes the line bundle 
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generated by X and E is the h orthocomplement of [X] in TM. Let I0 be the 

identity bundle homomorphism on [X] and I1 the identity bundle homomor-  
phism on E. Finally, define 

B = IoE]~f l '" l , .  

Clearly, B is positive definite and at each point 

det B = f .  Q.E.D. 

THEOREM 2.2. Let  X be a vector field on M 3. The fol lowing statements are 

equivalent. 

(a) There exists a R i e m a n n i a n  metric g on M such that g ( X , X ) =  c and 

curl X = a X  where ot is a nonvanishing function and  c is a nonzero constant. 

(b) There exists a contact form it such that X is the contact vector field for it. 

(c) There exists a R i e m a n n i a n  metric g such that g ( X ,  X )  = 1 and  curl X = X. 

PROOF. (a) ~ (b). Let A = c-lto×. Then, 

dit = c-Xdtox = c -1 icurl x f l  = otc-1 ix 1) 

where II is the associated Riemannian volume. We have 

and 

i t ( X ) =  1 

b, dit = a c - '  ixix l l = O ,  

hence, we need only show that A ^ dh is a volume. But, 

and 

imply 

it A dit = ac-~to× ^ ix 

0 = i,, (o~,, f t ) =  c l l - t o , ,  ^ i , , f t  

it A d~ ----" aC-l~'~.  

(b) ~ (c). If it is a contact form and X is the associated contact vector field, 
then by Theorem 2.1 there is a Riemannian metric g such that g ( . ,  X )  = it and 

such that the associated Riemannian volume is it ,x dit. Then, 

g(X, X )  = 1 

and 
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ix (A ^ dA ) = dA = dtox =/curl x 

= io°,,,, (X ^ dA).  

Hence,  as required X = curl X. 

The  implication (c) ::> (a) is clear. Q.E.D.  

Theorem 2.2 leads to a generalization of the result of Avez and Buzzanca. 

THEOREM 2.3. Let  X be a vector field on a three-dimensional  oriented 

R i e m a n n i a n  mani fo ld  (M, g)  such that g ( X ,  X )  = c and  curl X = o.X where c is a 

constant and a is a nonvanishing function. I f  h is a first integral of  X then a 

component  of  a regular level set N of  h is an X invariant plane, cylinder or toms. 

Moreover, if N is a cylinder all orbits are closed and if  N is a toms either all orbits 

are dense or all orbits are closed. 

PROOF. The  fact that h is a first integral of X does not depend on the choice 

of Riemannian  metric. Hence,  applying Theorem 2.2 there is a Riemannian 

metric g '  such that g ' (X,  X)  = 1 and such that curl X = X with respect to g ' .  

This reduces the result to the theorem of Avez and Buzzanca. In effect, since X 

and X A grad h are tangent to the regular level set of h the theorem follows f rom 

the easily proved fact that 

[X, X A grad h] = 0. Q.E.D.  

REMARK. Theorem 2.2 also shows that the theorem of Avez and Buzzanca is 

equivalent to the reduction of the phase space of a contact vector field to a level 

set of an integral of the motion. Of course, this is the situation frequently 

encountered in the Hamil tonian formulation of particle mechanics. 
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