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A REMARK ON 
THE UNCONDITIONAL STRUCTURE OF L (E, F) 

BY 

CARSTEN SCHOTT' 

ABSTRACT 

We present a sequence of symmetric Banach spaces E., n E N, with d(E., I~), 
n E N, unbounded and ubc(L(E*,E.)), n ~ N, uniformly bounded. 

O. Introduction 

In this note we consider the unconditional structure of the Banach space of 

operators L(E, F) of two Banach spaces E and F with unconditional bases 

{e~}7=1 and ~}j%1, respectively. In [5] it was shown that the unconditional basis 

constant ubc({e* @fj }7.)~1) is, up to a constant, the same as lust(L(E, F)) and 

gI(L(E, F)). The only known cases for uniformly bounded ubc(L(E,F)) were 

described by the inequality [5] 

ubc(L (E, F)) =< min{d(E*, l~), d(F,/~)} 

while assuming that ubc({e,}7=l)=ubc(~}j%l)= 1. On the other hand, using 

results of [1] and [5] one gets that 

ubc(L (E, F)) _--- C(log(n + m))-~/2min{d(E *, l~) 1~2, d(F,/~)1/2 }. 

The factor (log(n + rn)) -~t2 enters because in [1] Gaussian and not Bernoulli 

random variables are considered. By a result of Lewis [2] it was suggested that 

the factor may be dropped, namely, Lewis proved that 

ubc(E Q~E @~. . .  Q~E)  

k factors 

tends with the number of factors k to infinity if and only if d(E, C) > 1. We give 
a counterexample. 
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1. Preliminaries 

We say that a Banach space E has a symmetric basis {e,}7=, if it is normalized 

and we have, for all a E R", all permutations ~" of the set {1, • •., n}, and all 

sequences of signs e = (El, '" ", ~',~) 

We say a Banach space has a C-unconditional basis if for all a ff R" and all 
= (~ , , . . . ,~° )  

[~,=, aiei <-_C]~,=, e,a,e, . 

We put ubc({e, },"=,)= inf C and 

ubc (E)  = inf {ubc ({e, }L~ ) I {ei }7=, is a basis of E }. 

The Gordon-Lewis  constant gl(E) is defined by 

gl(E) = sup{v,(A )/~',(A)I A ~ L (E, l ~)} 

where ,/~(A) denotes the 1-factorizing norm and 7r,(A) the 1-absolutely 

summing norm of A [5]. The Banach-Mazur  distance of two Banach spaces E 

and F is given by 

d(E, F) = inf{llJll IIJ-'ll I J ~ L(E, F), J is isomorphism}. 

By card M or ]MI we denote the cardinality of a set M. By [r] we denote  the 

smallest natural number greater than the real number r. By x* @ y we denote  

the operator  mapping x onto (x*, x) y. 

2. An estimate for ubc(L(E,  F)) 

The estimate is an immediate consequence of two known results. 

PROPOSITION 1. Suppose that {e,}.L, and ~}~"=, are 1-unconditional bases of 
the Banach spaces E and F, respectively. Then 

gl(L (E, F)) _-> C(log(n + m))-~/2min{d(E*, iT) 'j2, d(F, l~) '':} 

where C is an absolute constant. 
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Please note  that lemma 5 in [5] says that under  the same hypothesis  of 

Proposi t ion 1 we have 

ubc(L (E, F))  =< m i n { d ( E * ,  l~), d(F,/7.)}. 

PROOF. First we prove  that for  some C E R  

m in +-e* i 
i I 

(1) 

{ll  II IIII 11'2} <-C(log(n+m))"2max e*~ ~ ] ,  , e? ~ . 
j =  j = l  

Indeed ,  we have for  e = (eq)~",~_,, eq = -+ 1, [1] 

min --- e i @ ~ = 2 e,je * @ 
± i.i  = t i , j  = I 

= < V ~  ~ g,j(oJ)e*NJ~ dw 
1 i4  = 1 

where  g,i, 1 ~ i <= n, 1 <= j <- m, denote  independen t  Gaussian r andom variables. 

By a result of Chevet  [1] the last expression is less than a constant  t imes 

, \  I/2 f 
,s.up(~=, , (e* ,x) , - )  , :up  J,, l,=~ ' g,1, I ao~ 

)": rll II + sup l(f/, Y *)12 sup ~ g~e * doJ 

where g~, 1 = < i =  < n, and g,, 1 <=j <= m, are independen t  Gaussian random 

variables. Using the general  fact 

f,, J,=Z g,(o~), l a,o _-< cVlog k2 k Z II,-~ ~,Z [I 

and the same inequali ty for  {e * },"=, we get for  the last expression a constant  times 

sup ~ I(e*, x)l:  sup /j 
llxll=l \ i=1 l<_-k~m I I j= l  

+ sup I(/J, Y* 2 sup e*, . 
l[y °l[= 1 l<<-k~n ~= !  

Sinee I(e I, x)l --< 1 and I(~, Y*)I =< 1 [or all i = 1 , . .  -, n and j = 1 , . . . ,  m we get 

that 
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' II ~m_m - e *  
I i , j=  

_--<sup( [(e*~,x)[ 
Ilxll= = ,=l 

( 
+ sup , I(/,,Y*)I e*. 

[ly "11 = I \ i = I 

I" 11  ' I1" = e 'l + X/log n e * 
i = l  "= 

From this (1) follows immediately. By [5] we have 

gl(L (E, F)) > 1 ubc ({e = *, ® ~ } , , j = , ) " "  

> 1  ~ e * ® / i  (m+in ~ +e;®I,[I)-'. 
= 4 i , j= l  i , j= I - -  

By (1) we get for some C ' >  0 

{11  I' 11 s I gI(L(E, F ) ) =  > C'(log(n + m))-'/z min e* , ~ . 
j = l  

Using now the obvious inequality d (E* ,  17) = liT.z=, e * II and the same inequality 

for F we finish the proof. []  

3. The example 

We give the definition of the considered space. E,  is the space R"  equipped 

with a norm defined for the vectors E~=, e,, where e,, i = 1,. •., n are the natural 

unit vectors, as 

k ~ = l ,  k,+~ = 2k, ,  j = 1 , 2 , . - - ,  

(2) ..k_k II 
~__~ e,[[= ~p(k) = j  for k, _-< k < k,+l. 
i=1  11 

For the dual basis {e'~}7=, and all permutations zr of {1 , "  ", n} we put 

• ~ k e~ 
I=1 

Now we take the convex hull of 

{ l £ e * - ' £  } -4- * (3) M -e , , , , ,  I k = 1 , . . . ,  n, 7r is permutation of {1 , . . . ,  n} 
i = l  i = l  
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as the dual unit ball. In particular, M is the set of extreme points of the dual unit 
ball. We introduce the function r: {8 8, 88 + 1 , . . .  } ~ N 

(4) r (k) = [log21og21og21og2 k ] 

where the brackets mean to take the smallest natural number greater than or 

equal to log21og21og21og2 k. We observe the property 

(5) JJ~e,  Jl<--Cl'~)e, Jl for k = 8~,8~+ 1 . . . .  
II II l i - I  II i=1 

and for some absolute constant C. 
By corollary 3 of [4] we have 

i = l  e, <-_ X/-2d(E.,l~) 

and therefore d(E, , l~)  tends with n to infinity. Nevertheless, we have the 
following theorem. 

THEOREM 2. There is an absolute constant C such that 

ubc(L (E*,/5,))  =< C. 

For the proof we need two lemmas. 

LE~rMA 3. Let ~ and r be as defined by (2) and (4) and let (a~j)~,L, be a 
real-valued matrix with f a~j I <- 1 for all i = 1 , . . . ,  k and j = 1 , . . . ,  L Then there 
are absolute constants C* and C so that for all l, k E N with C* <- log2 log2 k -< 
l <-_ k and 

(6) lk = ~#(k)~o(l) ~ Ja,, J 
i . j=l  

we have subsets r (K)  and r(L ) o[ {1, . . . ,  k} and {1,-. . ,  l} o[ cardinality r(k ) and 
r(l) such that 

(7) ~ j a , , j<C ,  lk I ~,<K 
,,i=1 = r(l)r(k)  , )a° 

I I E r ( L )  

L E ~ t A  4. Let ~o and r be as defined by (2) and (4) and let k.~ (a,~),,j=, be a 
real-valued matrix. Suppose 1 <- I <= log21og2 k and 

I 

(8) 1 = ¢(k)q~(l)~kl ,., =, I a,, I _ -> -~ / /~  I a,j I f o r a l l i = l , . . . , k .  
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Then there is a subset r (K)  of {1, . . . ,  k} of cardinality r(k ) and a sequence (Ej)~=I 

o[ signs such that 

(9) ~ l a,, I------ C ---~k ' 
,.,=, r(k ) i=IX Ejaii 

l E t ( K )  

where C is an absolute constant. 

PROOF OF THEOREM 2. We have to show that there is a constant C _-> 1 so that 

we have for any matrix A = (a~j)i".,=t 

U II max +-- a~je, @ e, <= C n +- a~ie, @ ej . 
+-- i , j  = 1 i I 

Obviously this is equivalent to showing for all matrices A 

Without restriction of generality we may assume that I[~i,~,~, l alj [e, @ej II = 1. 

Since the extreme points of the dual unit ball are of the form (3) we get for'some 

k, l, 1 ~ k, l ~ n, and some subsets K, L of {1, . . . ,  n } with I K[ = k, J L I = ! 

II II (II III1  *U)-' (10) 1=  ~ [a,ile,@e, = e'~ e ,  ~'. la,,[. 
i . j = l  i = 1  i = l  i E K  

j E L  

Obviously we may assume that C* -_< 1 < k for some C* E R. Now we consider 

two cases. First, suppose Iog21og2 k </ .  Then, because of (10) the assumptions of 

Lemma 3 are fulfilled. Thus we get by (10) and Lemma 3 

2 [a,,le,®ej = kl ,~la , , I  
i . j  = 1 

< Cq~(k)q~(!) 

Because of (5) the last expression is less than 

4 111  II C 'q~(r(k))cc(r(l)) < a,je, ®e j  . 
r(k )r(l) ~,  a,~ = C' l E t ( K )  i 1 i~,(L) 

Second, we have the case 1 _-< 1 -<_ log21og2 k. The condition (8) is fulfilled because 

of (10). Therefore we may apply Lemma 4. 

The computation is the same as in the first case. [] 
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The following lemma is a consequence of a solution to Zarankiewicz's 

problem [3]. For completeness we give a short proof. 

LEMMA 5. Let ~ and r be as defined by (2) and (4). Suppose that 1<= 
= = ~a ~k,I log21og2k < i < k and ~ o )i.j=l is a O, 1-matrix with more than C(q~(k )q~(l))-:kl 

ones. Then there is a constant C* = C*(C)  so that for all k, l ~ N with C* <= k, l 

there is a submatrix of size r(k)  by r(l) consisting entirely of ones. 

PROOF. We assume that k.~ (ais)~.j=, has no desired submatrix and construct a 

contradiction. We define 

n, = card {j { alj = 1 }. 

Obviously, we can choose in the i th row (,~k)) different subsets containing exactly 

r (k )  ones. Thus, for the whole matrix this makes El~ (,~'k)). Clearly, since we 
assume that there is no submatrix of size r (k )  by r(1) containing entirely ones we 

have 

k > n~ 

On the other hand, by convexity and monotonicity of the function g( t )  = ('.) and 

by 

I 

n, >- Ck l (~ (k  )~(I))  -2>- Ckl(q~(k )) -4 
i = l  

we get 

(12) ,=, r (k)  

By (11), (12) and the inequality 

we get 

> l(Ck~o(k)-4 
= r ( k )  )" 

o n  

• = n !  

l 
< [ < \ I '(k) 

r ( k ) = r ( l ) = ( C k q ~ ( k ~ - 4 _ r ( k ) ]  --< (2Cq~(kf) '`~) 

provided k is large enough so that Ckq~(k) = 2 r ( k ) .  Thus 

log21og2 k <= l N r(k )(2C~o(k )4) "~k) 

o r  
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log.log.dog2 k _-< log_. r(k) + r (k)log2 (2Cq~ (k)4). 

Consider ing the definit ion of r and ¢, (2) and (4), we conclude that this is 

impossible. [ ]  

PROOF OF LEMMA 3. We introduce the following sets 

N., = { ( i , j ) 1 2 - "  >[a,, 1 > 2 - "  ' }  

for m with 0=<m < l o g : 4 ¢ ( k ) ~ ( l ) =  3'. Thus  we get by (6) 

~ la,, i_> kl kl >1 kl 
,..,,,.,,~N~ ~(k)q~(l) 2~(k)~(l)=2~(k)q~(l)"  

At least for one  m,j the sum E..j)~Nm,, [a,, I is grea ter  than or equal  to the average:  

kl > kl 
]a.  I-_ > (Iogz 8~ (k )~ ( l ) )  -~ 2~ ( k ) ~ ( l )  = 2Ci~(k)~(1)f- 

( i,J ) E  N m  . 

for some C > 0. In particular,  since l a,, I --< 1 for all i = 1,. • -, k and ] = 1 , - . . , / ,  

we may assume without  restriction of general i ty that 

kl card{(i,j)EN,~,la,, >0}  > C 
(q~ (k)q~(1)) ~" 

Now we have by Lemma  5 that there  is a constant  C* so that  for  all k, l E N with 

C* < k, 1 there is a submatr ix  of k.s = (a,j),.,=t of size r(k) by r(l) with 2-'~,,>=a,j > 

Thus,  denot ing the index sets of this submatr ix  by r(K) and r(L) we get 

r(k)r(l) r(k)r(l) kl r(k)r(l) 
4 ~'. a,, _-> . . . .  ~ la,,I. [] ,,K,×,,L, ~o(k )~o(l) kl q~(k )~o(i) kl ,.,=, 

PROOF OF LEMMA 4. By (8) we get 

(13) , p ( ~ ) j ~ l a 0 1 - -  <,.j=~ la,jl for  all i - -1,  - . ., k. 

There fore ,  for  more  than ~k/~o(k) numbers  i, i = 1 , . . . ,  k, we have 

(14) ~ [a,j I > , = ,  l a , , I .  
i , j= l  

If not,  we have for more  than k-~k /~o(k )  numbers  i, i = 1 , . . . , k  

= la , , I  
j = l  I 
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and for the other numbers i, i = 1, . . . ,  k, we have (13). Therefore we get a 

contradiction: 

( 1 k ] 1  ~ la,,l+_1 k ~(k)~4  la,,l 
la,, l_-- < k 8q~(k)/4k 8~o(k) k i,i =, i,i = l i.i = t 

1 " la , ,J  

Among ~k/q~(k) rows we find more than r(k) rows where corresponding 

coordinates have the same signs. Indeed, since l =< log21og2 k we have at most 
log2 k rows that have at least in one coordinate a different sign. Thus we have at 
least -~ k/(log2 k)~(k) rows of the same signs. This number is eventually greater 

than r(k). Therefore, choosing r (k) rows of equal signs with the property (14) we 

get for a proper sequence of signs (ej)~=, 

[ai j j<4k 1 ' =4  k { ~ ejaii 
,.,=, = r ~  i=, ~ la,,[ r(k) ,=, 

i~Er(K) iEr(K) 

where r(K) denotes the index set of the submatrix. [] 
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