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The number of l-overlapping success runs of length k in n trials, which was in-
troduced and studied recently, is presently reconsidered in the Bernoulli case and
two exact formulas are derived for its probability distribution function in terms of
multinomial and binomial coefficients respectively. A recurrence relation concerning
this distribution, as well as its mean, is also obtained. Furthermore, the number of
l-overlapping success runs of length k in n Bernoulli trials arranged on a drcle is
presently considered for the first time and its probability distribution function and
mean are derived. Finally, the latter distribution is related to the first, two open
problems regarding limiting distributions are stated, and numerical illustrations are
given in two tables. All results are new and they unify and extend several results
of various authors on binomial and circular binomial distributions of order k.
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1. Introduction

Let N, denote the number of nonoverlapping success runs of length k (k > 1) in
n (n > 1) mdependent trials with success probability p (0 < p < 1). The distribution
of Ny is known as binomial distribution of order %, with parameter vector (n,p). The
asymptotic normality of a normalized version of N,, ; was first established by von Mises
(see Feller (1968 p. 324), where a simpler proof is presented). The exact distribution of
Nn was derived by Hirano (1986) and Philippou and Makri (1986). Since then several
papers have appeared on the binomial distribution of order & and its applications, espe-

cially on system reliability (see e.g. Philippou (1986), Aki and Hirano (1988), Godbole
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(1990), Papastavridis (1990), Hirano and Aki (1993), Antzoulakos and Chadjiconstan-
tinidis (2001) and Balakrishnan and Koutras (2002)). See, also, Eryilmaz (2003) for the
distribution and expectation of the number of success runs in nonhomogeneous Markov
dependent trials. A different type of binomial distribution of order &, called type II, was
introduced and studied by Ling (1988) as the distribution of the number M, ; of over-
lapping success runs of length & in a sequence of n Bernoulli trials (see, also, Hirano et
al. (1991)). When the trials are ordered on a circle, two circular binomial distributions
of order k have been introduced and studied by Makri and Philippou (1994) (see, also,
Charalambides (1994), Koutras et al. (1994, 1995) and Makri and Philippou (1996)).

Recently, Aki and Hirano (2000) introduced a generalized counting scheme, which
includes as special cases the nonoverlapping and the overlapping one, called [-overlapping,
where [ is a nonnegative integer less than k. The number of l-overlapping success runs of
length k is the number of success runs of length &, each of which may have overlapping
part of length at most [ with the previous success run of length &, that has been enumer-
ated. For { = 0 and { = k — 1, the nonoverlapping and overlapping cases are obtained
respectively. For example, let us assume that n = 15 trials are performed, which are
numbered from 1 to 15 and that we get the following outcomes

SSSSSSFSSSSFSSS,
where S denotes success and F denotes failure of a specific trial. Then, the nonoverlapping
success runs of length k = 4 are the outcomes corresponding to the trials numbered by
1234and 8910 11;
the overlapping success runs of length 4, in the sense of Ling, are
1234,2345 3456and 891011,
and the 2-overlapping success runs of length 4, are
1234,3456and 8910 11.
Aki and Hirano (2000) introduced a generalized binomial distribution of order & and

investigated some of its properties. Han and Aki (2000) derived a recerrence for the



413

probability generating function of the number of l-overlapping success runs in the case
of n independent trials, as well as in the case of a higher order Markov chain of length
n. See, also, Antzoulakos (2003) for a unified approach for waiting times and number of
appearances of runs.

Let us assume that the outcomes are arranged on a circle. Then, if there is (at least)
one F in the sequence, we start counting from the first S following an F and if there is no
F, we can start counting from any S in the sequence.

i we assume that the above 15 outcomes are arranged on a circle then the 2-
overlapping success runs of length 4 are

881011,1314151,15123and 234 5.

In the present paper, in Section 2, we derive two alternative formulas for the prob-
ability distribution function of the random variable N, y;, representing the number of
l-overlapping success runs of length k (k > 1) in n (n > 1) independent trials with suc-
cess probability p (0 < p < 1) (see Theorem 2.1 and Theorem 2.2). We also derive the
mean of N, ;; (see Proposition 2.1). In Section 3, we introduce a new circular binomial
distribution of order k as the distribution of the random variable N: , |, representing the
number of l-overlapping success runs of length % in n independent trials ordered on a
circle, and we also derive its mean (see Theorem 3.1 and Proposition 3.1). In Section 4,
we establish a recurrence relation for the probability distribution of N,z (see Theorem
4.1) and we relate the two distributions by a recurrence relation (see Theorem 4.2). The
usefulness of the recurrences for calculating the respective probabilities is illustrated {see
Table 1). Finally, in Section 5 we refer to the known limiting distribution of N, 0 and
Nujkj—1, and we state two open problems regarding Nox; (0 < 1 < k — 1) and Nf
(0 <1< k—1). Some numerical results regarding N, 4; (0 <! < k— 1) are also given by
means of Theorem 2.2 (see Table 2).

Our proofs employ a result of Riordan (1964) and expand upon some ideas of Aki
and Hirano (1988), Ling (1988) and Makri and Philippou (1994) (see, also, Philippou and
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Muwafi (1982)).

Throughout the paper, [x] denotes the greatest integer in x, §;; is the Kronecker

delta function and ¢; = [,:—:ll] if 2 > k and 0 otherwise.

2. On binomial distribution of order k for [-overlapping success runs of length k

In this section we reconsider the number of l-overlapping success runs of length & in
n Bernoulli trials, which was first studied by Aki and Hirano (2000) and Han and Aki
(2000) and we derive its probability distribution function in terms of multinomial as well

as in terms of binomial coefficients and its mean.

THEOREM 2.1. Let N,4; be a random variable (rv) denoting the number of [-
overlapping success runs of length £ ({ < k—1, k > 1) in n (> 1) independent trials with
success probability p (0 < p < 1). Then, for n < k-1, P(Ny4y = 0) = 1, for n = &,
P(Npyy=0)=1~pFand P(Nyyy=1)=p*,andforn > k+1and z = 0,1,...,[’,:—:;],

e 14 ...+ Zy oot
P(Nppy =2)=p ZZ( P )(q/P) ke,
s=0 e

0 n
where the inner summation is over all nonnegative integers z,,...,z, satisfying the con-
n—1—1
.. no o |
ditions Y%, jz; = n — s and ;7

Lin—1—i(k -0}

J— _ .
P Tig—l)414j = T — Cs, and m;, = min{k —

PROOF. A typical element of the event (N, ;; = x) is an arrangement

Q102 Uy 4. oy SS... S, 0 S S S n,

s

such that z, of the o’s are of the type e, = S§...SF, r = 1,...,n, and there are
S

r—1
x1 + ... + ¢ e,'s, each of which includes no success run of length &, z4p41 + ... + T2,
e,’s each of which includes 1 l-overlapping success run of length k, 2op_141 + ... + Zae—a

e,’s, each of which includes 2 l-overlapping success runs of length k,... . Generally, :

l-overlapping success runs of length k are included in each of the

Tip—(i-1)+1 T oo - F Tap)h—it = Tige-t)4i41 T oo T TiGet) i (k-1)
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n—-l-—l]‘

- Thus, the nonnegative integers z;,...,z, have to satisfy the

.
e’s, 1= 1,...,[
conditions

Dz +2e,+...+nz, =n—5,0<s<n

and
P . i .
(2) €+ Tid T AT Tigk-ty4ie; = L,
where m; , is as in the theorem. Fix s and 2y,...,z,. Then, the number of the above

arrangements is

v +...+z,
Tly..o 9Ly
and each one of them has probability

Plaoyaz -0z 442,85 ...8) = ‘II’+'“+I"P"_(I‘+'"+z")-

s
But the nonnegative integers z,,...,z, may vary subject to the two conditions (1) and

(2) and 0 < s < n. Therefore, forn2k+1a.ndx=0,1,...,[',:—:;],

" e Zy+...+z, otz
P(Noss =) =5 33 Yoo
=0 T1y---,Tp
where the inner summation is over z,,...,z, satisfying the conditions (1) and (2). For
n < k, P(N,x; = z) follows from the definition of the rv. The proof of the theorem is

completed. O

For | = 0, Theorem 2.1 provides a new formula for the probability distribution of
the number of nonoverlapping success runs of length & in n Bernoulli trials, which is
alternative to the one given by Hirano (1986) and Philippou and Makri (1986). For
I = k—1, it reduces to Theorem 3.2 of Ling (1988). For 1 < ! < k — 2, it provides new
probability distributions.

Since Ny ko (Nnik-1) is distributed as binomial of order k, type I (type II) with
parameter vector (n,p) and it is denoted by By (n,p) (Bk.11(n,p)), we introduce the

following definition.
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DEFINITION 2.1. A rv X is said to be distributed as binomial of order %, in the I-
overlapping case with parameter vector (n, p), to be denoted by By (n, p), if its probability
distribution function is given by Theorem 2.1.

Obviously, Bxo(n,p) = By i(n,p) and By —1(n,p) = By 11(n, p).
In the sequel an alternative exact formula for P(N, ; = ) is derived in terms of

binomial coefficients. We first state a preliminary lemma.

LEMMA 2.1. The number of possible ways of distributing n identical balls into m

different urns such that the maximum allowed number of balls in any one urn is r is given

’ Cn,m,r) =§:(—1)"(".’) (”+m‘j(r+1) —1)

=0 J m—1

(see Riordan 1964, p.104). It is noted that C'(0,m,r) is considered equal to 1.

THEOREM 2.2. Let N, x; be as in Theorem 2.1. Then,

(@) P(Nasy=0)= > p"¥¢Cln —y,y+1,k—1)

y=[n/k]
and for z = 1,--':[2—:%]a
n—k—(z—1)(k=1) l(n—y)/¥] N\ (z—1
() P(Npgi=1z) = 2 DY (y : ) < 1)
y=l(n+al) K-z i=l A

M;
x 3 ClBny+1—ik—1)Clos — Biyisk—1—1)

Bi=m;
where o, =n —y—ik— (x —i)(k = 1), m; = max{0,¢; —i(k — [ — 1)}, M; = min{o;, (k —
Dy +1 -1}

PRrOOF. (a) Consider the event (N,; = 0,Y;, = y), where Y, denotes the number

of failures in the n trials. Then, a typical element of the above event is a sequence

§55...SFS5§...FSS5...F
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of y failures and n — y successes such that at most k — 1 consecutive successes appear.
The probability of any such sequence is ¢¥p"~¥ and the number of such sequences is C(n—
y,y+1,k—1) by Lemma 2.1, since the y failures create y+1 cells and C'(n—y, y+1, k—-1)
is the number of distributing n — y balls (S’s) in y + 1 cells such that each cell contains
at most k£ — 1 balls. Therefore,

PNt =0) =Y P(Nppy =0,Y,=y)= Y Cln—y,y+1k—1)p" g
Y y=[n/k|

We now proceed to prove (b).

(b) Consider the events A; = {at least k successes are contained in the j — th urn},
7=12,...,y+1, and A = Njg(;,,. ;1A% where {j1,...,j;} is a subset of {1,2,...,y+1}
and A{ denotes the complement of A;. We observe that for 1 <+ < min{y+1, [(n—y)/k]},

every element of the event
(Nn,k,l =z,Y,= y’Ajl n Ajz n...Nn Aji OZ)

is a sequence

SS...SFSS5...SFSS...58

with y failures and n — y successes such that z l-overlapping success runs of length k&
appear, which are contained in the j;-th, j-th,..., j;-th urn, among the y +1 created ones
by the y failures, and no other urn contains more than k — 1 successes. Therefore

P(Npyy = z) ZZ Z P(Npji=a,Y, =y, A; DA, 0. ﬂA]‘iﬂZ). (%)

T Jlaeesdi

It is clear that every element of the event (N, = z,Y, =y, A;, N4, N..."VA4; NA)
has probability ¢¥p"~¥. So, in order to evaluate its probability we proceed to count its
elements, by considering the corresponding occupancy problem. We start by placing k
balls (S’s) into each of the ji-th, js-th,...,5;-th urn and we continue by distributing z — ¢
blocks, each consisting of £ —{ balls into the same urns without any restrictions. It is well

known that this is accomplished in

(e vy
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possible ways. Now, there are a; = n — y — ik — {z — i){k — !} remaining balls to be
placed into the y + 1 urns under the following restrictions: Every one of the above i
specified urns (the ji-th, jo-th,.., ji-th) is allowed to contain no more than k — [ —1
balls and every one of the remaining y + 1 — ¢ urns is allowed to contain no more than
k — 1 balls. I B; of the a; balls are to be distriduted in all the specified y + 1 — ¢
urns then o; — §3; are to be placed in the ¢ specified urns. According to Lemma 2.1 the
distribution of the f; balls can be accomplished m C(8;,y + 1 — 4,k — 1) different ways.
For every distribution of the §; balls into the y +1 —: urns there are C(o; — 8;, 3,k —1—1)
different ways of distributing the remaining «; — ; balls into the ¢ urns. Observing that
max{0,o; —i(k — ! — 1)} < B; < min{ey, (k — 1)(y + 1 — )}, we conclude that the total
number of ways of distributing the «; balls into the y 41 urns under the above restrictions
is given by
Z CBiy+1—i,k~1)Cla; — Biyi,k—1-1),

Bi=m;
so that the number of the elements of the event (N, x; = z,Y, =y, 4;, NA;,N...NA;NA)
is
(223) 3 oy 1-sk- 0t - gk 1=
Bi=m;

Therefore,
P(Npyi=1z,Y, :y,AjlﬂAjzﬂ ﬂA'ﬂ;{)—pn_yqy

X(w ) Z CBiy+1—1i,k—1)C(a; — Biyt, b —1—1),

i Bi=m;
and the result follows from (*) by noting that there are (yfl) t-combinations of the set
{1,2,...,y+1}and [(n+zD)/k] —z2<y<n—-k—(z-1)(k—-1). O
PROPOSITION 2.1. Let N, be a rv as in Theorem 2.1. Then, for n < k — 1,
E(Nogi)=0andforn>k>12>0,

=
ENpsy) = p Z_: {1+1-p{n—-1-jk - l)}}pj(k—l).
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PRrooOF. Let Xi,..., X, be independent rvs with probability distribution
P(X;=2)=p(1—-p) %, 2=0,1, 0<p<1 1<i<n.

Fori=1,k—141,2(k—0)+1,... ["'k (k—1)+1, let E; be the event that “X; Xy -+ Xiypy =
1", and for i = 2,...,n —k+1and j = 0,1,..., E?TL let E;; be the event that
“Xioje-np-1 = 0 and Xi_je_py--- Xi--- Xyypy = 17, Next, let {A;, Ay, A3} be a par-
tition of the index set I = {1,2,...,n — k + 1} where A; = {1}, Ao = {k -1 +1,2(k -
D+1,...,[2=E)(k-=0)+1} and A3 =1 — (A1 U Ay). Wedefinervs ¥;,1 <i<n—k+1,

as follows:
Y: = 1, if E) occurs,
1710, otherwise.
For 2 € A,,
Y,={ 5L if (U; I3 "]E'U) U E; occurs,
0, otherw1se
and for ¢ € Aj,

|—2
Y, = { 1, if U E” occurs,

0, otherwxse

Then, N, = Y0 Y, so that

E(Napy) = PVi=1)+> PXi=1)+ > P(Y.=

1€A2 i€As
n—k [ﬁ] n—k—1 5=l
—_ pk Z Z pj(k—l) k+1 Z Z p,(k )
=0 ;=0 i=0 ;=0
= p{ Y {n+1-(+Dk+0p* 0~ Y {n—( + Dk +jlpt-iny
j=0 =

and the proof follows by simplification. O

For | = 0, Proposition 2.1 readily gives

(%]
E(Nngo) = 3 {1+ = p)(n - jE)}p*,

=1
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which is Proposition 2.4 of Aki and Hirano (1988) (see also Antzoulakos and Chadjikon-
stantinidis (2001)). For I =k — 1, it gives

E(Nn,kyk_l) = (n —k+ l)pk

which is Theorem 4.1(i) of Ling (1988).

REMARK 2.1. Another formula for the mean of N,;; may be obtained from its
probability generating function g, (), derived explicitly by Inoue and Aki (2003) in
terms of restricted multiple sums involving multinomial coefficients (see their Propositions
3 and 4). Alternatively, E(N, ) may be evaluated recursively from (or explicitly from the
solution of) a recurrence formula for it, which readily follows from a recurrence formula

for g, 1(t) of Han and Aki (2000).
3. Circular binomial distribution of order k for l-overlapping success runs of length k

In this section we consider the number of l-overlapping success runs of length & in n
Bernoulli trials ordered circularly and we derive its probability distribution function and

mean.

THEOREM 3.1. Let Ny ,, be a random variable denoting the number of [-overlapping
success runs of length £ ({ < k—1,k > 1) in n (n > 1) independent trials with success
probability p (0 < p < 1) ordered drcularly. Then,

(@) forn <k—1, P(N;;,=0) =1,

(b) for n =k, P(N;,, =0) =1~ pF and P(Ng,, = [(5]) = p";

(c)forn = k+1, P(N; ;= 0) = 1—(k+1)gp* —p**' and P(Ng ;= z) = (k+1)gp*é, 1+
PG, ey, & = 1 [

(d)forn>k+2and z= 0,1,---7[";:I]v[i]’

e rnt...+z
1 -1 T+t Ty n
P(N; gy = z) = qp" ZSZ< .z nl )(q/p) R § TS
n—
where the inner summation is over a.ll nonnegatlve integers z1,..., &, satisfying the con-

k——l Min—1 _— — 1
ditions Y77 jz; =n—s and Y, % Ejz‘l Tik—(im1)i4j = & — Comiy Mz = min{z(k —
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)+ k,n} and m;, is as in Theorem 2.1.

PROOF. Obviously, for n < k—1,n = kand n = k+1 (a), (b) and (c) of the theorem
hold. For n > k + 2, we first observe that for [*2}H] < z < [[%], P(Ng,, = z) = P(9).
Let z = 0,1,...,[22%],[s%] An element of the event (NS ,, = z) which includes at

least one F is a cyclic arrangement

SS e SFa1a2 (R & S T SS e S

e
@ 8

such that «; of the a’s are of the type ¢; = 55 ... SF (0 < j < n — 1), ¢ l-overlapping

-1
success runs of length k are included in each of the

Tikm =) T oo o F Lok 1)1+ k=11

es, 1 =1,... ,[”;3?']: and

Vo<a,fa+f<min{ck-)+k~1,n—-1}= M., — 1),

—2-1
(22

2) Yjri=n—1—(a+8), carpt D, H(Tib—(icryip1 + -+ + Tikoot)it14k-im1) = T,
j=1

i=1

n—1

where c,ip represents the number of l-overlapping success runs included in the o + 8

successes of the element. If 2; (1 < j < n—1), « and J are kept fixed, the number of the

AT S O S
5 N S

and each one of them has probability

above arrangements is

qqz1+~-~+$n—1 pn—(wl +otrpn—1+1) .

But «, f may vary subject to (1) and the nonnegative integers zi,...,%,_1 may vary
subject to (2). Therefore, observing that there are [n/(k—1)] l-overlapping success runs of

length k in an element with no F’s, and denoting by ¥ the summation over all nonnegative
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integers z1,...,Z,—1 satisfying (2), we have

Mz —1 Mz n—1
i = (.’171 + + Tp-1

P( ;,k,I:x) = Z:O Z Z

O<a+ﬁ<M¢ n—1

Voal e gy

Tn-1

Mol Mz + ...tz
n— 1+ ... 1 o1t N
= X (a+ﬂ+1)2( )(q/p) AL N
a+06=0 TiyeweyLp-a

The theorem follows. O

For | = 0, Theorem 3.1 provides a formula for the probability distribution of the
number of nonoverlapping success runs of length & in n Bernoulli trials ordered circularly,
which is alternative to the one given in Makri and Philippou (1994). For I =k -1, 1t
reduces to Theorem 2.2 of Makri and Philippou (1994). For 1 <1 < k — 2, it provides
new probability distributions.

Since N£ o (N5 g 4-1) is distributed as circular binomial of order k, type I (type II)
with parameter vector (n,p) and it is denoted by Bg (n,p) (Bf ;(n,p)), we introduce the

following definition.

DEFINITION 3.1. A rv X is said to be distributed as circular binomial of order %,
in the [-overlapping case with parameter vector (n,p), to be denoted by Bj,(n,p), if its
probability distribution function is given by Theorem 3.1.

ObViouSIYv Bi,o(n’p) = Blcc,l(nvp) and Bi,k—l(nap) = Bﬁ,l[(nap)'

PROPOSITION 3.1. Let N;,; be a rv as in Theorem 3.1. Then, for n < k — 1,
E(Nf ;) =0and forn >k > 120,

(2T k-0) n

(3 1 _p i
E(N; 1) = ngp" —— e ol

PROOF. Obviously, for n < k ~ 1, E(N¢, ) = 0 and for n = k, E(N: ) = [5]p*.
Forn>k+1land0<I<klet Ej; (1 <i<n, 1<) <[22F]) be the event that

the i-th trial results in the [ + j(k — [)-th success of a success run of length [+ j(k — )



423

preceded by a failure and E;[ » ) be the event that the i-th trial (1 < i < [;]) results in
the n-th success of a success run of length n.
We define rvs Y, 1 <1 < n, as follows:

Fori=1,2,...,[24]

Y = { 1, if (U = ]Ez‘j)U E; 2 occurs,

0, otherw1se.
Fori=[%]+1,...,n

n—l l
Y, = { 1, if U[- EU occurs,

0, otherwxse

Then, Ny, =7, Y, so that

n—l ! [k ‘]

E(N;.) = 3 Z P(Es) + 3 P(E,
=1
l ¢ [k []
- qz Z pl+1(k Dy Z '
t= 1=1
["“1 4] n
= ngp' Z + ="

The proof of the proposition follows. O

For | = 0, Proposition 3.1 readily gives
k 1- p[ k n
E(N; ko) =ngp"———— + [+

which coincides with a result of Charalambides (1994) and Makri and Philippou (1994).
For I =k —1, it gives
BNy} = npt,

which is Proposition 2.2 of Makri and Philippou (1994).

4. Recurrence relations for l-overlapping success runs of length & in » Bernoulli trials
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In the following we derive a recurrence relation concerning the probability distribution
of the rv N, ; and a recurrence relation relating the respective probability distributions

of Nyxi and N:, . These results are useful for the calculation of the probabilities. A

numerical illustration is given.

THEOREM 4.1. Let Ny, be as in Theorem 2.1 and set m,, ; = min{z, [*}=F-]}.
Then,

(a)forn>k+1land 2 =12,..., /2%

7=1b
Mg, n k-t .
P(Nupy=2) = P(Nprpi=1z)—qp* 3. p*VP(Nuoitmir-ns = —1)
=0

Mz,n0 ) .
+ gt 3 P P(WNasi iy = 2 — 1)

1=1
+ {6, =ty — by prazyy}s
(b) for n > k+ 1, P(Nn,k,l = 0) = P(Nn—l,k,l = 0) — qka(Nn—k—l,k,l = 0);
(c) for n =k, P(Ny 4y =0) =1 —p*, P(Npyy = 1) = p¥;
(@ for0<n<k—1 P(Nppy =0) =1

We shall first establish a preliminary lemma.

LEMMA 4.1. Let N, 4 and m,, ; be as in Theorem 4.1. Then,
(@) forn>k+1land z=12,...,[=],

k-1
P(Nogi=2) = P8,y + a3 P P(Nnorojps = )
J=0
k—1-1 _mz,n,] )
+ gp' Y P Y P P(Naicisjmigemn ey = T — 1);

=0 i=1

(b forn > k, P(No sy =0) —ng—oP}P(N ~1-jky = 0).

ProoF. (a) Let n > k+1, z = 1,...,[2}], and mgn; be as in the lemma. For
7 =0,...,n—1, we define the events A;=*j S’s precede the first ¥ in the sequence of n

Bernoulli trials” and B=“there is no F in the sequence of n Bernoulli trials”, so that

(Nn,ky1=$)=U [(Nnkl—m)ﬂA]U[( nk[—x)ﬂB]
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Obviously, (N k1 # [25])N B = . Then, since A; (j =0,1,...,n—1) and B are disjoint

events, we have

P(Nn,k,l = .Z) Z P nkl = & l A; ]P( ) -+ P[(Nn‘k,{ = .73) | B]P(B)

J=
k-1 n-1

, : =1
= qu]P(Nn—l—j,k,z = .?,') + Z QPJP(Nn—1~j,k,I =T — {k‘ ID -f-p 5: [n—l],

=0 i=k
which implies part (a) of the lemma.

(b} When z = 0 and n > k we observe again that
(Naks = 0) = Ui [(Najs = 0) N A,

so that
k-1

P(Nogs = 0) = D [P(Nuiy = 0) | A;]P(4;)

J=0
from which we get part (b) of the lemma.

PROOF OF THEOREM 4.1. For n > k+1 and z = 1,2,..., [}5}], Lemma 4.1(a) gives

1
[—)P(Nnﬂ,k,l =z)—PNppy=2) = %P(Nn,k,l =z) = qpF  P(Npiy = )

min{z,[2=4]}
+ g™ > PPNy gy = & — 1)
=1
min{z,[3=4]}

_ qpk—l Z z(k—f) p(Nn_k_i(k_l)’“ = - 1)

i=1

+ P gy — 8, )

from which we get part (a) of the theorem. Using the same argument and Lemma 4.1(b)

we get part (b). Finally, (c) and (d) are implied by the definition of N, ;. O

THEOREM 4.2. Let N, i, be as in Theorem 2.1, and N¢ kg and M, be as in Theorem

3.1. Then, for n > k and z = 0,1,..., [22H], [2;], we have
Mz,n—\ .
P(Niyi=2) = ¢ 3 ip ' P(Nucrcigy = 2 — ¢im1)

=1

-{-nqp”'lé (et z]-{-p INESE

"k
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PROOF. Let z = 0,1,...,[";—17[], (%] We define the events A; = “j S’s precede
the first F' in the sequence of n Bernoulli trials”, (j = 0,1,...,M;,1 — 1) and B, = “r
S’s follow the last F' in the sequence of n Bernoulli trials”, (r = 0,1,..., M1 — 1),
0 <j+r < My n_i —1. Furthermore, if X,..., X, are as in the proof of Proposition 2.1,
we set
C={Xi=0X;=1Q1<j#i:<n)}and D={X; =X, =... =X, =1}
Obviously, (Ve # (7)1 C = (Nee, # [Z) 0D = 0 and P(C) = ngp™,
P(D) = p". Then we have

¢ My no1~1, Mz p_1-1
(Vo =2) = U™ U™ {(Ng = =) N (A4; N Br)}
0<j+r<Mz n—1~1

U{(N:,k,l =z)NC}U {(Ni,k,: =z)N D}

from which we get

Mz no1—1 Mz a1 —1

P(Ng =12) = Z Y. P(A))P(B)P(Ny;. == | A;jNB,)
OS.;?"SMz,n—io-l
+P(C)P(N; 4 =z | C)+ P(D)P(N; ==z | D)
Mz n.1-1

= Y (+r+D)P e P(Naca(eryht =T = Cjgr)

J4r=0
+nqp""1 511[7-;1_—[1] + p"éz,[ﬁ]_
The theorem follows. O
For [ = 0 and [ = k — 1, respectively, Theorem 4.2 reduces to Theorems 3.1 and 3.2
of Makri and Philippou (1994).
In Table 1 we give the distributions and means of the rvs Nis5; and Nf;,, for

1=0,1,2,3,4 for a sequence of 15 Bernoulli trials with success probability p = 0.9.

We end this paper with a few words on limiting distributions and open problems.
5. Poisson and compound Poisson convergence: Open problems

Set Nyx = Nyko and My, = Nypi-1. For large k, the probability distribution
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function P(N,, = z) is approximated well by an appropriate Poisson distribution and
the probability distribution function P(M, , = ) is approximated well by an appropriate
compound Poisson distribution. More precicely, if k = k, — oo and ngp* — X > 0, as

n — oo, then

m P(N, 4 =z) = P(Xp =z) = e *(A/2l),2 = 0,1,...,

n—o0
and

. e, r=0,
A P(My g = 2) = P(Xep = 2) = { > ) [
1= )My

g-1) R s
See von Mises (1921) and Feller (1968) for the Poisson convergence and Geske et al.
(1995) for the compound Poisson convergence. For a different pair of conditions, which
imply Poisson convergence when k is constant, namely p = p, — 0 and npf — X > 0,
as n — oo, we refer to Godbole (1990). We also refer to Barbour, Chryssaphinou and
Vaggelatou (2001) for an alternative compound Poisson approximation.

In Table 2 we present the Poisson and compound Poisson approximation to P(N,, ;; =
z)for p=09,1=0,1,...,k—1 and various values of (n, k) by means of the total variation
distances d(N, 1, Xp) = (1/2) Y520, | P(Nngy = 2) — P(Xp = z) | and d(Ny sy, Xop) =
(1/2)52, | P(Nugy = ) — P(Xcp = z) |, after truncation. The exact probabilities
P(Nnr1 = z), P(Xp = z) and P(X.p = z) were computed by using Theorem 2.2 and
the above two formulas, respectively.

The derivation of the limiting distribl;tions of Ny i, 0 < { < k—1,is an open problem.

It is also an open problem to derive the limiting distributions of NS ,,, 0 </ <k —1.
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Table 1. The exact distributions and means of Nys55; and N1C5,5,E

Nis s Nfssi

2\l 0 1 2 3 4 0 1 2 3 4
0| 02823 02823 02823 02823 02823 | 01298 01298 01298 01298 01208
1| .23955 .18845 .13753 08803 04153 | 15351 .09540 .06896 .04381 .02058
2| 52633 43255 28815 .14609 .06020 | 62762 30445 20333 07146 02898
3| 20589 35078 20445 22968 07215 | 20589 58717 .16569 .19514 .03503
4 25164 20294 07888 34315 08944 03915
5 09913 08160 20589 38128 13437
6 20589 19807 05230
7 07218 20589 04707
8 06213 04236
9 05338 03813
10 04575 34315
11 20589

12

13

14

15 20589

mean | 1.9099 21059 26038 3.6120 64954 | 2.0264 24658 3.3748 44775 8.8574
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Table 2. Poisson and Compound Poisson Approximations to P(Ny, ;i = ) by means of total

variation distance for p =09,/ =90,1,...,k~ 1 and

(n, k) = (15,5),(17,6), (19, 7), (21, 8), (23,9), (25, 10), (28, 11), (31, 12), (35, 13)

| dNys50, Xp) | d(Nissi, Xep) | d(Nizgi, Xp) | d(Nireis Xer) | d(N1o70, Xp) | d(N1g70, Xer
0| .52269 86816 42775 87532 38232 .84369
11 .57379 86816 45640 84264 33191 81099
2| 61413 83747 51000 84264 40056 81099
3t 67716 78132 55394 81180 44382 78010
4 | .80951 66764 62477 75531 49934 75097
5 76183 62167 57783 69764
6 71650 57164
[ d(Na1si, Xp) | d(Na1si, Xep) | d(Nasog, Xp) | d(Nasoy, Xep) | d(Nas 10,0, Xp) | d(Nas 104, X,
0] .34736 80764 31136 76863 27527 712785
1] .34736 830764 31136 76863 27527 72785
2 [.29750 717496 26299 73604 27527 72785
3| .35340 717496 26299 73604 22910 69542
4 | .39690 74412 31349 73604 22910 69542
5| 45344 71503 35673 70531 26959 66485
6 | .53570 66180 41328 67634 32227 66485
71 .67355 51940 49768 59920 37779 60899
8 63291 46649 46320 55957
9 59448 41415
1] d(Nagy11,Xp) | d(Nas 111, Xcp) | d(N31 121, Xp) | d(Ns11210, Xep) | d(Ns5,13,0, Xp) | d(Nss,13,0, X
0 .24816 70245 22199 67552 20395 66089
1| .24816 70245 22199 67552 20395 66089
2 | .24816 70245 22199 67552 17892 63586
3| .20120 66996 17538 64305 16687 62831
41 .20120 66996 17538 64305 15574 62831
51 .21679 66996 17538 64305 15574 62831
6 | .25229 63933 .19283 61245 15087 59772
7| .30085 61048 23656 61245 .18847 59759
8 | .35583 58332 28302 58363 22816 56863
9| 44684 51117 33583 53099 27381 54136
10 | 57235 36424 43009 46443 32672 49439
11 55017 32132 42474 42240
12 53924 28589
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