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The number of /-overlapping success runs of length k in n trials, which was in- 
troduced and studied recently, is presently reconsidered hi the Bernoulli case and 
two exact formulas are derived for its probability distribution fimction in terms of 
multinomial and binomial coefficients respectively. A recurrence relation concerning 
this distribution, as well as its mean, is also obtained. ~ktrthermore, the number of 
l-overlapping success runs of length k in n Bernoulli trials arranged on a circle is 
presently considered for the first time and its probability distribution function and 
mean are derived. Finally, the latter distribution is related to the first, two open 
problems regarding limiting distributions are stated, and numerical illustrations are 
given in two tables. All results are new and they unify and extend several results 
of various authors oax binomial and circular binomial distributions of order k. 
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1. Introduction 

Let Nn,k denote the number of nonoverlapping success runs of length k (k >_ 1) in 

n (n > 1) independent trials with success probabi l i ty  p (0 < p < 1). The distr ibution 

of N=,k is known as binomial distr ibution of order k, with parameter  vector (n,p).  The 

asymptotic normali ty  of a normalized version of N,~,k was first established by von Mises 

(see Feller (1968 p. 324), where a simpler proof is presented). The exact distr ibution of 

Nn,k was derived by Hirano (1986) and Phil ippou and Makri (1986). Since then several 

papers have appeared on the binomial distr ibution of order k and its applications, espe- 

dal ly  on system reliabil i ty (see e.g. Phihppou (1986), Aki and Hirano (1988), Godbole 
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(1990), Papastavridis (1990), Hirano and Aki (1993), A_utzoulakos and Chadjiconstan- 

tinidis (2001) and Balakrishnan and Koutras (2002)). See, also, Eryilmaz (2003) for the 

distribution and expectation of the number of success runs in nonhomogeneous Markov 

dependent trials. A different type of binomial distribution of order k, called type II, was 

introduced and studied by Ling (1988) as the distribution of the number M~,k of over- 

lapping success runs of length k in a sequence of n Bernoulli trials (see, also, Hirano et 

al. (1991)). When the trials are ordered on a circle, two circular binomial distributions 

of order k have been introduced and studied by Makri and Philippou (1994) (see, also, 

Charalambides (1994), Koutras et al. (1994, 1995) and Makri and Philippou (1996)). 

Recently, Aki and Hirano (2000) introduced a generMized counting scheme, which 

includes as special cases the nonoverlapping and the overlapping one, called/-overlapping, 

where I is a nonnegative integer less than k. The number of/-overlapping success runs of 

length k is the number of success runs of length k, each of which may have overlapping 

part of length at most I with the previous success run of length k, that has been enumer- 

ated. For t = 0 and t = k - 1, the nonoverlapping and overlapping cases are obtained 

respectively. For example, let us assume that n = 15 trials are performed, which are 

numbered from 1 to 15 and that we get the following outcomes 

S S S S S S F S S S S F S S S ,  

where S denotes success and F denotes failure of a specific trial. Then, the nonoverlapping 

success runs of length k = 4 are the outcomes corresponding to the trials numbered by 

1 2 3 4 a n d 8 9 1 0  11; 

the overlapping success runs of length 4, in the sense of Ling, are 

1 2 34,  2 345~ 3 4 5  6 a n d  8 9 10 11, 

and the 2-overlapping success runs of length 4, are 

1 2 3 4 , 3 4 5 6 a n d 8 9 1 0  11. 

Aki and I-Iirano (2000) introduced a generalized binomial distribution of order k and 

investigated some of its properties. Han and Aki (2000) derived a recerrence for the 
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probability generating function of the number of/-overlapping success runs in the case 

of n independent trials, as well as in the case of a higher order Markov chain of length 

n. See, also, Antzoulakos (2003) for a mlified approach for waiting times and number of 

appearances of runs. 

Let us assume that the outcomes are arranged on a circle. Then, if there is (at least) 

one F in the sequence, we start counting from the first S following an F and if there is no 

F, we can start counting from any S in the sequence. 

If we assume that the above 15 outcomes are arranged on a circle then the 2- 

overlapping success runs of length 4 axe 

8 9  t0 11, 13 14 15 1, 15 1 2 3 a n d 2 3 4 5 .  

In the present paper, in Section 2, we derive two alternative formulas for the prob- 

ability distribution function of the random variable Nn,k,l, representing the number of 

/-overlapping success runs of length k (k > 1) in n (n >_ 1) independent trials with suc- 

cess probability p (0 < p < 1) (see Theorem 2.1 and Theorem 2.2). We also derive the 

Inean of N~,k,~ (see Proposition 2.1). Ill Section 3, we introduce a new circular binomial 

distribution of order k as the distribution of the random variable N~,k,l, representing the 

number of l-overlapping success runs of length k in n independent trials ordered on a 

circle, and we also derive its mean (see Theorem 3.1 and Proposition 3.1). In Section 4, 

we establish a recurrence rdat ion for the probability distribution of N,,,k,l (see Theorem 

4.1) and we relate the two distributions by a recurrence relation (see Theorem 4.2). The 

usefulness of the recurrences for calculating the respective probabilities is illustrated (see 

Table 1). Finally, in Section 5 we refer to the lmown limiting distribution of N,~,k,0 and 

Nn,<k-1, and we state two open problems regarding Nn,k,l (0 < l < k - 1) mid N,~,~,t 

(0 < l < k - 1). Some numerical results regarding N,,,k,t (0 < l < k - 1) are also given by 

means of Theorem 2.2 (see Table 2). 

Our proofs employ a result of Pdordan (1964) mid expand upon some ideas of Aki 

and Hirano (1988), Ling (1988) and Makri and Philippou (1994) (see, also, Philippou and 
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Muwa  ( 1 0 8 2 ) ) .  

Throughou t  the paper ,  Ix] denotes the greates t  integer in x, ~i,j is the Kronecker 

i - l  del ta  funct ion and ci = [~:7] if i > k and 0 otherwise.  

2. On binomial distribution of order k for/-overlapping success runs of length k 

In this sect ion we reconsider  the number  o f / -ove r l app ing  success runs of length k in 

n Bernoull i  tr ials ,  which was first s tudied  by  Aki and Hirano (2000) and Han and Aki 

(2000) and we derive its p robab i l i t y  d i s t r ibu t ion  funct ion in terms of mul t inomia i  as well 

as in terms of b inomia l  coefficients and its mean.  

THEOREM 2.1.  Let N,~,k,t be a r andom var iable  (rv) denot ing the number  of l- 

over lapping success runs of length k (l < k - 1, k > 1) in n (>  1) independen t  t r ials  with 

success p robab i l i t y  p (0 < p < 1). Then,  for n < k - 1, P(Nn,k,t = O) = 1, for n = k, 

P(Nn,k,t . . . . . .  0) 1 pk and P(N,~,kj 1) pk, and for n > k + 1 and x 0 , 1 , . . .  ,[V-i],n-I 

P(Nnkl, , = x) = pn ~ : o Z (  \ Xl,+ "'.,x,~+ xn](q/P)~'+'"+xn'] 

where the inner s u m m a t i o n  is over all nonnegat ive  integers x l , . . . ,  xn sat isfying the con- 
[,~-~,-e] . 

dit ions ~ j = l  jxj  = n - s and  ~i__l-~ -~ i ~=~i" Xi(k-t)+l+j = x -- e~, and m~,~ = min{k  - 

l ,  n - 1 - i ( k  - 1 ) } .  

PROOF. A typica l  e lement  of the event (N~,k,l = x) is an a r rangement  

s 

such tha t  x~ of the a ' s  are of the type  e~ = ~ F ,  r = 1 , . . . , n ,  and there are 
r - - 1  

xl + . . .  + xk e~'s, each of which includes no success run of length k, xk+l + . . .  + x2k-l, 

e~'s each of which includes 1 / -overlapping success run of length k, x2k-l+l + . . .  + xak-21 

e~'s, each of which includes 2 / -overlapping success runs of length k,... . General ly,  i 

/ -overlapping success runs  of length k are included in each of the 

X i k _ ( i _ l ) l +  1 "~- . . .  -~- X ( i + l ) k _ i l  ~-- X i ( k _ l ) + l + l  ~- . . .  ~- X i ( k _ l ) + l + ( k - l )  
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e~'s, i = 1, r'~-l-tl Thus, the nonnegative integers xl, xn have to satisfy the " ' ' ~ t  k - I  J . . . .  

conditions 

(1) x l + 2 x 2 + . . . + n x n = n - s ,  0 < s < n  

and 

v . [ ~ l  . m,., (2) Ca + z..~i=l Z ~ j = l  X i ( k - I ) + l + 3  = X ,  

where mi,n "ks as in the theorem. Fix s and x l , . . . ,  xn. Then, the number of the above 

arrangements is 

~ 1 ,  ' '  �9 ~ X n  ] 

and each one of them has probability 

P(a l  a2 " " o~:, +...+~, S S ~ S )  = q~'+"'+~p"-(~'  +...+~n) 
$ 

But the nonnegative integers X l , . . . ,  xn may vary subject to the two conditions (1) and 

(2)  and  0 < s < n.  Therefore, for n > k + 1 an d  x = 0, 1 , . . .  , [~--2/],n-t 

~ [ x l  + . . .  + x,,~ 

where the inner summation is over x , , . . .  ,xn satisfying the conditions (1) and (2). For 

n < k, P(N=,k,t = x)  follows from the definition of tile rv. The proof of the theorem is 

completed. O 

For l = 0, Theorem 2.1 provides a new formula for the probability distribution of 

the number of nonoverlapping success runs of length k in n Bernoulli trims, which is 

alternative to the one given by I'Iirano (1986) and Philippou and Makri (1986). For 

l = k - 1, it reduces to Theorem 3.2 of Ling (1988). For 1 < l < k - 2, it provides new 

probability distributions. 

Since N,,,k,o (N,,,k,k-~) is distributed as binomial of order k, type I (type II) with 

parameter vector (n ,p)  and it is denoted by Ba,i(n ,p)  (Bk , t t (n ,p ) ) ,  we introduce the 

following definition. 
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DEFINITION 2.1. A rv X is said to be distributed as binomial of order k, in the l- 

overlapping case with parameter vector (n, p), to be denoted by Bk,t(n, p), if its probability 

chstribution function is given by Theorem 2.1. 

Obviously, Bk,o(n, p) = Bkj(n,  p) and Bk,k-, (n, p) = Bk,li(n , V). 

In the sequel an alternative exact formula for P(N,,,k,t = x) is derived in terms of 

binomial coefficients. We first state a preliminary lemma. 

LEMMA 2.1. The number of possible ways of distributing n identical balls into m 

different urns such that the maximum allowed number of balls in any one urn is r is given 

by 

( : ) ( : : )  c(,~,m,,-)=F~(-i)J ,~+~ (r 1)-1 
j=O 

( s~  Riordan 1964, p.104). It is noted that (7,(0, m, r) is considered equal to 1. 

THEOREM 2.2. Let N=,k,i be as in Theorem 2.1. Then, 

p'~-vqVC(n - y, y + 1, k - 1) 
y=[,, / k ] 

(a) P(N~,k,~ = O) = 

and for x 1 , . . .  ~-I = , [ v : ~ ] ,  

(b) P(N,,,k,z = ~)  
~_~ p,~_yqV ~ v + l  x - - 1  

y=t(n+xl)/kl-x i=1 i i -- 1 
Mi 

x ~ C(/3~, y + 1 - i, k - 1)C(ai - /~i ,  i, k - l - 1) 
~i=mi 

where al = n - y - i k  - ( x  - i ) ( k  - l ) ,  m l  = max{0, ai - i ( k  - l - 1 ) } ,  M~ = m i n { a i ,  (k  - 

1)(y + 1 -- i ) } .  

PROOF. (a) Consider the event (Nn,a,l = 0, Y,~ = y), where Y,~ denotes the number 

of failures in the n trials. Then, a typical dement of the above event is a sequence 

S S . . .  S F S S . . .  F S S . . .  F 
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of y failures and n - y successes such that  at most k - 1 consecutive successes appear.  

The probabi l i ty  of any such sequence is qYp'~-Y and the number of such sequences is C(n - 

y, y + l ,  k -  1) by Lemma 2.1, since the y failures create y + l  ceils and C ( n - y ,  y + l ,  k -  1) 

is the number of distr ibuting n - y balls (S's) in y + 1 cells such that  each cell contains 

at most k - 1 balls. Therefore, 

P(Nn,k,t = O) = ~ P(N~,k,, = O, Yn = Y) = ~ C(n  - y, y + 1, k - 1)p'~-Uq y. 
y u=[n/kl 

We now proceed to prove (b). 

(b) Consider the events Aj  = {at least k successes are contained in the j -  th urn}, 

j = 1 ,2 , . . .  , y + l ,  and A = Nj~{jl,...,j,}A~, where { j , , . . .  , j ,}  is a subset of {1 ,2 , . . .  , y + l }  

and A; denotes the complement of Aj.  We observe that  for 1 < i < m i n { y + l ,  [ ( n - y ) / k ] } ,  

every element of the event 

(N,,k,t = x, Y ,  = y, Aj, N Aj~ a . . .  N Aj, N A)  

is a sequence 

S S . . . S F S S . . .  S F S S . . .  S 

with y failures and n - y successes such that  x /-overlapping success runs of length k 

appear, which are contained in the j l - t h ,  j2-th,..., j i - th  urn, among the y + 1 created ones 

by the y failures, and no other urn contains more than k - 1 successes. Therefore 

P(N~,k,l = x) = ~_,~_, ~ P(N~,k,l = x,Y,,  = y, dj l  NAj~ n . . .  n d j ,  N A ) .  (*) 
y i Jl,...,J, 

It is clear that  every element of the event (N,~,k,~ = x, ~ ~- y, Ajl N Aj2 N . . .  n Aj, N A)  

has probabil i ty  qypn-U. So, in order to evaluate its probabil i ty we proceed to count its 

elements, by considering the corresponding occupancy problem. We start  by placing k 

balls (S's) into each of the j~-th, j2-th, . . . , j i - th urn and we continue by distr ibuting x - i 

blocks, each consisting of k - t bails into the same urns without any restrictions. It is well 

known that  this is accomplished in 
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possible ways. Now, there are a~ = n - y - i k  - ( x  - i ) ( k  - l)  remain ing  balls to be 

placed into the y + 1 urns under  the following restr ict ions:  Every one of the above i 

specified urns ( the j v t h ,  j2-th, . . . ,  j i - th )  is allowed to contain no more than  k - I - 1 

balls and every one of the remain ing  y + 1 - i urns is allowed to contain  no more than  

k - 1 balls.  If ~i of the  a i  balls are to be d i s t r idu ted  in all the specified y + 1 - i 

urns then a i  - fli are to be placed in the i specified urns. According  to Lernrna 2.1 the 

d is t r ibut ion  of t h e / ~  baUs can be accompl ished in C(fli,  y + 1 - i, k - 1) different ways. 

For every d i s t r ibu t ion  of the fli baUs into the y + 1 -  i urns there are C ( a i -  fli, i, k -  l -  1) 

different ways of d i s t r ibu t ing  the remaining  a i  - ~i balls into the i urns. Observing tha t  

max{0,  a~ - i ( k  - 1 - 1)} < ~ < min{a~, (k - 1)(y + 1 - i)}, we conclude tha t  the to ta l  

number  of ways of d i s t r ibu t ing  the a l  balls into the y + 1 urns under  the above  rest r ic t ions 

is given by 
Mi 

c ( ~ , ,  v + 1 - i ,  k - 1 ) c ( ~ ,  - ~ , ,  i ,  k - 1 - 1) ,  

so tha t  the number  of the d e m e n t s  of the event (N,~,k,t = x ,  Y,~ = y, Ajl NAj= A. . .  f)Aji f"IA) 

is 

Therefore,  

x - 1)  M, 
i - 1 y]~ C ( f l i ,  y + 1 - i ,  k - 1)C(a i  - fl,, i ,  k - I - 1). 

/~immi 

P(N,~,k , t  = x ,  Y,~ = y ,  A j l  f) Aj2 n . . .  N A j ,  f3 A )  = p'~-VqY 

• i ~ c ( # , ,  ~ + 1 - i ,  k - 1 ) c ( ~ ,  - # , ,  i ,  k - t - 1) ,  

and the result  follows from (*) by not ing tha t  there are (y+l) / -combina t ions  of the set 

{ 1 , 2 , . . .  ,y  + 1} and [(n + x l ) / k ]  - x < y < n -  k -  ( z  - 1)(k - l ) .  C 

PROPOSITION 2.1 .  Let N~,k,l be a rv as in Theorem 2.1. Then,  for n < k - 1, 

E ( N ~ , k , t )  = 0 and for n > k > l > 0, 

[ - -q  

E (g , , k , l )  = pt ~ {1 + (1 - p ) { n  - l - j ( k  - / ) } } p J ( k - 0 .  

j=l 
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PROOF. Let X 1 , . . . ,  X~ be independen t  rvs wi th  p robab i l i t y  d i s t r ibu t ion  

P ( X i = z ) = p ~ ( 1 - p )  ~-~, x = 0 , 1 ,  0 < p < l ,  l < i < n .  

. . . .  , " X  X . . . .  For i 1, k- l+l ,  2 ( k - / ) + l ,  [~_lkl (k-- / )+l ,  let Ei be the event t ha t  1 2 Xi+k-1 

1", and for i 2 , . .  , n  k + 1 and j 0 , 1 , . .  ~-2 = - - = - ,  [V2/], let Eij be the event  tha t  

"Xi-j(k-0-1 = 0 and X i - j ( k - t ) ' " X i ' " X i + k - 1  = 1". Next,  let {A1,A2, A3} be a par-  

t i t ion of the index set I = { 1 , 2 , . . . , n  - k + 1} where A~ = {1}, A2 = {k - l + 1,2(k - 

l) + 1 , . . . ,  [T2rl(k~-k _ l) + 1} a~nd A3 = I - (A1 tO A2). We define rvs Y~, 1 < i < n - k + 1, 

as follows: 
1, if E1 occurs,  

Y1 = 0, otherwise.  

For i E A2, 

and for i E A3, 

l, [~2,]_ , 1, if ~Uj=o t~o) u Ei occurs,  
Yi = 0, otherwise,  

1, 
Y~= O, 

Then,  N~,k,t = ~_~k+l  Yi, so tha t  

t--2 
if ~ ~[r=r]~.. ~j----O Jt-'~2 o c c u r s ,  

otherwise.  

E(N~,~,~) = P(Y1 = 1 ) +  ~ P ( Y ~ = I ) +  ~ P ( Y i = I )  
iEA2 iEAa 

i---o j = o  i=o j=o  

n--k n- -1  - -k  [-~] [ k - , l  
= p k { ~ { n + l _ ( j + l ) k + j l } p  j(k-t)- y~. {n--(j+l)k+jl}pi(k-O+l},  

j=o j=o 

and the proof  follows by  simplif icat ion.  [] 

For l = 0, P ropos i t ion  2.1 readi ly  gives 

[U 

E(N~,k,o) = ~-~{1 + (1 - p)(n - j k ) } p  jk, 
j = l  
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which is P ropos i t ion  2.4 of Aki and Hirano (1988) (see also Antzoulakos  and Chadj ikon-  

s tant in idis  (2001)). For 1 = k - 1, it gives 

E(N,~,k,k-1 ) = (n - k + 1)p k, 

which is Theorem 4.1(i) of Ling (1988). 

REMARK 2.1.  Ano the r  formula for tile mean of N=,k,l m a y  be ob ta ined  from its 

p robabi f i ty  genera t ing  funct ion g=,k3(t), derived expl ic i t ly  by Inoue and Aki (2003) in 

terms of res t r i c ted  mul t ip le  sums involving mul t inomia l  coefficients (see their  Propos i t ions  

3 and 4). Al terna t ive ly ,  E(Nn,k,t) may  be evaluated  recursively front (or expl ic i t ly  f rom the 

solution of) a recurrence formula  for it, which readi ly follows from a recurrence formula 

for g~,k,l(t) of Hart and Aki (2000). 

3. Circular binomial distribution of order k for/-overlapping success runs of length k 

In this sect ion we consider the number  of l -overlapping success runs of length  k in n 

Bernoull i  tr ials o rdered  circular ly  and we derive its p robab i l i t y  d i s t r ibu t ion  funct ion and 

m e a n .  

THEOREM 3.1.  Let N~,k, l be a r andom variable  denot ing the number  of l -overlapping 

success runs of length  k (l _< k - 1, k > 1) in n (n _> 1) independen t  t r ials  wi th  success 

p robab i l i ty  p (0 < p < 1) ordered  circularly.  Then,  

(a) for n < k - 1, P(N~,k, t = 0) = 1; 

(b) for n = k, P(N~,k, l = O) = 1 - pk and P(N~,k,l~ = [~-7-1]) = pk; 

(c) for n = k + l ,  P(N~,k, l = O) = 1 - ( k  + l ) q p k - p  k+l and P(N~,k, t = x ) =  (k-4-1)qpk Sx,l-4 - 

k+l [ k_~21. p ~ , [ ~ ] ,  x = 1, L~_tj , 

(d) for n _> k + 2 and x = O, 1, �9 "" , ["-q,k-~J [V:7], '~ 

P(N~,k, l = x)  = qp~-I ~_, s ~  xl  + . . .  + x~- i  (q/p)X~+...+~,_~ + P'~,[k-~l,  
s=l  \ X l ~ ' ' "  ~Xn-1  ] 

where the inner s u m m a t i o n  is over all nonnegat ive  integers x l , . . . ,  xn-1 sat isfying the con- 
n--2--l 

dit ions ~-1 ~5=1 j x j  = n - s and v'[--r=r--t ] i "~ "-~ z_.~=l E5=i xik-(~-l)t+j = x -  c~-1, M~,~ = min{x(k  - 
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l) + k, n}  and mi,,~ is as in Theorem 2.1. 

PROOF. Obviously,  for n _< k - l ,  n = k and n = k + l  (a), (b) and (c) of the theorem 

hold. For n > k + 2, we first observe tha t  for [~-1-~] - - -7=7-  < x < [~:71,  P(N~,k,l = x)  = P(O). 

�9 r ~ - l - ~ ]  r ,~ 1 c Let x = 0, 1, . . ,  t--gzT-J, t ~ J -  An element  of the event (N~,k, I = x) which includes at 

least one F is a cyclic a r r angemen t  

S S . .  . S Fc~lc~2 . . . ax~+...+~._~ 

such tha t  xj  of the c~'s are of the type  ej = ~ F  (0 < j <_ n - 1), i l -overlapping 
j--1 

success runs of length  k are inc luded in each of the 

X i k _ ( i _ l ) l +  1 -~ . . .  -~ X i k _ ( i _ l ) l + l + k _ l _  1 

eT's, i = 1, In-2-/1 and 
" " " ~ L k - i  1, 

(1) 0 _< a , / ~ , a  + ~ <_ min{x(k  - l) + k - 1 ,n  - 1}(= Mx,~ - 1), 

In--2--/] n--1 k--l J 

(2) • j x j  = n - 1 - (o~ + fl), %+Z + ~ i(xik-(i-1),+l + . . .  + x ik - ( i - , ) ,+ ,+k-z - , )  = x, 
j= l  i=1 

where %+Z represents  the number  of / -overlapping success runs included in the a + 

successes of the element .  If xj  (1 < j < n - 1), c~ and /~  are kept  fixed, the number  of the 

above a r rangements  is 

Z I , . . .  , X n -  t / 

and each one of them has p robab i l i t y  

qq,:l+...+~,,-~ p,~-(~ +...+~.-~ +l) 

But a ,  fl m a y  vary subjec t  to (1) and the nommgat ive  integers x~, . . . ,  x~ - i  m a y  vary 

subject  to (2). Therefore,  observing tha t  there  are [ n / ( k - l ) ] / - o v e r l a p p i n g  success runs of 

length k in an e lement  wi th  no F ' s ,  and denot ing by ~ '  the summat ion  over all nonnegat ive  
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integers x l , . . . , x = - i  satisfying (2), we have 

M ~ , n - l  M x , n - 1  ' ( X l  - r  " "  "gF X n - I  ~ n 
P(N:,k,  ~ = x) = qp,,-1 ~ ~ ~ (q/p)~:~+...+~,,_, + p ~,[~_~1 

oc --'=--"O ~ ------'0 \ X l ~ " ' "  ~ X n - 1  ] 

0_<c~+~<_Mz,n-1 

= qpn-1 ~_, (~ + ~.t_ 1)~_, x + x~-i  (q/p)Zt+...+~_~ + P~,[k-~l 
~+~=0 ~ Xn--1 

The theorem follows. [] 

For 1 = 0, Theorem 3.1 provides a formula for the probability distribution of the 

number of nonoverlapping success runs of length k in n Bernoulli trials ordered circularly, 

which is alternative to the one given in Makri and Philippou (1994). For l = k - 1, it 

reduces to Theorem 2.2 of Makri and Philippou (1994). For 1 < l < k - 2, it provides 

new probability distributions. 

Since N~,k, 0 (N~,k,k_ ~ ) is distributed as circular binomial of order k, type I (type II) 

with parameter vector (n, p) and it is denoted by B~,1(n, p) (B~, u (n, p)), we introduce the 

following definition. 

DEFINITION 3.1. A rv X is said to be distributed as drcular binomial of order k, 

in the /-overlapping case with parameter vector (n,p), to be denoted by B~,t(n,p), if its 

probability distribution function is given by Theorem 3.1. 

Obviously, B~,o(n , p) = B~3(n , p) and B~,k_ 1 (n, p) = B~,i1(n, p). 

PROPOSITION 3.1. Let N~,k, l be a rv as in Theorem 3.1. Then, for n < k - 1, 

E(N~,k,l) = 0 and for n >_ k > l >_ 0, 

_ p [ " ~ T  ~ ] ( k - 0  n 
E(N~,~3) = nqpk 1 I - pk-~ + [~_-l]P " 

PROOF. Obviously, for n < k - 1, E(N~,k,l) = 0 and for n = k, E(N~,k,l) = [~_t]p k. 

For n > k + l a n d  0 < I <  k, let E~j (1 < i  < n, l < j  < [ ~ ] )  be the event that 

the i-th trial results in the l + j ( k  - l)-th success of a success run of length l + j ( k  - l) 
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preceded by a failure and Ei,[k__~l be the event that  the i-th trial (1 < i < [~-~_~]) results in 

the n-th success of a success run of length n. 

We define rvs Y~, 1 < i < n, as follows: 

For i = 1 ,2 , . . . , [~_t1 ,  

[ . . . .  ~1 1, if (UjZ- '  Eij) U Ei,[~_~] occurs, 
Yi = 0, otherwise. 

For i = + 1 , . . . ,  

[ n - - l - - I  ] 
t k--l 1, if Uj= 1 Eij occurs, 

Y~ = O, otherwise. 

Then, N,~,k,l = ~i'~1 Yi, so that  

n - - i - - I  
,~ [ k-z]  [rSfl 

E(N~,k,l) = ~ ~ P(E,j) + ~_, P(Ei,lr~_fl) 
i = 1  j = l  i = 1  

n -1  - /  
,~ [ ~ - , 1  [~-l] 

= qE E pt+j(k-t)+ E P n  
i = 1  j = l  i = 1  

[,,-,.-~1 k--Z 
n n = nqpt ~ (pk-t)j + [ f f . ~ ] p  . 

j = l  

The proof of the proposit ion follows. [] 

For l = 0, Proposi t ion 3.1 readily gives 

1 - pl~-lk 
E(N'~'k'~ = nqpk 1 - pk 

which coincides with a result of Charalambides (1994) and Makri and Phil ippou (1994). 

For l = k - 1, it gives 

E(N;~,k,k-t ) =np  k, 

which is Proposi t ion 2.2 of Makri and Phil ippou (1994). 

4. Recurrence relations for/-overlapping success runs of length k in n Bernoulli trials 
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In the following we derive a recurrence re la t ion concerning the p r o b a b i h t y  d i s t r ibu t ion  

of the rv N,~,k,t and  a recurrence re la t ion re la t ing the respect ive  p robab i f i ty  d i s t r ibu t ions  

of N~,k,l and  N~,k, I. These  resul ts  are useful for the calculat ion of the probabi l i t ies .  A 

numerical  i l h s t r a t i o n  is given. 

THEOREM 4.1 .  Let N n k t  be as in Theorem 2.1 and set m~,~,j = r a in{z , [  ~ - l - t - j p ,  , , [ k - I  JJ"  

Then,  

(a) for n > k + 1 and z = 1, 2 , . . .  , [~-~],'~-~ 

nl, x ,n ,k - - I  

P(N,~,k,t = z )  = P(N,~-l ,k , t  = x )  - qpk ~ pi(k-t)P(N,~_l_k_i(k_t),k, t  = x -- i) 
i---'O 

?~,x,n,o 

+ qpt ~ p i (k- t )P(N,~- l - t - i (k-O,k , t  = z - i) 
i=1 

+ P t ~,[~_~] - 6~,[-;~7~]}; 

(b) for n >_ k + 1, P(Nn,k, t  = O) = P(Nn-a,k , t  = O) - qpkP(Nn_k_l ,k , t  = 0); 

(c) for n = k, P(N,~,k,t = O) = 1 --  pk ,  P(N,,,k,l  = 1) = pk; 

(d) for 0 < n < k -  1, P(N,,k,~ = 0) = 1. 

We shall  first es tabl ish  a p re l iminary  lemma.  

LEMMA 4.1 .  Let N,~,k,t and m ..... j be as hi Theorem 4.1. Then,  

= [~], (a) for n > k + 1 and x 1 , 2 , . . . ,  ~-t  

k - 1  

P(N,~,k,t = z )  = p"6~:,t~L] + q ~ t C  P(N, ,_ ,_ j ,k , t  = x) 
j = 0  

k - l - 1  rex,n,.7 

+ qpt ~ pj ~ pi(k-Op(N,~_l_t_j_i(k_O,k,  t = z - i ) ;  
j = 0  i=1 

k - 1  " (b) for n > k,  P(N=,k3 = O) = q E j = o  f P(N,~- l - j ,k , l  = 0). 

PROOF. (a) Let n >_ k +  

j = 0 , . . . ,  n - 1, we define the 

Bernoull i  tr ials" and B = " t h e r e  

i, x i,... n-l  = ,[~-zT], and m . . . .  j be as in the lemma.  For 

events A j = " j  S's precede the first F in the sequence of n 

is no P in the sequence of n Bernoull i  t r ia ls" ,  so tha t  

(N,, k,l x)  "-1 , = = Uj=o [(N,,,k,t = x )  n A j ]  U [(N,,,k,t = x) N B]. 
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Obviously, (N,~ k z # ~-l , ,  [ v : 7 ] )  r B = O. Then, since Aj ( j  = O, 1 , . . .  , n  - 1) a n d  B are disjoint 

events, we have 

n,--1 

P(N,~,k,, = x) = ~ P[(N~,k,, = x)  I Aa1P(AJ)  + P[(N,, ,<t = x)  I B ] P ( B )  
j=O 

k-1  n -1  j - l 

= ~ qpJP(N ,~_ ,_ j&,  = x ) +  ~ q p a P ( ~ _ ~ _ i , k  ,, = x - [-ff--~_ll ) + p"5~,[~_2}_~], 
j=O  j=k  

which implies part (a) of the 1emma. 

(b) When x = 0 and n > k we observe again that 

(N,~,<z = O) = Uj= ok-a [(N~,k,l = 0) n Aj],  

so that 
k - 1  

P(Nn,k , ,  = O) = ~J~[P(Nn,k,t = O) I d j l P ( d j )  
j=O 

from which we get part (b) of the lennna. 

PROOF OF THEOREM 4.1. For n > k + l  and x = 1,2, P~-q Lemma 4.1(a) gives 
_ _  . . . , l . k _ l  J ,  

1-p(N,~+l,k,t = x )  - P(N,~,k,t = x )  = q-P(N,~,k,, = x )  - qpk - lP(N,~_<<l  = x )  
P P 

+ qpl-1 ~ pi(k-OP(N,~_t_i(k_l),k,t = x -- i) 
i=1 

,~,,{x,[~]) 

_ qpk-I  E pi(k-OP(Nn_k_i(k_O,k, t  = x -- i) 
i=1 

from which we get part (a) of the theorem. Using the same argument and Lemma 4.1(b) 

we get part (b). Finally, (c) and (d) are implied by the definition of N~,k,t. [] 

THEOREM 4.2. Let Nn,k,t be as in Theorem 2.1, a~td N~,k, l and M~,,~ be as in Theorem 

3.1. Then, for n > k and x = 0, 1 , . . . ,  [~-1-11 
- t k - t - [ g : 7 ] '  we have 

M• ,n-I 

P(N,~,k,t = x )  = q2 y].  i p i - lp (N , ,_ l_ i , k , t  = x - c , -1)  
i=1 

n--I n + n q p  6~ r . . . .  ,] + p 5~,[~_~]. 
~L k--I 
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. .  [ n - l - l ]  = ,,j P R o o v .  Let x = 0, 1, .,L k-t J, [~-t]" We define the events Aj  S's precede 

the first F in the sequence of n Bernoulli trims", (3" = 0, 1 , . . . ,  M~,,-1 - 1) and B~ = "r 

S 's  follow the last F in the sequence of n Bernoulfi trials", (r = 0, 1 , . . . ,  M~,,-1 - 1), 

0 <_ j + r < M~,~-I - 1 .  Furthermore,  if X 1 , . . . ,  X~ are as in the proof of Proposi t ion 2.1, 

we set 

C = U~= I{X,  = 0, Xj  = 1 (1 _< j # i < n)} and D = {Xl = X2 . . . . .  X ,  = 1}. 

c [ ~ 1 )  O C = (N,~,k,t r [~/-i]) ffl D = 0 and P ( C )  = nqp "~-~, Obviously, (N~,k, t # ~ - l - t  

P ( D )  = p~. Then we have 

(N,~,k,t = x) = "~j=0"M . . . .  ,-1,M~,,__0 . . . .  ~-lS~'Ar~tV'.,k,l = x) A (Aj  N B~)} 
O<_j+r<_Mx,n-t - 1 

U{(N:,k, , = x) n C} u {(N:,k, , = x) n D} 

fxom which we get 

P(N~,k, l = x) 
Mx,n-1-1 Mx,n-1-1 

= ~_, ~_, P (A j )P(B~)P(N~ ,k ,  , = x I Aj  N B~) 
j=O r = 0  

O~_j+r<_Mz,n-1-1 

+P(C)P(N,~,k, ,  = x I C) + P(D)P(N~,k ,  , = x I D) 
Mx,n-1-1 

= ~ (j + r + 1)piqqp~P(N=_2_(j+~),k,t = x - cj+~) 
j + r = 0  

n ~-16 qp ~:,[.~1s ] + p 5~,[~_~_~]. 

The theorem follows. [] 

For l = 0 and 1 = k - 1, respectively, Theorem 4.2 reduces to Theorems 3.1 and 3.2 

of Makri and Phil ippou (1994). 

In Table 1 we give the distributions and mea~s of the rvs N15,5,1 and N{5,5,t for 

l = 0, 1,2, 3, 4 for a sequence of 15 Bernoulli trims with success probabil i ty p = 0.9. 

We end this paper  with a few words on limiting distributions and open problems. 

S. Poisson and compound Poisson convergence: Open problems 

Set N~,k = N~,k,o a~d M~,k = N~,k,k-i. For large k, the probabil i ty distribution 
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function P(N,~,k = x)  is approximated well by an appropriate Poisson distribution and 

the probability distribution function P(Mn,k  = x)  is approximated well by an appropriate 

compound Poisson distribution. More precicely, if k = k~ --~ oo and nqp k ~ ~ > O, as 

n ---+ oo, then 

and 

~ P(X,,~ = x) = P(X, .  = ~) = r ~ / x!), �9 = 0 , 1 , . . . ,  

n ~  ' x X 
\ j - l }  j! , " " ,  

See yon Mises (1921) and Feller (1968) for the Poisson convergence and Geske et al. 

(1995) for the compound Poisson convergence. For a different pair of conditions, which 

imply Poisson convergence when k is constant, namely p = p~ --~ 0 and np~ ~ A > O, 

as n --+ oo, we refer to Godbole (1990). We also refer to Barbour, Chryssaphinou and 

Vaggelatou (2001) for an alternative compound Poisson approximation. 

In Table 2 we present the Poisson and compound Poisson approximation to P(N~,k,l = 

x) for p = 0.9, l = 0, 1 , . . . ,  k - 1  and various values of (n, k) by means of the total variation 

distances d(N,~,k,l, X p )  = (1/2)•7=o [ P(N,,,k,t = x)  - P ( X p  = x)  I and d(W,~,k,l, Xcp)  = 

(1/2) ~x~o I P(N,~,k,l = x)  - P (Xr  = x)  ], after truncation. The exact probabilities 

P(N,~,~ 3 = x), P ( X p  = x)  and P ( X c p  = x)  were computed by using Theorem 2.2 and 

the above two formulas, respectively. 

The derivation of the limiting distributions of N,~,kd, 0 < l < k - l ,  is an open problem. 

It is also an open problem to derive the limiting distributions of N~,k,t, 0 < l < k - 1. 
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Table 1. The  exact  d is t r ibut ions  and  means  d NI5 s t and N c , , 1 5 , 5 , t  

x\l 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i0 

11 

12 

13 

14 

15 

l I ~ 3 J l  

N15,5,/ 
0 1 2 3 4 

.02823 .02823 .02823 .02823 .02823 

.23955 .18845 .13753 .08803 .04153 

.52633 .43255 .28815 .14609 .06020 

.20589 .35078 .29445 .22968 .07215 

.25164 .20294 .07888 

.09913 .08160 

N~5,s,I 
0 1 2 3 4 
.01298 .01298 .01298 .01298 .01298 

.15351 .09540 .06896 .04381 .02058 

.62762 .30445 .20333 .07146 .02898 

.20589 .58717 .16569 .19514 .03503 

.34315 .08944 .03915 

.20589 .38128 .13437 

.20589 .19807 
.07218 
.06213 
.05338 
.04575 
.20589 

1.9099 2.1059 2.6038 3.6120 6.4954 

.05230 

.20589 .04707 
.04236 
.03813 
.34315 

.20589 

2.0264 2.4658 3.3748 4.4775 8.8574 



Table 2. Poisson and Compound Poisson Approximations to P(Nn,~,t = z) by means of total 
variation distance for p = 0.9, l = 0, 1 , . . . ,  k - 1 and 

(n, k) -- (15, 5), (17, 6), (19, 7), (21, 8), (23, 9), (25, 10), (28, 11), (31, 12), (35,13) 
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l 
0 

1 

2 

3 

4 

5 

6 

l 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

l 

0 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 
11 
12 

d(N15,5,1, Xp) d(N15,5,l, X~e) d(N,7,6,t, Xp)  d(N17,63, Xcp) d(N19,7,1, Xp) d(N19,TJ, Xd 
.52269 
.57379 
.61413 
.67716 

.80951 

.86816 

.86816 

.83747 

.78132 

.66764 

A2775 
.45640 
.51000 
.55394 

.62477 

.76183 

.87532 

.84264 

.84264 

.81180 

.75531 

.62167 

.38232 

.33191 

.40056 
A4382 

.49934 

.57783 

.71650 

.84369 

.81099 

.81099 

.78010 

.75097 

.69764 

.57164 

d(N2,,sj, Xp) d(N21,8,l, X~p) d(N23,9,t, Xp)  d(N23,9j, Xcp) d(N25,10,1, Xp) d(N25,10j, X~ 
.80764 
.80764 

.77496 

.77496 

.74412 

.71503 

.66180 

.51940 

.76863 

.76863 

.73604 

.73604 

.73604 

.70531 

.67634 

.59920 
A6649 

.34736 

.34736 

.29750 

.35340 

.39690 

.45344 

.53570 

.67355 

.27527 

.27527 

.27527 

.22910 

.22910 

.26959 

.32227 

.37779 

.46320 

.59448 

.31136 

.31136 

.26299 

.26299 

.31349 

.35673 
A1328 
A9768 
.63291 

.72785 

.72785 

.72785 

.69542 

.69542 

.66485 

.66485 

.60899 

.55957 

.41415 

d(N28,1,,l,Xp) d(N28jl,l,Xcp) d(N3L12,l,Xp) d(N31,12,l,Xcp) d(N35,13,l,Xp) d(N35,13,l,X 
.22199 

.22199 

.22199 

.17538 

.17538 

.17538 

.19283 

.23656 

.28302 

.33583 
A3009 
.55017 

.24816 

.24816 

.24816 

.20120 

.20120 

.21679 

.25229 

.30085 

.35583 

.44684 

.57235 

.20395 

.20395 

.17892 

.16687 

.15574 

.15574 

.15087 

.18847 

.22816 

.27381 

.32672 

.42474 

.53924 

.70245 

.70245 

.70245 

.66996 

.66996 

.66996 

.63933 

.61048 

.58332 

.51117 

.36424 

.67552 

.67552 

.67552 

.64305 

.64305 

.64305 

.61245 

.61245 

.58363 

.53099 

.46443 

.32132 

.66089 

.66089 

.63586 

.62831 

.62831 

.62831 

.59772 

.59759 

.56863 

.54136 

.49439 

.42240 

.28589 
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