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Abs t rac t  

The well-known chi-squared goodness-of-fit test for a multinomial distribution is generally 
biased when the observations are subject to misclassification. In Pardo and Zografos (2000) the 
problem was considered using a double sampling scheme and C-divergence test statistics. A new 
problem appears if the null hypothesis is not simple because it is necessary to give estimators for 
the unknown parameters. In this paper the minimum C-divergence estimators are considered and 
some of their properties are established. The proposed C-divergence test statistics are obtained 
by calculating C-divergences between probability density functions and by replacing parameters 
by their minimum C-divergence estimators in the derived expressions. Asymptotic distributions 
of the new test statistics are also obtained. The testing procedure is illustrated with an example. 

K e y  w o r d s  a n d  phrases :  Misclassification; Double sampling; Divergence estimators; 
Goodness-of-fit  tests; Divergence statistics. 

A M S  Class i f icat ion:  62F05, 62B10. 

1 .  I n t r o d u c t i o n  

Let Y1,-..,  Yn be independent and identically distributed random variables taking on 

values in X --- {1 , . . .  ,M}.  Let p = (Pl , . - . ,PM) T be a probability vector, i.e. p C A M 

with 

A M  = P l , . . .  , P M )  E R M :  ~ _ , p j  = 1, p j  ~ O, j = 1 , . . .  , M  , (1.1) 
j=l 

such that pj = Pp(Yi = j), j = 1 , . . . , M ,  i = 1 , . . . , n .  Define N j  = ~i~=ll{j}(Yi) and 

/?j = N~. j = 1, , M, so that (N1,. . .  N M )  is a sufficient statistics for p E AM and 

multinomially distributed, i.e. 

n! 
Pp(Nx = n l , . . . , N M  = r iM)  - -  n l ! . . . n M !  p r~l . . . pnMM ' 

for every integers nl  > 0 , . . . ,  n M  >_ 0 such that  n l  + . . .  + n M  = n .  

1Supported by the grant BMF2000-0800. 
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The statistician is often interested in testing H 0 : p 6 7 ~ versus/-/1 : p 6 A M -- ~ ,  

with 

7 ~ = { p ( 8 ) = ( p l ( 8 ) , . . . , p M ( 8 ) )  T 6 A M :  8 6 0 } ,  (1.2) 

{9 C R ~ open and k < M -  1. 

For simplicity we restrict ourselves to unknown true parameters  80 satisfying the clas- 

sical regularity conditions given by Birch (1964): 

1. 80 is an interior point of O. 

2. pi(80) > 0 for i = 1 , . . . ,  M. Thus p(80) = (p1(80),...  ,PM(80))  T is an interior point 

of the set A M . 

. The mappingp  : O ~-~ A M  is totally differentiable at 80 so that  the partial derivatives 

of pi with respect to each 8j  exist at O0 and pi (8)  has a linear approximation at 8o 

given by 
k 

p~(o) = pdOo) + F_,(oj - Oo~ ~176176 + o(11o - Oo11), 
j= l 'J " 08  j 

where o(118 - 8o11) denotes a function verifying 

lira ~ Ooll) = O. 
o-,Oo IiO - Ooll 

4. The Jacobian matrix 

O=Oo \ 08j / i=I,...,M 
j=l,...,k 

is of full rank (i.e. of rank k). 

5. The inverse mapping p-1 : p ~_. O is continuous at p (00) �9 

6. The mapping p : O ~-* A M is continuous at every point 0 6 0 .  

Under the assumption that  H0 is true, there exists an unknown parameter  00 such 

tha t  p = p(Oo) and the problem of point estimation appears in a natural  way. Maximum 

likelihood estimator (MLE), 8, is obtained by maximizing 

In P~o)(N1 = n l ,  . . . , N M  = r i M ) ,  

with respect to 0 with 0 60 or, equivalently, by minimizing the Kullback-Leibler diver- 

gence 
M A. 

D(~ ,  p(O)) = ~ ~j in p j ~ ) ,  
j= l  
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with respect to 0 with 0 C O, where ~ = (fix,... ,PM) T and p(O) = (px(O),... ,pM(O)) T. 
The X 2 test statistic 

M 

nx2(fi, p(O)) --- nY~ - ~ j j 2 ,  (1.3) 
(fiJ 

~=x pj(O) 

which is under 1-6 asymptotically chi-square distributed with M - k -  1 degrees of freedom, 

is a well known statistic to test H0. Morales et al. (1995) extended (1.3) in two directions: 

1. They considered minimum @divergence estimators 

Or = argminoeo Dr p(O)), (1.4) 

where 

D4,(fi, p(O)) = ~ p j ( 0 ) r  PJ (1.5) 
j=X 

was introduced by Cisz~r (1963) and Ali and Silvey (1966) for every r in the set r of 

real convexfunctions defined on [0, c~) and satisfying r -- r = 0. In formula 

(1.5) if either pj(0) or pj(0) and ~j are zero, expressions 0r and 0r are 
defined as lin~__~ -r and 0 respectively. 

They introduced and studied the @divergence statistics 

2n (~,p(~)) ~1,r c ~, T~I,~ : ~D~I 
for testing H0 : P C T' versus//1 : p e A M - P. 

(1 .6 )  

>From a statistical point of view the most important family of @divergences is, per- 

haps, the power-divergence family introduced by Cressie and Read (1984) and Read and 
Cressie (1988), which is obtained from (1.5) by taking 

1 
(x A+I - A ( x  1)); A ~ 0 ,  A ~ - I ,  r (z)  - r  = ~ (~  + 1) - x - 

r -- l ~ r  = x l o g x -  x § 1 (1.7) 

~ - x ( ~ )  = n m  r  = - l o g ~ + ~ -  1. 
A--*- 1 

Let us assume that Y, , . . . ,  ]In give the result of classifying n individuals into M classes, 

so that Y~ -- j if individual i is classified into category j. The above mentioned results 

rely on the implicit hypothesis that no false classifications are allowed. However this 

assumption is not very realistic in practice and misclassifications often occurs. In this 

paper Tenenbein's (1970, 1971, 1972) double sampling schemes are used to provide a 

basis for the study of problems of estimation and testing composite null hypothesis when 

misclassification is allowed. 
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2.  D o u b l e  s a m p l i n g  s c h e m e  

Let Y be the random variable giving the true classification and let X be the random 

variable giving a classification obtained through a possibly fallible device. Let us denote 

the marginal probabilities of Y and X by 

p i = P ( Y = i )  and q j = P ( X = j ) ,  i , j = l , . . . , M .  (2.1) 

To describe misclassifications we introduce conditional probabilities 

q~/~ = P(X = j / Y = i), (2.2) 

so that M M ~j=l  qj/i = 1 and qj = ~i=lP~qj/i. In this situation a double sampling scheme 

can be described as follows: 

i) A sample of n units is drawn at random and the true and fallible classifications, 

denoted by Y1,. -., Yn and X1 , . . . ,  X,~, respectively, are obtained for each unit. For 

i , j  = 1 , . . . ,  M,  let nij be the number of units in the sample whose true category is 

i and whose fallible category is j ,  and define n~. = ~ M  1 n~j and n.j = ~ M  1 n~j. 

ii) A further sample of N - n  units is drawn and the fallible classifications Xn+l,. �9 �9 XN 

are obtained for each unit. We denote by 

N 

m~ = ~ l{x~=j}, j = I , . . . , M ,  
~----n+l 

the number of units whose fallible category is j and by ( m l , . . . ,  raM) the vector of 

absolute frequencies associated to the random sample X , + I , . . . ,  XN. 

The joint likelihood function associated to the observed data, (Y1, X1) , . . . ,  (Yn, Xn),  

Xn+l, �9 �9 XIv, is 

L(p, Q) = Y i  I I  (piqj/i),,~(qj - piqj/~) . -~ ,~  q,~t , 
i=l j=l k t = l  

with parameters p = (pl , . . .  ,pM) T and Q = (qj/i)MxM, and the MLE are 

M (mj + n.j)nij and ~j/i = (mj + n.j)nij i , j  = 1 , . . .  M. (2.3) 
P~ = ~ g n  4 g n . j ~  ' ' j = l  

Tenenbein (1972) and Cheng, Hsueh and Chien (1998) proved that 

(Pl - Pl,..., PM -- PM) ~ .hf (0, Z) (2.4) 
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as N --* co and n / N  ~ f > 0, where 0 = (0 , . . . ,  0) T, E = (o'ij)M• , 

[ P ~ ( I = P Q [ 1 - ( 1 - f l K i ]  i f i = j  
= f l  M (2.5) 

1 - - -  ~=lq~ ~)~j~-pi(1 ~ j, 

with K~ = 1-p/p~ t e=l ~q~ - 1 and )~j = Piq~/~,qj i, j = 1 . . . .  , M. Throughout this paper 

L ~ is used to denote convergence in law. 

In Pardo and Zografos (2000) the problem of testing a simple null hypothesis, H0 : 

P = P0, was considered on the basis of the test statistic 
2n 

r r e 

where io is given in (2.3). In the following Section this problem is extended to the case 

of a composite null hypothesis. In addition, the family of C-divergence estimators (1.4) 

is adapted to the case of misclassified data and some of their asymptotic properties are 

obtained. 

3.  T e s t  s t a t i s t i c s  b a s e d  o n  C - d i v e r g e n c e s  

In this section we assume that the probabilities pi and qj, introduced in (2.1), depends 

on an unknown parameter 0 E O C R k with O opoa and k < M - 1, i.e. 

pi(O) = P0(Y ~ i), qj(O) =- Po(X = j), i , j  = 1 , . . . , M ,  

with qj(O) M = ~j=lpi(O)qj/i, j = 1, . . .  ,M.  We also assume that true parameter 00 and 

mapping p : O ~-+ AM satisfy conditions 1-6 of Birch (1964). We consider the M-vector 

p(O) = (pl(O),... ,pM(O)) T, the M x k Jacobian matrix J(O) = (Jj~(O))j=l,..,M,~=l,...,k with 

Jjl(O) = ~pj (O) ,  the M x k matrix A(O) = diag (p(O) -1/2) J(O) and the k x k Fisher 

information matrix 

I(O) = ( ~  10pj(O)Op~(O)~ = A(O) TA(O), 
s 

j=l re(o) OOs )r,s=1,.,k 

where diag (P(O)-U2) -- diag ( ~ ( 0 )  . . . .  ' p~M(O))" 

The above defined matrices are considered at the points 0 E 0 where the derivatives 

exist and all the coordinates pj(O) are positive. 

For the observed data (Y1, X1), . . . ,  (Yn, Xn), Xn+l , . . . ,  XN, the minimum C-divergence 

estimator is 

0~ = arg minoeoDo(~,p(O)) , r e r (3.1) 

where fi = (Pl,..-,PM) T is given in (2.3). In the following theorem the asymptotic 

distribution of 0r is given. 



402 

T h e o r e m  3.1. Let r E (b, let p : O ~-* AM be twice continuously differentiable in a 

neighborhood of 00 and assume that conditions 1-6 of Section 1 hold. If N ~ co and 

n / N  --* f > 0, then the minimum C-divergence estimator 0r satisfies the relation 

v~(~+ - 0o) ~ H(O, S(Oo)), 

where S(0o) = C(0o)E(0o)CT(~o), C(0o) = l(~o)-lA(Oo)Tdiag(p(Oo) -V2) and ~(0o)is the 

M x M matrix whose elements a~j(tgo) are obtained from (2.5) by substituting p~ and qj 

by pi(~9o) and qj(Oo) respectively. 

P roof .  In the same way as in Morales et al (1995), it can be established that 

"~ = Oo + I(Oo)-~ A(Oo) T diag (p(Oo) -~/2) (~ - p(Oo)) T + o,(llp - p(Ooll), (3.2) 

where p is given in (2.3). Now by (2.4) we have 

- Oo) H(o,  S(Oo)). 

Theorem 3.2 is needed to derive the asymptotic distribution of the proposed test 

statistic for misclassified data. 

T h e o r e m  3.2. Under the assumptions of Theorem 3.1, we have 

v ~ ( i ~ -  p(~r L Af(0, B(Oo)), 

where 

B(Oo) = 

L(Oo) = 

E(0o) - E(Oo)L(Oo) T - L(Oo)Z(Oo) + L(Oo)E(~?o)L(Oo) T 

J(Oo) I(tgo)-lA(Oo)T diag(19(00)-l/2). 

Proof .  A first order Taylor expansion gives 

p(~r = p(Oo) --t- J(Oo)(Or - t9o) T + o(11~r -Ooll). (3.3) 

>From (3.2) and (3.3) we obtain 

p(0r = p(/9o) + J(Oo)I(Oo)-lA(lgo)T diag(p(Oo)-l/2)(~-- p(tgo) ) T q- o(l lP- p(Oo) ll). 

Therefore the random vectors 

I 
( ~-p(Oo) ~ and (L(Oo))2MxM(p--p(OO))Mxl , 

- p ( O o ) /  2 M  • 1 

where I is the M • M unity matrix, have the same asymptotic distribution. Furthermore, 

it is clear that 

v"ff  ( f i -  p(Oo)) ~ ]r  (0, E(Oo)). 
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implies 
. [ ~-p(Oo) 

4"~(~ , )  _ p(Oo)) 
Finally, from (3.4) we get 

(o, 

4 ~ ( ~ -  p(O,)) ~-~ ]r B(Oo)). 

(3.4) 

Now we consider the problem of testing the hypothesis H0 : p E P given in (1.2). Our 
proposal is based on the divergence test statistics 

_ 2N D S+,,r - ~ r (~,p(0+~)) r162 C ~, (3.5) 

where ~ = ( ~ , . . .  ,~M) T and 0+2 have been introduced in (2.3) and (3.1) respectively. In 

the following (see Section 4) Sr162 2 is used to denote C-divergence statistics (3.5) with 

r ~- Cx, (power divergence of order A1 for the test statistic) and r =- r (minimum 

power divergence estimator of order ),2 for the unknown parameter). 

Theo rem 3.3. Under the assumptions of Theorem 3.1, we have 

s~,,~ ~-~ ~ ~(Oo)Z~, r r e ,~, 
j=l 

where r = rank (B(Oo)~ag(p(Oo)-l))B(Oo)),/31(00),..., 13,(00) are the non null eigenvalues 
of the matrix diag (p(00) -1) B(Oo) and Z1,. . . ,  Z~ are i.i.d. J~(0, 1). 

Proof.  A second order Taylor expansion gives 

2N 
r Or (~' P(0r = v ~  - p(O~,2))Tdiag~)(Oo)-l)x/~(~ -- p(0r + %(1). 

Taking into account Theorem 3.2, and applying Corollary 2.1. of Dik and Gunst (1985), 

the result follows. 

Based on the asymptotic result presented in Theorem 3.3 for large N and n, we may 

reject the null hypothesis H0 : p c T', at the asymptotic test size a E (0, 1), if 

2N 
S~1,r ~ = ~ D o l  (~,p(0o~)) > t~, r162 E r (3.6) 

where t~ > 0 is the lowest positive number satisfying the condition 

supP j(O > t~ < a .  
0CO 

with Z1, . . . ,  Zr i.i.d. Af(0, 1) and 131(0),... , t3r(0) being the non null eigenvalues of the 

matrix diag (t)(0) -1) B(O) defined above. 
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3.1. Approx ima t ions  to  the  linear combina t ion  of chi-square d is t r ibut ions  

One has to take into account that asymptotic distribution of Sr162 under H0 depends 

on O E O, so from a practical point of view the worst situation may be considered and 

w(0) = P (~;=1 flj(tg)Z~ 2 > s) can be calculated for the observed value s of S~1,~= and for 

each 8 E e .  If sup w(0) < a, then we have evidence to reject the null hypothesis. To 
06(9 

apply this procedure, it is important to have approximations to the distribution of a linear 

combination of independent and chi-squaxe distributed random variables with one degree 

of freedom. Here we describe two direct and easy to calculate approximations and we give 

references to somewhat better, and at the same time more complicated, techniques. 

First approximation is taken from Rao and Scott (1981). Let us define j3m~(0 ) = 

max {~31(0),...,/3~(8) } and ~ , ,~  = sup0eo ~max(8). Then 

w(O) : P #3(O)Z] > s _< P > S#mo~(O) - I  : WI(O ). 

Therefore, if supwl(8) < a we should reject H0. In this case w e  get an asymptotically 
668  

conservative decision rule. 

Second approximation is based on the relations 

E /3j(8) = r ~ ( 0 ) = E  (O)X , w i t h ~ = - l ~ / 3 j ( 0 ) ,  
r j=l 

v a t  = ( o ) x  , 
j =1 j=l 

If supw2(0) < a, Ho should be rejected. Note that 
oEe 

E #,(O)Z~ = }--~ Bi(0)-- trace (diag (p(0) -~) B(O)) = ~ 9~i(0) 
i=1 /=1 p i (8 )  ' 

where gii(0) are the diagonal elements of the matrix B(O). Therefore 

"3(o) = -; w ( o )  

Satterthwaite (1946) presented an approximation to the asymptotic distribution of the 

statistic 

R~1,~2 = c Sr162 + d 

where c and d are chosen in such a way that expectation and variance of Rr162 2 coincide 

with the expectation and variance of a ~ random variable. Jensen and Solomon (1972) 
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presented a normal approximation and employed a Wilson-Hilferty type scheme to ac- 
celerate the rate of convergence to normality. Imhof (1961) considered a nonstatistical 

approximation based directly in the numerical inversion of the characteristic function. 
Apart from the above approximations tables of the cumulative distribution of ~]~=1 aJ Z2, 

with Z1, . . . ,  Z~ i.i.d standard normal, are available in the case of small r (see Solomon 
(1960), Johnson and Kotz (1968), Eckler (1969), and Gupta (1963)). 

3.2. Asympto t i c  power  funct ion 

To check the consistency of (3.6) and to obtain an approximation to its power function, 
we consider the case p 6 P.  First we introduce the following regularity assumptions. 

(A1) There exists 8o = arg inf0eo Dr (p,p(O)) such that 

p(0r .... ~ p(~o) as N ~ oo, n / g - - ~  f > O. 

(A2) There exists 0o C O, E * = (  Ell E12)  E21 E22 , Ell = E = (a~j)ij=l,.,M with a~j given in 

(2.5) and El2 = F.21, such that 

v / ' ~ (  ~ - p  ) L Af2(0, E. ) as N---+oo, n / N - - - + f > O .  
p(0~) - p(eo) ~ - - ~  

T h e o r e m  3.4. If (A1) holds, then test (3.6) is asymptotically consistent as N --* oo, 

n / N  ~ f > O. 

Proof .  Let p ~ P,  then 

De, (P,P(0r P D,~ (p,p(O~)) > O, as N ~ oo, n / N  ---+ f > O. 

Therefore 

p / 2 N D  ) =  ( > r 
2N ] ~1. 

T h e o r e m  3.5. Let N --+ cx~ and n / N  -~ f > 0. If (A1)-(A2) hold, then 

- (0 ,  

where 
o 2 = T E l l T  T + TE12S T + SE21T T + Dr~222S T, 

T =  (tl , . . . , tM) T,  with ti = ~1 (pl,p2 
# =p,:~ =p(O~) 

i =  1 , . . . ,M,  

(3.7) 
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and 

( II S = (Sl,...,SM) r ,  with s~-- D~ pl,p2 , i=  1 , . . . ,M.  
J p~=p,~ =p(oo) 

Proof.  A first order Taylor expansion gives 

Dr (P,P(0r = D~ (p,p(O~)) + T ( ~ -  p) + S (p(Or - p(Oa)) T 

+ o (11~- pit + Ip('O,=) - p(Oo) ) .  

The result follows from the assumed hypotheses. 

Theorem 3.5 can be used to obtain the following approximation to the power of test 

(3.6). Approximated power function is 

f~(p) = Pp (S~,r > t~) ~ 1 -  FN (~p~(1)t~-2NDr (p,p(9,))) (3.8) 

where a is given in (3.7) and F~(x) is a sequence of distributions functions tending 

uniformly to the standard normal distribution F(x). Note that if p ~ :P, then for any 

fixed test size a the probability of rejecting H0 : p E P with the rejection rule Sr > t ,  
tends to one as N ~ c~ and n /N  --* :f > O. 

Obtaining the approximate sample size N, guaranteeing a power f~ for a given alter- 
native p, is an interesting application of formula (3.8). If N* is the positive root of the 

equation 

= 1 - r L ~ ' N  D ~  (p,p(Oo)) , 

where F stands for the standard normal cumulative distribution function, then 

2D~ (q,p(eo)) ' 

with 
A = a 2 (F  -1 (1 - f3)) 2 and B = r162 (p,p(O,)), 

and the required sample size is N = [N*] + 1, where [.] denotes "integer part of". 

4.  N u m e r i c a l  e x a m p l e  

In this section we present an example to illustrate the application of the family of tests 

introduced in Section 3. We consider the power divergence family (C-divergences with r 

from (1.7)). For this family, test statistics given in (3.5) have the expression 
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if - c r  < A < co, A # - 1 ,  0, and 

M ^ M p ~ ( ~ )  
Sr162 = ~ ~ log ~ , S%/2-1,r = Z P'(~A 2)log _ . 

i=1 p~(Or ) ~=1 Pi 

For A2 = 0, 8r is the MLE and Sr162 o is the family of power divergence test statistics 

when the parameter  is est imated by the MLE. 

We consider the da ta  

Fallible device 

1 2 3 

1 37 2 2 41 

True device 2 1 23 1 25 First sample 

3 1 3 30 34 

39 28 33 100 

[ 160 57 183 I 400 I Second sample 

with sample sizes n = 100 and N - n -- 400. We are interested in testing Ho : p 6 P ,  

where 
P = { ( 0 2 , ( 1 - 0 ) 2 , 2 8 ( 1 - 0 ) 6 A 3 :  0 6 ( 0 , 1 ) } ,  

and A 3 is defined in (1.1) for M = 3. By applying (2.3) to the data, we get 

fil = 0.4159, Pl = 0.1629, Pl = 0.4212, ql/1 = 0.9078, ~/1 = 0.0292, q'a/1 -- 0.0629 

ql/2 = 0.0626, q'2/2 = 0.8570, qa/2 = 0.0803, ql/3 = 0.0242, q2/3 = 0.0433, ~/3 --- 0.9325. 

Maximum likelihood estimator of 0 is minimum ~-divergence est imator  with r = 

r = x log x - x + 1. For this function r we have, 

Pl ^ P2 ^ /~3 (4.2) 
n~o (~, p(8)) = pl log p - ~  + P2 log p - ~  + P3 log P3- '~ '  

where/7 = (pl,p2,P3) and p(O) = (p l (9) ,p2(O) ,p3(9))  T = (O 2, (1 - 9)2,20(1 - 8))  T. In 

(4.2) minimum is obtained at  

2pl ; P3 
8r = = 0.6265, 

so that  p1(8~o ) = 0.3925, p2(0Oo ) -- 0.1629 and p3(8r : 0.4680. By plugging these 

probabilities in (4.1), numerical values tx of test statistics Sr162 are calculated and 

presented in Table 4.1. 

-2 -1 -0.5 0 2/3 1 2 

t~ 9.8621 9.9971 10.086 10.193 10.362 10.459 10.802 

Table 4.1. Observed values of test statistics. 



408 

Let 0 be the true value of the parameter. Then test statistics Sr162 are asymptotically 
3 

distributed as ~ ~i(O)Z~., where Z1, Z~, Z3 are i.i.d. Af(0, 1) and 131(0), /32 (0), /33 (0) are 
3=1 

the eigenvalues of the matrix M(O) = diag (p(O) -1) B(O). After some algebraic calculations 

one can check that M(O) has only two nonnull eigenvalues. 

For 0 E ~ = {0.01, 0.02,... ,  0.99}, nonnun eigenvalues fl1(0) and/32(0 ) of M(O) are 

obtained and probabilities P~,0 = P(/31(O)Z2+/32(O)Z22 > t~) are calculated by simulating 

100.000 standard normal random numbers, zl and z2, and by counting the number of 

times that inequality/3~(0)z 2 +/32(0)z22 > t~ holds. Alternatively, if no device for random 

number generation is available, P~,0 can be approximated by any of the methods presented 

in Section 3.1. 

For each considered A, p-values P~ = suP0e~ P~, are given in 4.1. 

A -2 -1 -0.5 0 2/3 1 2 

P~ 0.0273 0.0263 0.0256 0.0248 0.0230 0.0237 0.0209 
Table 4.2. Observed p-values of test statistics. 

As P~ < 0.05 for every considered A, we may reject H0. 
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