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Let C denote the Banach space of scalar-valued continuous functions defined 
on the closed unit interval. It is proved that if X is a Banach space and T: C--~ X 
is a bounded linear operator with T'X* non-separable, then there is a subspace 
Yof C, isometric to C, such that T I Y is an isomorphism. An immediate conse- 
quence of this and a result of A. Pelczynski, is that every complemented sub- 
space of C with non-separable dual is isomorphic (linearly homeomorphic) 
to C. 

o 

Let A denote the Cantor discontinuum. Our main result is as follows: 

THEOREM 1. Let K be an uncountable compact metric space, X a Banach 

space, and T:  C(K) ~ X a bounded linear operator. I f  T ' X *  is non-separable, 

there exists a linear subspace Y of C(K), isometric to C(A), such that T I Y is 

an isomorphism. Moreover if  T is a quotient map, then given e > O, Y may be 

chosen so that I[ ( r l  Y) - I  [I = 1 + e. 

Now let C = C([0, 1]). Of  course, C is isometric to a subspace of C(A). A special 

case of  a result of  A. Pelczynski (Corollary 1 of [9]) asserts that if X is a comp- 

lemented subspace of C and X contains a subspace isomorphic to C, then X is 

isomorphic to C. An immediate consequence of this and our main result is 

COROLLARY 1. Every complemented subspace of C with a non-separable dual 

is isomorphic to C. 

Using results of Milutin, C could be replaced by C(K) for any uncountable 

compact  metric space K. Indeed, fixing such a K, Milutin proved that if K '  is 
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any compact metric space, there exists an isometric imbedding of C(K') in C(K), 

which is the range of a contractive projection. He also derived as a consequence 

of this, that C(K) is isomorphic to C. (See [6] and also [7]). These results suggest 

that from the isometric viewpoint, there is no reason to prefer one C(K) space over 

another, as representative of this isomorphism class; for the sake of definiteness, 

we choose the space C. 

The results of Milutin and other recent results allow the conclusion of Theorem 

1 to be strengthened somewhat. Suppose that K, T, Y, and X are as in the statement 

of Theorem 1, with X separable. By a recent result of Hagler and Stegall (Corollary 

10 of [3]), there exists a subspace Y1 of Y with Ya isometric to C(A), with TY1 

complemented in X. (This generalizes a previous result of Pelczynski [9], which 

yields the same assertion with the word "isometric" replaced by the word 

"isomorphic".)  By Milutin's result, there exists a subspace Z of Y~, isometric to 

C(K), and complemented in II1. Since T is an isomorphism, TZ is complemented 

in X. Summarizing, we thus have that if K, X, and T are as in the statement of 

Theorem 1 with X separable, then there exists a subspace Z of C(K), isometric 

to C(K), with T I Z an isomorphism and TZ complemented in X. 

The proof of our main result is first outlined and then given in detail in Section 2. 

In addition to previously known techniques used in Banach space theory, we make 

essential use of the concept of conditional expectation in the proof of our crucial 

Lemma 1. Our final result, Theorem 2, applies the proof of Theorem 1 to show 

that certain subsets of C* norm subspaces of C isometric to C. We use standard 

notation; all undefined terms are as given in [11]. 

We now continue in the present section with more immediate consequences of 

Theorem 1. Our next result follows directly from the "moreover" assertion of 

Theorem 1. For its statement, we need the following definition: Banach spaces X 

and Y are said to be 2-isomorphic if there exists an isomorphism T from X onto 

Ywith l] zlllrr-1 II <= ~ By a result of Lindenstrauss and Pelczynski [5], given 2, 

there exists a space X isomorphic to C, such that no subspace of X is X-isomorphic 

to C. Our next corollary shows that this cannot happen if X is isometric to a 

quotient space of C (i.e. X is isometric to C / Y f o r  some Y c  C). 

COROLLARY 2. Let X be isometric to a quotient space of C with X* non- 

separable. Then for all e > O, there is a subspace Y of X which is (1 + e)- 

isomorphic to C. 
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REMARKS. 

1. It follows from the arguments of [9] as well as those of [3], that, in addition, 

Y may be chosen to be the range of a linear projection defined on X,  of norm at 

most 1 + ~. 

2. We give an example, preceding Theorem 2 below, of  a quotient space of  C 

which is isomorphic to C yet contains no subspace isometric to C. 

Our proof  of Theorem 1 is actually a little easier in the case where T is a quotient 

map; Corollaries 1 and 2 are immediate consequences of this case alone. Our last 

result of Section 1 shows a possible application of Theorem 1 to the case where T 

is not necessarily a quotient map. 

COROLLARY 3. Let Y be a subspace of C isomorphic to 1 t, X a Banach space, 

and T:  Y-~ X an isomorphism of Y with some subspace of X .  I f  there exists a 

bounded linear operator T: C ~ X extending T, then X contains an isomorph 

of C. 

PROOF. By Theorem 1, we need only show that (T)* has non-separable range. 

Letting n: C* -~ Y* be the natural restriction map, we have that rc o (~)* maps 

X* onto Y*. Since Y* is isomorphic to the non-separable space 1 ~~ r~ o (T)*, has 

non-separable range, and hence so does (T)*. 

2. 

We shall first outline the proof of our main result. Let X be a Banach space, 

W a bounded subset of X*, and Y a linear subspace of X.  We say that W norms 

Y i f  there is a constant 2 such that 

(*) 1[ Y [I < 2 sup [w(y) l for all y e Y. 
w e W  

In the case where W is contained in the unit ball of X* and (*) holds, we say that 

W Z-norms Y. 

For the sake of convenience in notation, let K = [0, 1], and let T and X be as in 

the statement of Theorem 1. Now let W --- T*Sx. (where for any Banach space B, 

SB = {b e B: 1[ b II < 1}). W is a convex bounded symmetric non-separable subset 

of C. To prove Theorem 1, it suffices to exhibit a subspace Y of C, isometric to 

C(A), such that W norms Y (and such that in addition, W (1 + 0-norms Y in the 

case where T is a quotient map). 

Our Lemma 4 reduces the problem of finding this Y, to the case where W is 

the unit ball of a subspace of C* isometric to ll(F) for some uncountable set F. 
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Although our argument for Lemma 4 is self-contained, it is in reality a variation 

of arguments in [11]. 

Our Proposition 3 reduces the problem of finding this Y, to the case where W is 

the unit ball of a subspace of C* isometric to L 1. (L ~ denotes the space D(m), 

where rn is the Lebesgue measure on the unit interval with respect to the a-algebra 

of Lebesgue measurable sets). This reduction is accomplished by showing that if Z 

is a subspace of C* isometric to ll(F) for some uncountable set F, then there is a 

subspace U of C* with U isometric to C*, such that for a l l f e  C, 

suplu(f) l --< suplz(f) l. 
UESU Z~SZ 

The proof of Proposition 3 is also self-contained; it is in reality a variation of 

certain arguments of [12] due to Stegall, which are in turn variations of an 

argument of Pelczynski [8]. In particular, we make use of the notion introduced 

by Stegall, of subsets of C* equivalent to the usual basis of 11 and dense-in- 

themselves in the weak* topology. 

To handle the case where W is the 

L 1, we need an explicit representation 

space of scalar-valued Borel measures 

unit ball of a subspace of C* isometric to 

of such subspaces. Identifying C* with the 

on [0, 1], we show in Proposition 2 that if 

Z is a subspace of C* isometric to L ~, there exists a Borel probability measure p 

on [0, 1] and a a-algebra Sp of Borel subsets of [0, 1], such that ([0, 1], 6e, p l6e) 

is a purely non-atomic measure space and Z = LI(#I 6a). (Phrased another way; 

S~ has the property that given E e6 a, #(E) > 0, there is an F e ,90 such that F c E 

and 0 < p(F) < #(E). Z consists of the subspace of D(p) consisting of (equivalence 

classes of) p-integrable alP-measurable functions; a probability measure # is simply 

a positive measure with II ~ II -- 1.) This result is certainly well known; we include 

a sketch of its proof for the sake of completeness. 

Lamina 1 is the crucial step in the proof of our main result. In combination 

with Proposition 2 and an easy extension theorem, it yields that if W is the unit 

ball of a subspace of C* isometric to L ~, then for all e > 0, there is a subspace Y 

of C isometric to C(A) such that W (1 + 0-norms Y. Since the statement of Lemma 

1 (to be given shortly) is rather technical, we wish first to motivate it. It is known 

that if B denotes the linear span of the characteristic functions of half-open 

intervals of [0, 1] with dyadic-rational end points, then the closure of B in the L ~- 

norm is isometric to C(A), while the closure in the Ll-norm is isometric to D.  

Given 6 a a a-algebra of Borel subsets of [0, 1] and # a probability measure with 
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#n ~9~ purely non-atomic, Lemma 1 yields that there is a compact  subset K of 

[0, 1] and a linear subspace A of C(K) with the following properties: first, A is 

very close, in the U(#) norm, to a subspace of LI(#I 5 ' ) ;  secondly, the behavior 

of  A in both the Ll(/~) and L~176 norms is almost like the behavior of  B in both the 

L~(m) and U~ norms. The crucial use of  the concept of  conditional expectation 

is contained in the " S u b l e m m a "  part  of  the proof  of  the lemma. 

LEMMA 1. Let f~ be a compact Hausdor(f space, IX a regular Borel probability 

measure on D, 5 ~ a ~-subalgebra of the Borel subsets of f~ such that 1~[ 5 ~ is 

purely non-atomic, and ~ > O. Then there exist sets F~ ~ 5 p and compact subsets 

K~ of f~ satisfying the following properties for all 1 <_ i <_ 2 n and n = 0, 1,2, ..-: 

(i) K~ r K~, = F~' r F~', = ~ for any i '  # i. 

T.( n + l  ~,.j ~c ~ n + l  
(ii) K~' = ax2i_ 1 +ix2i 

Ig n + l  I I g? n + l  
and F;  = -2 i -1  v - 2 i  �9 

(iii) K7 c eT. 
1 

( i v )  1 - ~ < #x(K 7) and #x(F 7) < 2-- 7 -  
/1 ~ 

REMARKS. Before passing to the proof, we wish to point out some immediate 

consequences of the statement. Let K = K ~ and let A denote the closure of  the 

linear span of {ZKr: 1 < i < 2"; n = 0,1,2, . . .}  in C(K). Then A is a subalgebra 

of  C(K) algebraically isometric to C(A). Fix n and let 

i = l  

for some scalars cl, ...,c,,; such functions ~b are of  course dense in A. Suppose 

II ~ II ~ = 1 and suppose  ,~ ~ C~n) is such that II '~ II ~ = 1 and ,~IS: = ,~. C h o o s e  

i so that Ic, I-  1 and put f=ZF?I#(F'~). Then of course Ilfll ~,<.,= ~; we have 

that by (iii) and (iv), 

~(~:7) 
- p(F,I) fr,l~Kp If~p[d# 

tt(KT) #(F';) - tt(KT) >= 
Ft( F'~) tt( F' D 

>_ 1 - 2 e .  
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Thus if W denotes the unit ball of L~(#] Se), then 

(1) [[01[ - -<(1-20  -1 sup ] Jff~PdP]" 
f e w  

PROOF OF LEMMA 1. For E a Borel subset of l~, we denote #(E) by ] El. We 

first need the following: 

DENSITY SUBLEMMA. Let E ~ ~ ,  "r > O, and t5 > 0 be given. Then there 

exist subsets F and K of  E with F ~ 6: and K compact, such that 

(a) [ E ~  F I < ~1~1 
(b)ln ~ K I z ~l nl for all H ~ 6 # with H c F. 

PRooF. By the regularity of #, we may choose K a compact subset of E with 

( 1  - ~) l el z lKI By the Radon-Nikodym theorem, there is an 6a-measurable 

function k supported on E, with values in [0, 1], so that for all S ~ 6:, 

s kd.--Isn/I. 
(The function k is of course the conditional expectation of the function Z~ with 

respect to the a-subalgebra 6:.) Now let F = {t: k(t) > 1 - 6}. It follows that (b) 

holds. Indeed if H ~ S :  and H ~ F ,  then InnKl= y.ga._>_(1- ~)ln I. To 

see that (a) holds, we have that 

(1-~olgl  =< [KI 

= f~_ kd~+f ka. 

___< O-~)(IEl-lel)~ '~l 

which yields (a) immediately. This concludes the proof of the Sublemma. 

Now choose e' > 0 such that 

(2) 1 - ~ < ( 1 - # )  1- I 1 -  . 

By applying the Sublemma, we may choose by induction sets ff,~ S:and compact 
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subsets g~' of  f~ satisfying the following conditions for  all 1 _ < i N  2" 

n = 0 , 1 , 2 , - - .  : 

(i ') / ~ ' n  Ki ~, = ff~"n ff~ = 2~ for any i '  # i. 

(ii ') ~" K i ;::::D p.+l pn+l ~ x 2 i -  1 I..J .tx2 i 

~ n + l  ~ ~ n + l  
and f f[ = .  2i-1 ~ " 2 i  �9 

(iii') - "  p . + i  , , p n + l  F i  ~ *~-2i- 1 ",-* *x-2i 

(iv') ] H ~ R 2 1  =< e H for  a n y H ~ 5  ~ w i t h H c f f ? .  
j = 0  

1 1 -  <IP:I < (v') 2 ~ j =  ~ 2Wvr = 2" 

To  see this, let z, and a, be defined for n = 0, 1, 2 , . . .  by 

't" n 8 '  
(3) 1 - % -  2 "+1 - 3,, 

and let g o  = f~ = fro. 

Suppose the sets Ki" and P~' 

367 

and 

(4) IElI=IE21=IFTI/2 

Now by the Sublemma, we may choose for each j = 1, 2, subsets F i and Kj  o f  

Ej so that  F j  E 5", K i is compact ,  

(5a) IEj'~Fjl<=~.+~lEjland 

(5b) [ H --, K j l  < 3,+ 1 HI for  any H e S e with H c Fj .  

l ~ n + l  ~ n + l  ~ n + l  " n  ~ n + l  
We then set -2 i -1  = F 1 ,  -2i  = F 2 ,  and /~-2i-1 = Ki nK1, ,~2~ - g i n ~ K 2  �9 

Again letting j = 1 or 2, we have that  

have been chosen satisfying (i'), (iv'), and (v')  

for  all 1 < i < 2". Now fix i, 1 < i < 2"; since/~] 6e is purely non-atomic,  there 

exist disjoint subsets E 1 and E2 of  ffi", each belonging to 50, with 
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I~l > ( ] -  ~,+~)1 EJl by (Sa) 

= (I-~+,) 1~71 by(4)  
2 

> ~ 2,+1 1 - ~ by (v') and the definition 
k = O  

of %+,. Of course, also 

IFjl < lEvi = IP~I < 1 = ~ by (4) and (v'). 

Finally, suppose H e 6 ~ is a subset of Fj. Then H ~ (Kjrh g'7) c (H ,-, K j) 

U (H -" �9 ~ Ki), hence 

IR~(K~n/~;)I  _- I H ~ ~ C ~ I + I H ~  R:I 

k = O  k = O  

the last inequality following from (5b) and (iv'), the last equality from (3). 

This completes the definition of the ff~"s and g~'s by induction, as well as the 

verification that these objects satisfy (i')-(v'). We now define 

(~ 2" (~ 2 n 
K = Kt  ~ = (..J/~," and F = F~  = U F; ,  ~~" 

n = 0  i = 1  n = 0  i = 1  

then we put K~' = K n / ~ ' a n d  F7 =Fnffi? Now fix i and n. It is immediate 

that (i) and (ii) hold. To see that (iii) holds, for m > 0 put g~+m= U j/~-]+m 

and ~,.+m pn+" ,~ = [,.Jj ~j , where both unions are extended over all j with 
rl+m c F7 (i.e., ( i - 1 )2"  + 1 s j < i" 2"). It follows from (iii') that R7 § 

F:+m for any m > 0. Hence taking (ii') into account, C - -  I = 

K i  n - - i  C F i  n + m F i n .  
r a = 0  " = 0  

Since ff~= F~', it follows immediately from (v') that I FT[ < 1/2". 

It remains to show that IgTI--  (X - ~)/2~. We first estimate Ie: l  from below. 
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We have that I F7 1 = hmm~XiF5 1' the sum extended over a l l j  with ff~+m C F~,~"" 

since there are 2 m such j 's ,  we have by (v') that 

(6) 

~i  m ( s ) [FTI > lim2m 1 1 -  
--- . - .~  ~ j=o ~ n - ,  

2~ 1 . j=O , 

Now suppose that F ~ 6 e with F c FT. Then 

] F ~  K~[ = l imZl(F;+mnF), . ,  P-~+ml 
m -..* oo 

f f n + m  the sum extended over a l l j  so t h a t ,  j c / ~ .  But by (iv'), each term of this sum 

is dominated by 

.+r~ 82_~+ 1 1 en+-I. 
~=0 F (~I~j I' 

k= 

~ n + m  since F equals the disjoint union of F . .  j over these j 's ,  the entire sum is 

dominated by 

n+m t~ 

k=O 

which is in turn dominated by ~'[F I. Thus for any such F, I F - K ~ [  <=e']F 1. 
J 

In particular, [F~ ,,~K~[ __< e'] f,]. Hence 

[K';I >-_ O-~')[rT[ 

l f i  
__-> ( 1 - e ' )  2~ y ~  ~ by(6)  

1 - 5  
> 2" by (2). Q.E.D. 

PROPOSmON 2. Let f~ be a compact Hausdorff space, let C(f~)* be identified 

with the space of all regular scalar-valued Borel measures on f~, and let Z be a 

subspace of C(~)* isometric to D. Then there exists a regular Borel probability 

measure # on f~ and a tr-algebra ,9 v of the Borel subsets of ~, such that (fL ~,#[.Se) 

is a purely non-atomic measure space and Z = D(~[ ~). 
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PROOF. Let  T :  L ~ ~ C(fl)* be an into-isometry. It is easily seen that there 

exists a positive Borel measure v such that the range of T is contained in L~(v). 

Now it is known (see [10]) that if f and g are members of Ll(v) such that 

[I af + bg [[LI(~) = [a [ + [b[ for all scalars a and b, then there are disjoint aorel 

sets F and G with F U G = ~ and v-integrable Borel-measurable functions l a n d  

g representingf and g, with fsuppor ted  on F and ~ supported on G. Proposition 

2 is now proved simply by iterating this observation. Let 

E t =  ~ " 2" for l _< i _< 2", n = 0,1,2, . . . ,  

and let S O = ft. We may choose by induction Borel subsets S~and Borel-measurable 

v-integrable functions f f  satisfying for all 1 < i < 2" and n = 0, 1, 2,.-. ; 

(i) S~' ~ S~, = ~5 for all i' # i. 

~ , n + l  ~ , n + l  
(ii) S~' = ~'2i-1 U~'2i �9 

r . + l  + f ;+  1. (iii) f f  = j 2~- 1 

(iv) f f  is supported on S~'. 

(v) f f  is a representative of T;(~. in D(v). 

For each n, let d ,  equal the family of all finite unions of the sets S~', 

1 < i < 2", let d = w ~ d , ,  let 5 p be the a-algebra of Borel sets generated by d - -  - -  n = l  

and let # be the measure on f~ such that dp =f~ As measures on f~, we have 

that for all i and n, ffdv = Xs'~dp. Indeed, f o =  y ~  f7  = El"_, f~Xs'~; hence for 

any Borel set S, 

fsf~ndv = fs~s ffdv=fs~s fl~ p(S~ ~S)" 

It follows that if B denotes the linear span of the ZE,"'s, then TB c L*(pl 5p); so 

also TL 1 c LI(#[ aT) since B is dense in L*. On the other hand, ag is itself an 

algebra of sets; by elementary facts from measure theory, it follows that for all 

e > 0 and S~S~, there exists an E ~ d  with p(E,,~ S)+ p(S ,-~ E ) <  e. This 

implies that TL 1 ~ L~(p] 5e), from which TL 1 = L'(p] Y);  the fact that p [5e is 

purely non-atomic now follows immediately. Q.E.D. 
For our next result, we recall that a sequence (f,) of vectors is said to be 
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isometrically equivalent to the usual 11 basis if ][ZaJs II = ~ l a j i  for all finite 

sequences of scalars a l , a 2 ,  "" .  

PaOPOSITION 3. Let X be a separable Banach space and (f,) a sequence in 

X* isometrically equivalent to the usual basis of 11, such that {f,: n = 1,2, ...} 

is dense-in-itself in the weak* topology. Then there exists a subspace U of X*, 

isometric and w*-isomorphic to C(A)*, such that for all x e X, 

(7) sup lu(x)l _<__ suplf , (x)l .  
u e S u  n 

PROOF. Let D = {fl , f2, '"} and let K equal the closure of D in the weak* 

topology. We shall construct a subset f~ of K, homeomorphic to the Cantor set 

A, so that the map T: X--* C(f~) defined by (rx)(co) = co(x) for all x e X, co ~ f~, 

is a surjective quotient map; i.e., if we let Y be the kernel of T, rc the natural map 

from X to X/Y,  and i~: X/Y-~  C(f~) the map so that T = iPrc, then ~is a surjective 

isometry. It then follows easily that U = T*(C(O))* has the desired properties. 

Indeed, if x ~ X, then 

sup  lu(x)l=llrx[I = sup  Ico(x)l <= sup  lf (x)l 
u ~ S U  o J ~  n 

Let K be endowed with a suitable metric, inducing the weak* topology on K; 

we now restrict ourselves, topologically, to the space K,  let K ~  K. 

Let n > 0, and supppose K~',..-, K~. have been chosen, with the K~"s disjoint, and 

each K~' a compact non-empty neighborhood in K. Let F ,+I  be a finite 1/2 ~+1 

dense subset of the surface of the unit ball of l~.§ ,, so that F,+ 1 contains the usual 

basis of 12~+,. (Thus, given x e 1:~.+1 with II x II = 1, there is an f ~  F ,+I  with 

[ I f -  x 1[ < 1/2 "+ 1.) Since D is dense-in-itself, for each i we may choose d2~-1 and 

d2~ in D, which are distinct elements of K~'. (Of course the di's depend on n also). 
1 Since the linear span of the d~'s is isometric to 12 . . . .  for e a c h f e F , + l ,  we may 

choose x s e X with II I1 --- ~ + a/2,+1, with di(xj) = f(j)  for all j ,  1 =< j < 2 "+ 1. 

Now for each i a n d j  = 2i - 1 or 2i, let Kf+~be  a compact neighborhood of dj, 

of diameter at most 1/2 n+ 1, contained in 

(The set described in (8) is a non-empty open set in K.) We also note that since F,+ 

contains the usual basis of ~ the r""+ 1 re,+1 12,+ ~, sets and are disjoint. ~ 2 i - -  1 xx21 
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This completes the definition of the Ki"'s and F, 's.  We now set 

2"  

n = U 
n = 0  t ~ - I  

Then f~ is homeomorphic to A. Given n, scalars Cl, ..., C2n , and 

2 n 

n 

j = l  

with II ~b I[ = 1, we may choose f~F ,  with If(J) - c J l  < 1/2" for al l j .  Fixing j,  it 

follows by (8) that if k ~ K T ~  f~, then i k(x ) - f (J ) l  < 1/2". Thus defining Tas at 

the beginning of this proof, we have that II T x : -   lnll z 1/2"-1. Standard argu - 

ments now complete the proof that T is a quotient map. Q.E.D, 

REMARKS. 

1. A tiny variation in the above proof yields that if thef , ' s  are assumed to be 

equivalent to the usual basis of 11, and dense in themselves in the weak* topology 

then there is a subset ~ of x*, homeomorphic in the co* topology to A, so that the 

natural map of X into C(t)) is surjective. The variation: there is a constant 2 

(depending on the constant of basis-equivalence) so that the x:'s may be chosen 

with Ilx:ll < 2. 

2. Let X be separable, and suppose X* contains a subspace Z isometric to 

P(F) for some uncountable set F, with {er: 7 e F} isometrically equivalent to the 

usual basis of ll(F). Then as pointed out by C. Stegall in [12], since any un- 

countable subset of a separable metric space contains a countable set dense in 

itself, there exist 7~, 72, "" in F, so that settingf, = er. for all n, the sequence (f,) 

satisfies the hypotheses of Proposition 3. In particular, C(A) is then isometric to a 

quotient space of  X. Similarly, by the first remarks, if X* contains a subspace 

isomorphic to ll(F) for some uncountable set F, then C(A) is isomorphic to a 

quotient space of X. This last result was first proved by A. Pelczynski [8] under 

certain restrictive hypotheses which were later removed by I. Hagler [2]. A different 

argument for this was given by Stegall in [12], and as we mentioned earlier, our 

argument for Proposition 3 itself is a variation of the arguments of [12]. The 

main difference in our approach, is that by using e-dense subsets of the unit ball of 

I , ,  we are able to exhibit C(A) directly as a continuous linear image of X. 
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3. We wish finally to note that, in this paper, we are only concerned with 

applying Proposition 3 to the case where X = C. In this case, if the f , ' s  satisfy 

the hypotheses of Proposition 3, their closed linear span is the range of a con- 

tractive projective defined on C*. One may reach the conclusion of Proposition 3 

by then applying directly the arguments of [3]. 

Our final lemma requires some preliminary notations and definitions. Given K 

a compact metric space, we identify C(K)* with the space of all scalar-valued 

Borel measures on K. Given # and v ~ C(K)*, we write # ~ v if # is absolutely 

continuous with respect to v, and p _l_ v if # is singular with respect to v. I f  

# ~ C(K)* and f is a #-integrable Borel measurable function, f . #  denotes the 

measure defined by ( f ' p ) ( E ) =  f e f d #  for all Borel sets E. d#/dv denotes the 

Radon-Nikodym derivative of # with respect to v; thus # ~ v if and only if 

# = d#/dv �9 v. Given #1,#2, "'" in C(K)*, V {#~: n = 1,2, ... } denotes the measure 

defined by 

# =  
. = 1  2" 1 + I1~"11' 

(where J #, J denotes the total variation of the measure #, for all n). Of course the 

definition of # depends on the particular enumeration of the #,'s. However if 

v ~ C(K)*, the measure dv/d# �9 # is independent of the particular enumeration; 

i.e., if tr is a permutation of the positive integers and 

# ' =  
,=1 2" 1 + II/tp(,) II 

then dv/d# �9 # = dv/d# '  �9 #'. This follows simply becasue #' ,~ # and # @ #'. 

Since we shall work only with measures of the form dv/d# �9 I.t for # as above, we 

shall treat V {/*,: n = 1,2,...} as if it were defined independently of the particular 

enumeration. (Of course/~ ,~ V {/~,: n =1,2 ,  ...} for all j.) 

LEMMA 4. Let K be a compact metric space and let L be a convex bounded 

symmetr ic  non-norm-separable subset of C(K)*. Then there is a 6 > O, such 

that for  all e > O, there exists an uncountable f a m i l y  {l~}~ r contained in L, 

and a f ami l y  of  pairwise-singular Borel measures {P~}~r such that for  all ct, 

JJ #~ - l= I[ = < e  and II ~= II = > a. 

Moreover in the case where L equals the unit ball of  a non-separable subspace 

of C(K)*, 6 may be chosen equal to 1. 
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PRooF. Let F denote the set of all countable ordinals in the usual ordering. 

Suppose first that L is the unit ball of a non-separable subspace Y of C(K)*, and 

let e'/(1 - e') < e. Then given any # ~ C(K)*, there is an l E L with Ill[I = 1 and 

II d l /dp"  # II < e'' for otherwise Y would be isometric to a subspace of the separ- 

able space D(I y I)" Now let lo be some element of L of norm one, and let vo = O. 

Having chosen I~ for all ~ < fl, let vp = V {I~: a < fl} and choose l p~L  with 

I[ Ipll = 1 and [I dIB/dvp'vPtl < #" This defines the l,'s and v='s by induction; for 

each a, put p~, = l= - dl~,/dv= �9 v,; thus/~, ,~ l=. Now if a < fl, since then l= ,~ vp, 

y,  ~ vp; but/~p _1_ v B. Hence/,= _k Up. Hence the/z='s are pairwise singular; of course 

I]~=-1=]] < c .  It then follows easily that setting f i , =   =/It  =lr and i~= l=/]tl,=] j, 

we have that the fi='s and l='s satisfy the conclusion of the lemma. Indeed, 

11 I[ => 1 - e ' ,  hence II I=71[ u= II-  u=/l[ u= II [1 ---< - for all ~t. 

We now pass to the general case. Observe that if/.t e C(K)*, then there is a 

2 e L  with 2 -  d2 /d l~ '#  r 0, for otherwise L< L'(lUl). Let 2oeL,  20 r 0, and 

v o = 0. By an argument similar to one already given, it follows that we may define 

{2~}~ r and {v~}~ r by induction so that for all fl > 0, v~ = V {2~: a < fl} and 

II 2B - d2p/dvp .vp II > 0, with 2~ c L for all c~. We have that 

(9) if ~ < fl, then 2~ ,~ vp and v~ .~ v B. 

It follows that there exists an uncountable set Fa ~ F and a 6 > 0 such that 

d2p. 
(10) 112p - ~ vpl I > 26 for all f l ~ F  1. 

Now let e > 0. We shall choose the l='s by induction, to be one-half the difference 

of suitable pairs of ).p's. The observation which allows our induction to proceed, 

is that 

for all v ~ C(K)* and a e F, there exist 

(11) fll and f12 in F1, with a < fll < f12 such that 

d2p, " v - d)'e~ �9 
dv d--7- v]t<2~" 

Indeed, this is simply because {d2e/dv: fl > ~, fl ~ F1} is an uncountable subset of 

the separable metric space LI(I v 1), and hence has a cluster point. We now con- 

struct by induction, elements I r of L and measures Pr ~ C(K)* satisfying the follow- 

ing conditions for all ~ e F: 
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(12) ][ ur ll > 6; [] ur - l~ U < e; f~  all fl # Y' l~ • Pa; there exists a 

r ( J  ~ F with /~r '~ Ir '~ v~(~). 

Let flo be the first element of F1, and put l0 = 2ao = #o. We then let z(0) be the 

successor to flo. Now fix r /> 0 a countable ordinal, and suppose that l~ and/t~ 

have been constructed satisfying (12) for all y < r/and fl # 7, fl < r/. Choose ~ a 

countable ordinal so that z(y) < cr for all y < ~/. Choose fit and f12 satisfying (11) 

for v = v~. Now put 1, = (2a. - 2a2)/2 and #, = I, - dl..Idv~, v~; then let z(q) be 

the successor to/~2. By (9) and the definition of 1, and/~,./~, .~ I, < v~,). 

I[ .ll > Il l . -  dr. = . dva2 "va2[I s incev .~va~by(9)  

d2p2 
= �89 dv,2" va~][ by the definition of 1, 

> 3 by (10). 

By definition p, _1_ v. and by (9). (12). and the definition of~. if~ < r/. then/~r .~ v.. 

from which #r l /~, .  This completes the induction and hence the proof of Lemma 4. 

Q.E.D. 
We are finally prepared for the 

P~.OOF ov THEOm~M 1. Let L = T*Sx. .  Now choose 6 > 0 according to 

Lemma 4; and let e > 0; then choose an uncountable family {/~}~r contained 

in L. and a family of pairwise singular Borel-measures {/~.}.~r. so that for all 

(13) II - t, II and [I/~, II > 
Since {v /llv ll:  r} is an uncountable set, there is a countable subset 

cq,~2, ... o f F ,  so that putting f~ = II for all n, (f~)is dense-in-itself in the 

weak* topology. Moreover (f,,) is isometric to the usual basis of P;  hence by 

Proposition 3, there exists a subspace U of X* isometric to C(A)*, satisfying (7) 

for all x ~ C(K). Now choose Z a subspace of U isometric to L ~ ; by Proposition 2, 

there is a Borel probability measure # on K and a a-algebra 6 P of the BoreI 

subsets of K such that Z=L~(I ~ ] 6P) and of course/11 ~ is purely non-atomic. Now 

choose F~' ~ Sf and K~' compact subsets of K satisfying (i)-(iv) of Lemma 1 for 

all 1 <_ i<  2 ~ and n = 0, 1,2, . . . .  L e t / ~ =  K ~ let A denote the closed linear span 

of {ZK?: 1 < i < 2% n = 0,1,2, . . . )  in C(/~), and choose a norm-one extension 

operator E : C ( t ~ ) ~ C ( K ) ;  i.e., E is a norm-one linear operator such that 

(Ef)] g = f  for a l l fE  C(/~). (The existence of such an operator follows from the 
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Borsuk-Dugundji extension theorem (see [1] and [7]); the proof is an easy and 

well-known exercise in the case where K = [0, 1]). Finally, let Y = E(A). Since A 

is isometric to C(A) and E is an isometry, Y is isometric to C(A). By our remarks 

following the statement of Lemma 1, it follows from (1) that 

[] ~b [] ~ (1 - 2e) -~ sup [f(~b) [ for all ~b ~ Y. 
f c S  Z 

Since Sz c Sv, we have by the definition of  the fn'S and (7) that for all ~b ~ Y, 

(14) II~bl[ < ( 1 - 2 e )  -1 sup l 
Fixing ~be Y with I1 11 = 1 and c ~ F ,  we have by (13)that  ] fffd ,  I ----1 febrile] 
+ e. Combining this with (14) and the second inequality of (13), 

6<=(1-2e)-l sup l f qadl~l <(1-2e)-l(sup l f d/)dl~ l , ~ r  

So long as 5(1 - 2e)- 1 < 6, we thus obtain that for all ~b ~ Y, 

[]~bl[ < ( 6 - 2 e 6 - e )  -1 sup I o  fdpdl~ [ 
~ E F  

(15) 

=< (a - -  )-lrl [I 

Hence T I Y is an isomorphism. Also in the case where T is a quotient map, 6 may 

be chosen equal to 1 by Lemma 4, and hence by (15), I] (T] Y)-* 1] < (1 - 3~)-* 

The proof  of Theorem 1 is now complete. 

REMARKS. The following example shows the necessity of proving something 

like Lemma 4, in order to obtain the proof  of our main result, even in the case of 

quotient maps. Let f l ,  f2,"" be a countable dense subset of the unit ball of  C; let 

h~, h2, '"  in C* be supported on [3/4,1] such that (h,) is isometrically equivalent 

to the usual basis of l 2, and let W be the subspace of C* consisting of all elements 

v of the form 

v . + 
ff, d#l~ 

i = 1  1 

where # is an arbitrary element of C* supported on [0,�89 It is then easily seen 

that W is a weak* closed strictly convex non-norm-separable subspace of C*. 

It follows that W contains no subspace isometric to l ~. Also by letting Z = C/W', 
we have that Z contains no subspace isometric to C since Z is a smooth Banach 

space. (It is also easily seen that Z is isomorphic to C, while the smoothness of  Z 
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implies that given one of its subspaces X, there exists an e > 0 such that X is not 

(1 + e)-isomorphic to C. Thus the conclusion of Corollary 2 cannot be sharpened 

to the assertion resulting from moving the quantifier "for  all e > 0"  to the end of 

its statement.) 

Our final result applies the proof of Theorem 1 and some results of  [4]. (For the 

definition of norming and e-norming sets, see the beginning of Section 2.) 

THEOREM 2. Let K be a compact Hausdorff space and W a bounded subset of 

c(K)*. 

(a) l f  K is metrizable and W is non-separable, there is a subspace Y of C(K), 

isometric to C(A), so that W norms Y. 

(b) I f  W is the unit ball of a subspace Z of C(K)*, then for all ~ > O, there is a 

subspace Y of C(K), isometric to C(A), such that W (1 + e)-norms Y, under the 

following circumstances: (i) K is metrizable and Z is non-separable. (ii) K is 

arbitrary and Z is isomorphic to L 1. 

PROOF. TO see (a), let L = {(wl - w2)/2: wl, w2 E W)}. Our proof of Lemma 4 

and Theorem 1 yields that there is a subspace Y of C(K), isometric to C(A), so 

that L norms Y. But then trivially W norms Y also. 

Part (i) of (b) follows immediately from our proof of Theorem 1. We pass now 

to (ii) of (b). We may actually assume that K is metrizable, for there exists a 

separable subalgebra B of C(K), such that ][wl[ =supi~sa[w(f)[ for all we W. 

Of  course then B is algebraically isometric to C(K1) for some compact metrizable 

space K1. 

Assuming now that K is metrizable, it follows, by the proofs of Theorems III.1 

and IV.3 of [4], that there is a subspace M of C(K)* such that M is isomorphic to 

C(A)* and SM is contained in the weak* closure of W. Of course S M is non- 

separable, so part (ii) of (b) follows from part (i) of (b). (We note in passing, that 

when Z is isometric to L 1, part (ii) of (b) follows immediately from our proof of 

Theorem 1.) Q.E.D. 

As an immediate consequence of Theorem 2(b) (ii), we have the 

COROLLARY. Let K be a compact Hausdorff space, let X be isometric to a 

quotient space of C(K), and assume that X* contains an isomorph of L 1. Then 

for all e > O, X contains a subspace (1 + e)-isometric to C. 
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