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ABSTRACT 

It is shown that the concept of zero set for the Haar measure can be generalized 
to abelim Polish groups which are not necessarily locally compact. It turns out 
that these groups, in many respects,behave like locally compact groups. Suitably 
modified, many theorems from harmonic analysis carry over to this case. A 
few applications are given and some open problems are mentioned. 

This paper deals with a curious analogy between Polish and locally compact 

groups. 

It contains at most the beginning of a theory. We hope that the questions 

presented here will stimulate further research on the problem. 

We always tacitly assume that the topologies under consideration are separated. 

Universally measurable means measurable with respect to the completion of the 

Borel field with respect to the family of all measures. Since our nonabelian 

results are still rather unsatisfactory, we restrict ourselves to abelian groups. 

First we give some motivating remarks of an entirely heuristic nature. 

The finite dimensional Banach spaces are much easier to deal with because of  

the existence of a Haar measure which provides us with more tools. But although 

infinite dimensional Banach spaces do exist, it is well known that an invariant 

measure with reasonable properties does not exist unless the space is locally 

compact and therefore finite dimensional. So if one agrees that the o--ideal of zero 

sets is almost as good as the Haar measure itself, the zero sets may suffice. 

And why should there not be zero sets for the Haar measure even if this itself 

has disappeared? We shall characterize the sets of Haar measure zero without 

using the Haar measure in order that this concept can be generalised immediate- 
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ly to nonlocally compact groups. Then, of  course, the next thing to do is to find 

as many analogies as possible with the locally compact case. 

Let (G, + )  be an abelian Polish group and A ~ G a universally measurable set. 

By definition, A is a Haar  zero set (or simply zero set if no confusion is likely 

to arise) if there exists a probability measure u on G (not unique) such that 

~r A,  u = 0. This means that every translate of  A has u measure zero (every 

measure is a countable additive Borel measure extended to the universally 

measurable sets). Let G be locally compact and let h denote the Haar  measure. 

Note that h is a-finite and therefore we may use the Fubini theorem. From the 

equality 

f f Wa(x + y)u(dx)h(dy) = f f Wa(Y + x)h(dy)u(dx)' 

it follows easily that our definition coincides with the usual one, in the locally 

compact case. 

THEOREM 1. In an abelian Polish group every countable union of Haar 

zero sets is a Haar zero set. 

PROOF. It  is well known that the space ~ of probability measures on G is a 

Polish space equipped with the weak topology (induced from the bounded 

continuous functions). Let d be a complete metric on ~ generating this topology. 

For  every u ~ # ,  the mapping L u: ~ ~ ~ defined by L,(v) = u �9 v is continuous, 

Now let A, be a sequence of universally measurable sets which are zero sets 

and let u. be corresponding probabilities. I f  u~' is a probability with density with 

respect to a translation of u,, we also have f a . ,  u', = 0. Then it is easily seen 

that such a u', can be found in every neighbourhood of e where e is the neutral 

element of  the semigroup ~ (unit mass in OG). 

By induction we now choose a sequence of such u~' satisfying d(x, x ,  u') 

__< 1/2" where x is any convolution of different u'i i = 1,... ,  n - 1. 

Then u = u~ �9 u~ ... is well defined. Moreover for any n, we have u = x, �9 u, �9 y , ;  

hence f a .  * u = 0. 

Therefore ~ r a , u  = 0  where A = U ,A, .  Hence A is a zero set. The next 

result shows a more striking analogy between Polish and locally compact groups. 

THEOREM 2. Let A and B be arbitrary universally measurable sets in the 

abelian Polish group G. We put 
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F(A,B) = {9 EG [ (9 + A) n B is not a zero set}. 

Then F(A, B) is an open subset of G (possibly empty). 

PROOF. I f  9~F(A,B)  and C = ( 9  + A ) r i B ,  then we have 9 + F ( C , C )  

F(A, B). I t  is therefore enough to consider the case A = B and to show that if 

A is universally measurable and nonzero, then F(A,A) is a neighbourhood of 

z e r o .  

Suppose this is not the case. Then we may choose a sequence 9. in G not belong- 

ing to F(A,A) and such that d(x ,x+9.)  < 1/2" where x is any sum of different 

9i i = 1, n -  1 (d is a complete metric on G compatible with the topology). 

We put 

A' = A / (  U,(g ,  + A) t'3 A). 

Because we have only removed countable many zero sets, A' is not a Haar  zero set. 

Let K = {0, 1} u be the Cantor group. With the usual product topology and 

group structure, K is a compact metrizable abelian group. We define the mapping 

O:K ~ G  by 

O(x) = Z x(n)g~ 

Because A'  is not a zero set, there exists 9 6 G such that 0-  1(9 + A') has non- 

zero Haar  measure in K. 

Hence the set 0-1(9 + A ) - O - l ( g  + A) = U is a neighbourhood in K (the 

subtraction is performed with respect to the group structure of  K). Let e v 

= (0, 0 . . . . .  1,0, 0, . . .)  (1 is in the vth place). Because U is a neighbourhood, ev ~ U 

for a suitable v. But this implies 9 v E ( A ' - A ' ) .  Hence (9~+ A') ( 3 A '  ~r 

Since this contradicts the definition of A', the proof  of Theorem 2 is finished. 

It  is easy to prove that every analytic hyperplane in a separable Fr6chet space 

is closed. It  does not seem to be known whether or not every universally measur- 

able hyperplane is closed. Of  course, it follows from Theorem 2 that a univer- 

sally measurable hyperplane is a Haar  zero set. Therefore the problem is the 

measure-theoretic analogue to the (also open) problem of whether or not every 

first category hyperplane is closed. The problems seems to be of the same degree 

of difficulty. The proof  of  the following theorem is an adaptation of a similar 

reasoning shown to the author for the category case by W. Roelcke (oral com- 

munication). Of  course it is not at all trivial that there exist nonuniversally 

measurable hyperplanes. 
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THEOREM 3. Let E be a separable Frdchet space and let ai, i~I ,  be an al- 

gebraic basis of E and b i the coefficient functionals. Then the hyperpIanes 

b~" t(O) are universally measurable for at most finitely many i ~ I. 

PROOF. Suppose in is a sequence of different elements of I such that each 

b~ t(0) is universally measurable. We put Ln = Av_~n b~ 1 (0). Each Ln is a universal- 

ly measurable (proper) linear subspace and therefore a Haar zero set. Clearly 

the union of the Ln's is the whole of E. Since E is not a zero set, we have proved 

the theorem. 

Let G be an abelian Polish group. Consider the space L~176 of bounded 

universally measurable functions where two functions are identified if they 

coincide on the complement of an Haar zero set. With the norm 

Ilill  = ess .sup ( l i ( x ) l ) ,  
L~ is a C*-algebra. We now have 

THEOREM 4. L~(G) is a W*-algebra (norm isomorphic with a yon Neumann 

algebra) if and only if G is locally compact. 

PROOF. Only the "only i f "  part need be proved. Suppose L ~176 is a W*- 

algebra. Let u be a positive normal functional on L ~176 (G) (we can suppose u(1) 

= 1). From u we get a Borel probability measure v such that v(A) = 0 for every 

Haar  zero set A. Because G is Polish, there is a compact set with v(K) ~ O. Then 

(K - K) ~ F(K, K) is a neighbourhood and Theorem 4 is proved. 

Consider the Banach algebra A of bounded complex measures on G (with 

convolution as multiplication and total variation as norm). We call an ideal 

I c A an H-ideal if I is norm closed and if for every bounded universal- 

ly measurable function f and every u ~ I, also f "  u E I. If  G is locally compact, 

it is very easy to prove that LI(G) is an H-ideal contained in every nontrivial 

H-ideal. Therefore in the general case, we define LI(G) to be the intersection of 

all nontrivial H-ideals. 

THEOREM 5. Let G be an abelian Polish group. LI(G) ~ {0} if and only if 

the group G is locally compact. 

PROOF. Suppose LI(G) r {0}. Then we may choose a probability measure 

u eLl(G ). Also we may choose a compact set K with u(K) > 0. Suppose K is a 

zero set. Then L K = {v ~A I XK* I v [ = 0} is a nontrivial H-ideal. Therefore 

LI(G) c_ LK and u e LI(G) but u (~ Lr. This contradiction shows that K is non- 
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zero. But if K is nonzero, then (K - K)  ~_ F(K, K) is a neighbourhood according 

to Theorem 2. This concludes the proof. 

One may conclude that there is no L 1 theory in the nonlocally compact case. 

But perhaps it is better to consider the filtering family of H-ideals I a where A is a 

universally measurable zero set as a substitute for L1. 

As an application of  the preceding results, it can easily be shown that universally 

measurable homomorphisms between Polish groups are continuous. This is al- 

ready known (see [1]). 

The next result seems to banish any hope for a reasonable analogue of the 

Fubini theorem. However a very weak version of the Fubini theorem is valid as 

we shall point out in the sequel. 

THEOREM 6. Let H be a separable infinite dimensional Hilbert  space and 

let T be the unit  circle in the complex plane. There exists in the product 9roup 

H x T a Borel measurable set A such that 

i) For every h E H, the section A(h) = {t E T l ( h , t ) ~ A }  has Haar measure 

one in T. 

ii) For every t ~ T, the section A(t) is a Haar zero set in H. 

iii) The complement of A is a Haar zero set in the product group H x T 

(which of course is Polish). 

PROOF. Let H be the space of measurable functions on T which are square 

integrable with respect to the Haar measure (functions equal almost everywhere 

are identified). H is equipped with the usual Hilbert space structure. Let A be the 

the set of  all (f,  t) such that the Fourier series associated with f is convergent at 

the point t. From the Carleson theorem (the Fourier series for any L2 function 

is almost everywhere convergent), it follows that i) is fulfilled. The section A(t) is a 

Borel measurable linear subspace; if it were not a Haar zero set, it would be all 

of  H (use Theorem 2). But is it well known that for each particular t ~ T there 

exists a f ~  H whose Fourier series is not convergent at the point t. This shows 

that ii) is satisfied. Let u be the probability measure on H • T defined as the pro- 

duct of the one point measure in H with mass 1 at zero and the Haar measure in 

T. From the Carleson theorem and the very definition of zero sets, it follows that 

iii) is fulfilled. 

I f  H were an arbitrary abelian Polish group and T a locally compact abelian 

Polish group, it could easily be shown (with a slight modification of the above 
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reasoning) that, for a universally measurable set A ___ H x T, the following 

conditions are equivalent 

i) The section A(h) is a zero set for the Haar measure in T for almost every 

h~H. 

ii) The set A is a Haar zero set in the product group. 

Hence we have a Fubini theorem in one direction if one of the groups is locally 

compact. 

Some problems regarding the preceding results remain open: 

Problem 1. If  the sets A and B in Theorem 2 are not Haar zero sets, then is 

F(A, B) # Z ?  This seems to be obvious only if A = B. 

Problem 2. Is any family of mutually disjoint universally measurable nonzero 

sets at most countable? 

Problem 3. (Very important for applications.) Does any bijective in (both 

directions) Lipschitz mapping between separable Banach spaces preserve the zero 

sets? 

Problem 4. If  F is any ultrafilter on the Polish group G (abelian), does there 

exist a filter set A ~ F such that (A - A) is not dense in G? 

The last problem may be unrelated to the preceding results but we have good 

reason to believe that it is fundamental to the theory of abelian topological 

groups. 
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