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ABSTRACT 

We show t h a t  Dah lberg ' s  vanishing t race  condi t ion  measur ing  the  

d i sagreement  be tween the  coefficients of two el l ipt ic  opera tors  preserves  

ha rmonic  measures  whose logar i thm belongs to  VMO. 

1. I n t r o d u c t i o n  

In this article we study the weight-regularity properties of the harmonic measure 

of elliptic operators in non-divergence form on the boundary of a Lipschitz domain 

D in R n and whose coefficients are in a certain sense a small perturbation of the 

Laplacian or other elliptic operator whose harmonic measure is very regular. 

According to a result of Dahlberg [D], if the difference between the coefficients 

of two operators L0 and L1 is sufficiently small in an appropriate norm (defined 

by a Carleson condition) and if the harmonic measure for L0 lies in the Bp(da) 
class, where 1 < p < c~ and da denotes surface measure on the boundary of D, 

then the same holds for the harmonic measure for L1 (see the body of the paper 

for the relevant definitions). In [FKP], the authors proved that  if the difference 

between the coefficients satisfies the same Carleson condition but without the 

smallness requirement and the harmonic measure for L0 lies in some Bp(da) 
class, then the harmonic measure for L1 lies in some Bq(da) class for some q 

possibly smaller than p. In IF2], the author found other norms measuring the 

disagreement between the coefficients which guarantee the preservation of the 

Bp(da) class but where the corresponding norms are not required to be small. 
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In this paper we will prove that if L0 is an operator such that the logarithm of 

the density of its harmonic measure with respect to surface measure is a function 

of Vanishing Mean Oscillation (VMO) on the boundary of D and the disagree- 

ment between the coefficients satisfies Dahlberg's Carleson condition with van- 

ishing trace, then the same holds for the harmonic measure for L1. In particular, 

if Lo is the Laplace operator A, D is a smooth domain and L1 is a perturbation 

of the Laplace operator near the boundary of D satisfying the above condition, 

then the logarithm of the density of harmonic measure for L1 is a function of 

Vanishing Mean Oscillation. This and John-Niremberg's inequality [ST] imply 

in particular that  the harmonic measure for L1 lies in the Muckenhoupt classes 

Ap(da) and Bp(da) for all p, 1 < p < c~. We recall that for an operator L as 

above, the Dirichlet problem is solvable for any boundary data in Lp(da) if and 

only if its harmonic measure lies in Bp,(da), where l ip + 1 / f  = 1. 

The proof of this theorem follows closely the arguments in [D], but we consider 

a new type of differential inequality which was first used in [El to prove that  

the logarithm of non-negative adjoint solutions to non-divergence form elliptic 

equations with Vanishing Mean Oscillation coefficients belonging to VMO. Our 

argument is based on an equivalent condition characterizing those weights whose 

logarithm lies in VMO and which follows from a theorem (Theorem 3) proved by 

Sarason IS]. 

In section 2 we give the precise definitions and state the main theorem, and in 

section 3 we prove this theorem. 

2. D e f i n i t i o n s  a n d  m a i n  t h e o r e m  

We consider elliptic operators L of the form 

Lu = div(A(X)Vu) 

where the coefficient matrix A(X) = (aij(X)) is symmetric and for some A > 0 

(2.1) A[r f i  %(X)~i~j <A-1[~I 2 forallX,~ER n. 
i , j = l  

We say that  a function u in D is a solution to Lu = 0 on D provided u is in 

Wllo'c2 ( D ) and 

/ aijOjuOi~odx = 0 for all C C~(D).  ~o 

D 
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For each Q on OD, we choose a right circular cone 7(Q) with height and 

aperture fixed, with vertex at Q, and oriented with its axis in the interior normal 

direction. We define the non-tangential maximal function of a function u in D 

by 
N(u)(Q) = Sup lu(X)l for Q on OD. 

x~-r(Q) 

We say that the L p Dirichlet problem for L on D is solvable if there exists a 

constant C such that for each f E LP(da) there corresponds a function u in D 

such that Lu = 0 on D, 

and 

lim u(X) = f(Q) 
x~r(Q) 
X.-.*Q 

for almost every Q E OD, 

lIN(u)llL~(d~,) ~ Ci]fllL~(d~). 
A measure m on OD belongs to Bp(d~), l  < p < cx~, when m is mutually abso- 

lutely continuous with respect to surface measure a and there is a constant C 

satisfying for all Q on OD and r > 0 

1 

o(A~(O)) ~ d ~  <_ C ~(A~(Q)) 
A~(Q) z~(Q) 

where A~(Q) = cgD N B~(Q) and w = dm/da .  

A measure # on D is called a C a r l e s o n  m e a s u r e  if there is a constant C such 

that for all Q on OD and r > 0 

p(r~(Q)) < Ca(A~(Q)) ,  

where F~(Q) = D A Br(Q).  We say that the Carleson measure # has van i sh ing  

t r a c e  provided there is a function h(r) with lim~-.0 h(r) = 0 and verifying 

~(F~(Q)) < h(r)~(A~(Q)) 

for all Q on OD and r > 0. 

A function/~ on OD has vanishing mean oscillation, ~ C VMO, provided 

1 / } 
,.~o QeOD a(A~(Q)) 1/3- m,~(Q)(~)lda = O, 

A~(Q) 
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where mAr(Q)(/3) denotes the average of/3 over A~(Q). 

I t  is well known that  for continuous da ta  f E C(OD) there is a unique solution 

u continuous on b to the Dirichlet problem 

L u = 0  on D, 

u = f on OD. 

Moreover, there is for each X in D a probability measure w x on OD satisfying 

u(X) = f fdw x for all f e C(OD). 

OD 

When the coefficients of L are smooth the harmonic measure for L is always 

mutual ly absolutely continuous with respect to surface measure [JK] and the 

density of harmonic measure for L at X is given by the conormal derivative of 

the Green function g(X, Y)  for L in D [GW] 

L da (Q) = aij(Q)Oig(X,Q)Nj = "~uOg(x'Q)' 
i,j=l 

where N = (N1 , . . . ,  Nn) is the inner unit normal to OD. 

We will assume that  the domain D is "centered" at the origin 0 of R n and 

denote the harmonic measure for L at 0 as w; i.e., w = w ~ We recall that  

the L p Dirichlet problem is uniquely solvable for L in D if and only if w lies in 

Bp,(da) [Jg]. 

We will consider two operators L0 and L1 given by 

Lo = div(Ao(X)Vu) and L1 = div(Al(X)Vu),  

where the coefficient matrices Ai, i = 1, 2 satisfy (2.1) and denote the harmonic 

measures for these operators as wi x ,  i = 1, 2. We define 

s(X) = (eli(X)) = AI (X)  - Ao(X), 

a(X) = Sup le(Y)l, 
YEB(X,5(X)/2) 

where 5(X) denotes the distance from X to OD. 

Let us now recall a theorem proved by Dahlberg [D]. 
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THEOREM 1: Let Lo and L1 be two elliptic operators as above, 1 < p < oo, 

D be a Lipschitz domain and suppose that the harmonic measure for Lo in D 

belongs to Bp(da). Then, there exists a constant 0 depending on A,n,p, the 

Bp(da) constant of COo and the Lipschitz character of D, such that if for some 

positive number ro 
a (X)  2 
6(X) dX <_ Oa(A,(Q)) 

r.(Q) 

for all Q on OD and r <_ ro, the harmonic measure for L1 belongs to Bp(da), i.e., 

CO: E Bp(dcr). 

In this paper  we will prove the following refinement of this theorem. 

THEOREM 2: Let Lo and L1 be two elliptic operators as above, D be a Lipschitz 

domain in R ~ and suppose the measure 

d p -  a(X)2dX 
,5(x) 

is a Carleson measure with vanishing trace. Then, if the harmonic measure for 

Lo in D is mutually absolutely continuous with respect to surface measure on OD 

and the logarithm of dCOo/d~r lies in VMO(da) ,  the same holds for the harmonic 

measure of L1. 

We will say that  two objects A and B (numbers or functions) are equivalent and 

write A ~ B if there exists a positive constant C depending at most on ellipticity 

A, dimension n, the Lipschitz character of D and other constants coming from 

the hypothesis in our theorem such that  C-1A < B < CA. Analogously, the 

notation A < B will mean that  for some C as above, A <_ CB. 

3. P r o o f  o f  t h e  t h e o r e m  

First of all, if m is measure on OD mutually absolutely continuous with respect 

to surface measure such that  the logarithm of dm/da lies in VMO and 

1 

._<. :,.(Q) 

it follows from John-Niremberg 's  inequality that  for Q on OD and s <_ r 

_ -~-a d~, 
~(A, (Q) )  \ da ] J a(As(Q) ) 

A. (O) z~. (Q) 
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where C depends on dimension and the Lipschitz character of D. To see this, 

first observe that  dm/da belongs to Bp(da) for some p > 1 and apply John-  

Niremberg's inequality to the function dm/da = exp(log dm/da) with respect to 

the measure dm/da. 

On the other hand, in IS] we find the following inverse to this result. 

THEOREM 3: Let (X, #) be a measure space, # (X)  = 1. Let v >>_ 0 and assume 

that 

Then, 

j vd# / v - l d # < l + c  3, c < 1 / 2 .  

x x 

f l l o g v  l o g [ / v d # ]  dlz<_6c. 

x x 

From this theorem we see that  if m is a measure on OD verifying m E B2(da) 
and for some function ~o with lim~--,o qo(r) = 0 

1 { d m \  2 \�89 1 
_ -d- jad~ 

a~(Q) A~(Q) 

for all Q on OD and r > 0, then the logarithm of dm/da is a function of 

Vanishing Mean Oscillation. To see this, we take X = A, (Q) ,  v = dm/da and 

I~ = m/m(A~(Q)) in Theorem 3 obtaining that  the logarithm of dm/da is in 

VMO with respect to the measure m, and from John-Niremberg 's  inequality and 

the fact that  m lies in B2(da) we obtain that  the logarithm of dm/da lies in 

VMO with respect to surface measure. 

Now, if Lo and L1 are as in Theorem 2 we consider for 0 < t < 1 the operators 

Ltu = div(At(X)Vu), 

At(X) = (1 - t)Ao(X) + tAI(X), 

and denote the corresponding harmonic measures and Green function for Lt as 
wt, w X and gt(X, Y). 

From the remark above and the hypothesis in Theorem 2, w0 is a B2(da)- 
weight, and from Dahlberg's theorem the same holds for wt for 0 < t < 1 and 

with a uniform B2(da)-constant. 



From Harnak 's  inequality 

solutions to non-divergence 

function [CFMS] we have 
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To simplify our exposition we will assume that  D coincides with the unit ball 

B in R n and consider for each 0 < t < 1 the solution vt to 

Ltvt = --qO on B 

vt = 0 on OB 

where ~ E C~(B)  with ~ = 1 on B1/4 and ~ = 0 outside of B1/2, that  is 

vt(X) = f 9,(Y,X)cp(Y)dY. 
B 

[M], the comparison principle for non-negative 

form equations and estimates for the Green 

(a.~) 

and 

O < vt(X) < l, 

~_~( d~ ~ ~__~( 
0, Q ) =  ~ ~ Q) a.e. o n 0 B  

(3.2) vt(X) "~ g t ( O , X ) ~  w \ A a ( x )  x " " ~ z ( ( ~ - ~ ) )  for IXI > 1~, 
6(x).-~ L 

where 5(X) denotes the distance from X to OB. On the other hand, the ratio 

defines a HSlder continuous function on OB and with constants depending only 

on A and n [JK]. Thus, the logarithm of dwt/da lies in VMO if and only if the 

same holds for the logarithm of the weight function kt = Ovt/Ov. 

Using these results we will prove the following lemma. 

LEMMA: Let Lo and L1 be as in Theorem 2. Then, there exists a function 

with lim~_-,o ~( r )  = 0 verifying 

1 ( / ), 1 / 
1 k~da _< (1 + O(r))a(A~(Q)) ~(A:(Q)) kid~ 

/,~(q) A(Q) 

for a11 Q E OD and r > O. 

From this lemma and the previous remarks our theorem follows. 
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To prove this lemma we write for E contained on OB and 0 < t < 1 

kt(E) = [ ktda 
, J  

E 
and we need to estimate for fixed Qo on OD and r > 0 

1 

kl(A~(Qo)) 

•  cAr(Q~176 " A . ( Q o )  

Fixing Qo,r > 0 and f as above we write As = As(Qo) and F8 = Fs(Qo) for 

s > 0, and consider on [0, 1] the function 

�9 ( t ) -  kt(A~) fktda. 
Ar 

Using standard arguments it is simple to show that for fixed f E L2(da) the 

function �9 is Lipschitz on [0, 1] and its derivative is given by 

~;(t) - 1 J ]q[f - ma~,k, (f)]da, 
A~ 

where ma.,k,  (d) denotes the average of d over A~ with respect to kt, Jq belongs 

to L2(da) with IIk~llz~<~/~< i for 0 < t < 1 and Jq is the weak limit in L2(da) of 

(kt+h -- kt)/h as h tends to zero. Moreover, since r is the zero matrix on OB 

]q = ~ aij(O)Oiih(O)Nj = ~--~(O) a.e. on OB, 
i,j=l 

where ~)t is the weak limit in W~'2(B) of (Vt+h -- vt)/h as h tends to zero and 

where ~)t satisfies for X in B 

div(At(X)Vi~dX)) + div(c(X)VvdX)) = O, 

~)t=0 onOD. 

We will show that  there are positive numbers 7, fl and C, 0 < fl, 7 < 1 depending 

on A, n and the B2(da) constant of w0 verifying for 0 < t < 1 

[ ( 1 I a(X) 2 )�89 
(3.3) ]~(t)] <_ C r "y + S:p  a(As(Q)) 6(X) dX . 

s<,-a F.(Q) 
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From this estimate and the fundamental theorem of calculus we obtain 

i f  [ ( 1 / a(X) 2 )�89 
kl(A~) fk lda <_ 1 + (~o + C r "~ + Sup Qeo. a(As(Q)) 5(X) dX 

A~ s_<r~ F,(Q) 

where (I)0 is the function with l i m ~ o  (I)0(r) = 0 associated to the Vanishing Mean 

Oscillation condition of the logarithm of k0. This estimate and duality imply the 

lemma above. 

To prove (3.3) we consider the solution ut to 

Ltut = on B 

ut = ht on OB 

where 
1 

h t -  - -  

We have for X in B 

( f  - mA~,k, (f))XAr. 

OB OB 

where Gt(X, Q) for X in B and Q on 0B denotes the function 

Gt(X, Q) = lim gt(Z, (1 - s)Q) 
8 - 0  v t ( ( 1  - s)Q) 

Observing that  ht has zero average with respect to kt, we can write 

= / [Gt(X, Q) - Gt(X, Qo)]ht(Q)kt(Q)da. u t ( X )  

OB 

On the other hand, it is known that Gt(X, .) is a-HSlder continuous on OB for 

some a depending on A and n [JK], and for X in B and Q on the boundary of 

B with ] Q -  Qol -< � 8 9  Qol 

(IQ-QoI~" 1 
IGt(X,Q)-Ct(X, Qo)l~< IX Qol] ~dZ~lx-qol) 

Hence, from the support properties of ht, the above estimate and Schwartz's 

inequality we have for I X - Qol -- 2r 

I 

( r )~ 1 a(A~) 1 k~td a 
lut(X)l ~ IX -Qol wt(Aix_Qol) kt(A,.) o-(A,.) 

AT 
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and from Dahlberg's theorem we know that kt lies in B2(da) with a uniform 

constant. Thus, for IX - Q01 _> 2r 

r ) ~  1 
(3.4) lu~(X)l< IX-Qoi ~o~(~lX-qoO 

Now, integration by parts together with the boundary values of vt, 7)t and e(X) 
yield 

= f  ,jOjv,O,u,dx, 
B 

Ir 5 /14X)llVvtllW, ldX. 
B 

To estimate this integral we let /3 denote a small positive number to be chosen 

later and write 

(3.5/ 

f l~(x)llVvdlVu~ldX = f I~(X)llVvdlVuddX + f I~(X)llVvtllVutldX. 
B B \ F o  F~ 

From Schwartz's inequality 

(3.6) / le(X)llVvtllVut[dX<~ (/IVvd2dX)�89 / JVutl2dX) �89 

Since ut = 0 on OB\A~, we have from Cacciopoli's inequality 

( f  lVutl2dX ) �89 
B\r ~ F2~ ~ \ F ~ / 2  

< r-~(1-'q2)Sup{lut(X)l: X �9 F2~: F,.~/2} 

and from (3.4) and the doubling property of harmonic measure [CFMS] 

Sup{M(X)I :  X �9 r2r,\r~,/~} < r ( ' -~ )~  1 

Hence, 

1 

~t(A~)" 
B\F~ 
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f l4x)llvvdlVu~ldX 

On the other hand, integration by parts and Poincar~'s inequality imply 

(3.8) /]Vvtl2dX ~ 1, 
B 

and from (3.6), (3.7) and (3.8) we obtain 

f k(X)llVvdlVu~ldXEr -~(~-"/2)+(a-~)(' 1 ~,(A~)" 
B k r ~  

Recalling that wt belongs to B2(da) with a uniform constant on t, we have 

for some constant p > 0 depending on A, n, and the B2(da) constant of w0, 

s p ~ wt(As) for all 0 < s < 1 [ST], implying 

f k(X)llVvdlVu, ldX < = rC~-~(1-n/2+c~+p) r~ 

B\r ~ 

where "~ will be positive after choosing the number/3 sufficiently small. 

To estimate the second integral on the right hand side of (3.5) we fix N > 4 

with 2N+lr ~ r z and we have 

N 

_< i + ~--~nj 
j =3  

= f J~(X)JJVvtJJVutJdX 
r s r  

N 

+ Z f ]e(X)]]Vvt]]Vut]dX. 
j : 3  r2j+l  r \ r 2 / "  

Letting f/ denote a dyadic decomposition of As~ and defining for each dyadic 

surface cap J in f~ 

X r(g) = { z  �9 B: -~l �9 J' g(g) < 6(Z) < 2gg)}, g(J) = a(Z) 1~(n-l), 

we have from (3.2), Cacciopoli's inequality and the doubling property of harmonic 

measure 

J e a  r ( J )  6(X)n 

: Z ajbja(J), 
J 6 ~  

�89 f 6(x)2-"lw~l~dX) �89 
r ( J )  

~(J) 
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where 
X 

w t ( A ~ ( x ) ( ~ ) )  f o r Z  inr8~ /-/~(x) -- ~(x)- -1  

and identically zero otherwise. We define functions F and G from Asr into f2(~) 

as F(Q) = (xa(Q)aa)a~ll and G(Q) = (xj(O)bj)j~a for Q in As~. We have 

1 

~(Q) 

where S(ut) denotes the Lusin Area function of ut. Then 

Z ajbja(J) 5 f F(Q).G(Q)da 
J E l l  A s r  

and from Schwartz's inequality and Fubini, the right-hand side above is bounded 

by 

( f a(X): ~ �89 S(ut)2da) �89 
OB OB 

Since wt lies in B2(da) with a uniform constant on t E [0, 1], the L 2 norm of the 

Lusin Area integral of ut is bounded uniformly by the L 2 norm of its boundary 

values ht [DJK], and 

IIh~llz~(<~<,) < a(A")V2 
~ ~ t ( A , - )  " 

The non-tangential maximal function of Ht is bounded by the Hardy-Littlewood 

maximal function with respect to surface measure of (dwt/da)Xalor, which has 

L 2 norm bounded by wt(A~)/a(A~)l/2. From these remarks and a standard 

Carleson measure argument 

( i  o(x): wt(Ar) ( 1  i a ( X ) 2 \  �89 7 ~ H , ( x )  ex < Sup ~---~ex) 
~ o(A~)I/~- ~ , .  ~ (As(Q))  

OB s_<r~ F~ 

Thus, 

1 

<3.9) sup ( 1 i , ~ . .  ,~(%(Q)) ~(x) dX 
8<r~ r.(Q) 

To estimate rlj for j _> 3 we let f~j denote a dyadic decomposition of 

A2~+,r\A2~ r and observe that  (r2~+,r\r2Jr)\ Uje% r(y) is essentially contained 
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in a ball centered at the point (1 - 2Jr)Qo of radius 2J-lr. From this remark, 

Cacciopoli's inequality, (3.2), (3.4) and the doubling property of harmonic 

measure we have 

Hj ~ 2  -~j Sup ( 1 : a(X) 2 \ �89 Qeo, a(A,(Q)) ~ dX) 
s<r~ r.(Q) 

(3.10) 
+ E g(j)3/2-,~( / a(X) 2 �89 �89 

JEflj r(J) r(J) 

We observe that for J E ~]i, F(J) is contained in F2J+2.\F2J-1. and the bound- 

ary values of ut are supported in A~. Hence, from standard estimates for solutions 

to Ltu = 0 vanishing on a boundary portion and (3.4) we have for X in J E ~j 

( e ( J ) ]  ~ 2 -~ 

( e ( J ) ~  a Sup lutl • \ 2Jr J wt(A2~r)" [ut(X)l ~ \ 2Jr J r2~+2.\r~j_~. 

From Cacciopoli's inequality and the above inequality, (3.10) is bounded by 

2_aj ( 1 

~,(~,,.) z i ~ " ~'(') ('(')~~ Je , r ( J )  ~--~dX)  o . ( j ) l / 2  ~ 2Jr ] 

Hence, 

(3.11) 

1 f a(X) 2 \ �89 2-"~ Sup a(A:(Q)) ~---~dX ) 
< ~ ,Ts  Q~.. 

~_<.o r.(Q) 
oo 

• E E ~,(J)2-o, 
i=0 JEglj,t(J)~2i-lr 

1 ( 1  / ~ ), 
2 -~j Sup a(A;(O)) ~----~dX 

s<_~ "/~ r.(Q) 

1 
( 1 f a ( X ) 2 )  ~ Hj ~ 2 -"j Sup a(Asl(O) ) ~---(-(-~dX 

8_<~o r.(Q) 

Therefore, from (3.9) and (3.11) 

I . ( , /a(.)' ,' l~(X)llVvdlVu, ldX 5 1 + ~_nj < Sup ~,(A,(Q)) K-(-(~ dX ) 
r~  j=3 s_<./~ r.(Q) 

proving the lemma. 
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