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ABSTRACT 

We give an  easy  proof  t ha t  a finitely genera ted  group which is residually 

(finite and  soluble of bounded  rank)  is n i lpotent  by quasi- l inear.  This  can  

be  used to sho r t en  the  proofs of some recent  t heo rems  abou t  residually 

finite groups.  

In 1988 Lubotzky [Lu] enunciated a pretty necessary and sufficient condition for 

a finitely generated group to have a faithful linear representation in characteristic 

zero. What  this condition amounts to is that the group should have a normal 

subgroup G of finite index such that, for some prime p, some faithful pro-p 

completion of G has finite rank as a pro-p group. The proof of sufficiency rests on 

Lazard's theory of p-adic analytic groups [La], together with the theorem [LM1] 

that  pro-p groups of finite rank are virtually powerful (and hence, according to 

Lazard, p-adic analytic). 

The sufficiency of Lubotzky's criterion has been a cornerstone in the proofs of 

several recent theorems about residually finite groups, for example the character- 

isation of finitely generated groups with polynomial subgroup growth [LMS]. The 

philosophy of such proofs is outlined in Mann's survey [M], and a self-contained 

account of the background theory is given in [DDMS]. Indeed, it was the exis- 

tence of such applications which motivated the authors of [DDMS] to produce 

the book. 

The purpose of this note is to present an alternative to Lubotzky's crite- 

rion. This "weak linearity lemma", while giving much less precise information, 

nonetheless can serve just as well in applications of the sort mentioned above. 
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Thus the theory of analytic pro-p groups turns out, in this context, to be re- 

dundant. (As an author of [DDMS], I hasten to point out that  the theory has 

great interest in its own right, as well as other applications in group theory - -  

see [DDMS] Chapter 6 - -  and number theory.) 

The use of this kind of argument as a tool in the characterisation of residually 

finite groups of finite rank originates with N. S. Chernikov [Ch]. My result 

is essentially a distillation of ideas from that paper and from Chapter 13 of 

Wehrfritz's book [W]; nonetheless, my hope is that its simple statement and 

short, easy proof will make it a useful alternative to the theory of analytic pro-p 

groups in certain group-theoretic investigations. 

THEOREM: Let G be a finitely generated group, and suppose that G is residually 

(finite and soluble of bounded rank). Then G has a nilpotent normal subgroup Q 

such that G/Q is a subdirect product of finitely many linear groups over fields. 

If, moreover, every finite quotient of G is soluble, then G is virtually nilpotent- 

by-abelian. 

Here, by the r a n k  of a finite group H is meant the least integer r such that 

every subgroup of H can be generated by r elements. We use the following 

notation: Ca(X)  denotes the centraliser in G of X; [A, B] = [A,1 B] denotes the 

group generated by all commutators [a,b] = a- la  b (a E A, b E B); [A, kB] = 

[[A, k-lB],  B] for k > 1; 7k(G) = [G, k-lC] and C' = 72(G). 

Proof." Let G / K  be a finite soluble quotient of G. Then G / K  has a normal 

subgroup N / K  which is nilpotent of class at most 2 and satisfies C a ( N / K )  <_ N 

(see [S] Chapter 2, Proposition 3). Put  E = N / N ' K .  

CLAIM: If H ,~ G and [E, kH] = 1 then "Y6kH _< K. 

Proof Write fir = N / K .  Then 

[fir, kH] < fir' ~ [fir', 2~g] < "r3g = 1 

=::r [N, 3kH] = 1 

=::V 3'akH ~ Ca(fir) _< N 

==r 3'6kH _< [N, 3kH] _< K 

(cf. [S], Chapter 1, Prop. 14 and Prop. 10). 

Now for some finite r, G has a family 8 of normal subgroups, intersecting 

in the identity, such that G / K  is finite and soluble of rank at most r for each 
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K E S. For K C S let E/~ be the section of G / K  indicated above, and write Z 

for the Cartesian product of all the abelian groups EK. Then Z is an r-generator 

module for the ring R = Z s, on which G acts by R-module automorphisms. 

Since G is finitely generated, there exist a finitely generated subring S of R and 

an r-generator S-submodule M of Z such that MG = M and M R  = Z. 

Since S is a commutative Noetherian ring, M contains a finite chain of fully 

invariant S-submodules 

O = Mo < MI < ... < Mk = M 

such that,  for each j ,  Mj /Mj_  1 is a finitely generated torsion-free S/Pj-module, 

where Pj = anns(Mj /Mj_l )  is a prime ideal of S ([W], Lemma 13.2). Put  Qj = 

Ca(Mj/Mj_I) ,  and suppose that  Mj/Mj_I  can be generated by rj elements as 

an S/Pj-module. Then the action of G embeds G/Qj in 

Auts /p j (Mj /Mj_ l )  <_ GLri(Fj )  

where Fj is the field of fractions of S/Pj. 

Put  Q = Q1 n . . .  n Qk. Then 

Z ( Q -  1) k = M ( Q -  1)kR = O. 

It follows that  [EK, kQ] = 1 for every K E S. By the initial Claim, this implies 

that 

76kQ _< N $ = 1. 

This proves the first part of the theorem. 

Suppose now that  every finite quotient of G is soluble. Let 1 < j _< k, put 

S i = S/Pj and Vj = Mj /Mj-1 .  If L is a maximal ideal of Sj, then G induces on 

Vj/VjL a finite linear group of degree at most rj .  It follows by Mal'cev's theorem 

([W], Theorem 3.6 or  [S], Chapter 2, Theorem 3) that  G has a normal subgroup 

H, of finite index bounded by a function of r j ,  such that H ~ acts unipotently on 

Vj/VjL. Since G is finitely generated, we can choose H = Hi,  say, independently 

of L, and then have 

Vj(H~ - 1) ~j C N V j L  = 0, 
L 

(for the last equality see the Remark below). 
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Now let T = (N~=I Hi ) '  and put  s = r l  + " "  + rk. Then M ( T  - 1) s = 0. As 

above, this implies that  %8T -- 1, and the second part of the theorem follows. 

To illustrate how this is applied, let me sketch the (now very short) proof of 

Theorem A of [MS]: a finitely generated residually finite group of finite upper 

rank is virtually solub,'e of finite rank. Let G be such a group. By Theorem 0 

of [MS] (a result taken from [LM2]), G has a normal subgroup G1 of finite index 

such that  every finite quotient of G1 is soluble. By the Theorem above, G1 is 

virtually nilpotent-by-abelian; and the result follows by [MS] Lemma 2.2. 

The result just proved forms one of the steps in the argument of [LMS], 

establishing the characterisation of groups with polynomial subgroup growth. 

It is the only step which involves the theory of pro-p groups (although, as a 

mat ter  of history, the characterisation of pro-p groups with polynomial subgroup 

growth [LM3] was of great heuristic importance, as one of the first steps on the 

road to the full result of [LMS]). 

Remark: It seems difficult to find a reference for the following elementary fact 

of commutative algebra: I f  S is a finitely generated integral domain and V is a 

finitely generated torsion-free S-module, then NL VL  = O, where L ranges over 

all maximal ideals of S. Here is the proof. Let F be a maximal free submodule 

of V. Then V x  C_ F for some non-zero x E S, since V / F  is finitely generated 

and torsion. Put  D = NL VL.  We have 

Dx C_ N F L  = O, 
L 

since S has zero Jacobson radical (see e.g. [N], Chapter 6, Theorem 1); therefore 

D = 0 since V is torsion-free. 
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