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ABSTRACT 

A closed convex subset Q of a compact convex set K is said to have the exten- 
sion property if every continuous a ide  function on Q can be extended to a con- 
tinuous afire function on K. It is proved that the extension property is equi- 
valent to the existence of a number Nsuch that is any direction in which Q has 
positive width, the ratio of the width of Kto the width of Q is less than N. 

K will always denote a non-empty, compact, convex set in a real locally convex 

topological vector space E. A(K) will be the Banach space of continuous affine 

functions on K with sup norm, and Q will be a closed convex subset of K. We will 

denote by I[" [1r and[]" I[~' the norms inA(Q)and A(K). As a subset of K, Q is said 

to have the extension property if for every f~A(Q) there is f~A(K) such that 

fl o=f. 0 is said to have the bounded extension property if there is a number N 

such that for every f~A(Q) there is f eA(K)  with f[o =f  and I[Yl[ ---NIIfllo 
A simple application of the open mapping theorem for Banach spaces (for example 

see Alfsen [2, theorem 11,5.9]) shows that the bounded extension property is 

equivalent to the extension property. Alfsen [1, prop. 10] has given an example 

of  a compact convex set K with a closed face which does not have the extension 

property. In Theorem 1 we give a simple geometric condition equivalent to the 

bounded extension property. 

I f  d ~ E, d ~ 0 we define the d-width of K to be 

Igl =sup{t:3x K and x +td~K}.  

THEOREM 1. I f  Q is a non-empty closed convex subset of K then the fol- 

lowing are equivalent. 
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1) Q has the bounded extension property. 

2) there exists N such that for every d ~ E with ] Q ]d # 0 we have ] K ]a < Ul Q [a. 

We remark that the condition ](2 [a # 0 is an essential part of 2). For example, 

if Q contains only a single point, then certainly Q has the extension property, but 

for any d with I K[d > 0 we have ]Kid > N] Q ]d = 0 for every N. 

We prove first a few lemmas. If  g ~ A(K) then the K-variation of O is 

V~(O) = sup{o(x) - g(y): x, y E K}. 

Since members of E* are by restriction in A(K), this definition will apply in par- 

ticular to them. 

LEMMA 1. Suppose x, y ~ K, f ~  A(K) and d = x - y ~ O. Then 

I KI.IS(x)-I(y)[ 
PROOF. Since x, y e K ,  I g l o o 0  Choose 2 > 0 s o  I K I a > 2 .  Choose z G K  so 

z + 2d e K. Applying the affine function f to both sides of the equality 

((z + 2d) + 2y)/(1 + 2) = (z + 2x)/(1 + 4) 

we obtain 

f ( z  + 2d)/(1 + 4) + 2f(y)/(1 + 4) =f(z)/(1 + 4) + 2f(x)/(1 + 2) 

from which f ( z  + 2d) - f ( z )  = 2(f(x) - f (y ) ) .  So 

V~(f) > 2If(x) - f(y)]. 

LEMMA 2. Suppose O ~ K and let L be the convex symmetric hull of K. Then 

for deE ,  d # O  

ILI =<_2IK[ . 
PROOF. If  I - 0 there is nothing to prove. Otherwise suppose [L In > 2 > 0. 

Choose z e L so that z + 2d ~ L. Since L is the convex hull of K and - K we can 

find u , v , x , y ~ K  so that z = ~u + (1 - ~) ( -  v) and z + 2d = fix + (1 - fl) ( -  y) 

with 0 < a, fl < 1. Subtracting, 

2d = (z + 2d) - z = [fix + (1 - ~)v] - [~u + (1 - fl)Y] 

since each square-bracketed term is in 2K (recall 0eK) ,  we deduce [2KIn > 2. 

Hence 

mlKI   ImKId---2, 
the first inequality following from the observation x e 2K =~ x/2 ~ K. This completes 

the proof of the lemma. 
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We remark that the proofs we have given of these two lemmas use no topology 

and that the lemmas are in fact true for general convex sets, with f in Lemma 1 

any affine function. 

LEMMA 3. Suppose ]KId > 0 for some d ~ 0 in E. Then 39 e E* such that 

Vr(9) < 4] K ]a and g(d) = 1. 

PROOF. Let [K In = 2 > 0. We may suppose 0 e K (translate K if necessary). 

Let L be the convex symmetric hull of K. Then L is closed and [ L [n < 22 by 

Lemma 2. So 22d r L (since L symmetric) and by a standard separation theorem 

[3, 14.4], we can choose 9 e E* such that 9(L)< 2;t and 9(22d)= 22. Hence 

#(d) = 1 and 

Vr(g) < VL(9) < 42 (by symmetry of L). 

PROOF OF THEOREM 1. 

l) :~ 2). Suppose Q has the bounded extension property. Choose N so every 

9 e A(Q) has an extension f cA(K) with I[fllr < NH e Now suppose [Qld ~ 0 

for some d e E. We will show ]K la < 8NI Q Id" By multiplying d by a constant we 

may suppose I Q la > 1. Then we can choose x, y e Q with d = x - y. Use Lemma 3 

to choose g e E *  with V~(#)< 41Q ]d and a(d)--1.  

Then h = 9 - 9 ( x )  is a member of A(Q) and since h is zero at xeQ,  [[hllQ 

< VQ(h). Using 1), choose an extension f e A(K) of h with ]If lit < NIl h [IQ" Then 

f ( x ) - f ( y )  = h(x ) -  h(y)= g(d)= 1 and so by Lemma 1 

I g Id -<- vK ) _-< 21lfll --< 2NIl h []o < 2NVQ(h) = 2NVQ(#) < 8N[ Q [a. 

2)=~ 1). Suppose N is such that for  every d e e  with I 0 we have 

[K [a < N[ Q ]a. We will show that the restriction map from A(K) to A(Q) has the 

property that the closure of the image of the unit ball of A(K) contains the 

6-ball of A(Q) where 6 = 1/(8N + 1). It will follow from [4, 7G lemma 1] that the 

image of the unit ball of A(K) contains the f-ball of A(Q), hence that Q has the 

bounded extension property with constant 8N + 1. 

So suppose yeA(Q)and Ilfll  < ~. Choose any s > 0 .  We will find heA(K), 

[I h 1 and II h lQ --fIIQ < s. Let 

K1 = {(k, 1) E E x R: k ~ K}, 

and 

K z = { ( k , - 1 ) ~ E  x R: k~K}. 
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Let L1 be the convex hull of K~ and the graph o f f  + e. 

Let L2 be the convex hull of K2 and the graph of f -  e. 

We will show that L1 c3 L2 = ~ .  

Since the graphs o f f  + e and f - e are convex, it will be enough to show that 

if ql and q2 are in Q then the convex hull of (ql,f(ql) + e) and KI is disjoint from 

the convex hull of (q2,f(q2) - e) and K2. If  ql = q2 this is obvious; otherwise 

let d = q2 - ql. Since I g la r 0 apply Lemma 3 to find fl ~E* such that 

vK(v) =< 4] K and g(d) = 1. 

+ (g(k) - g(q~))(f(q2) - f (q l ) ) .  Then F is atS_ne on K and 

If(q1) I + l a(k) - g(qx) l" If(q2) -f(q~) I 

If k e K let F(k) = f(q~) 

IF(k) l -<_ 

< ~ + Vr(v)" Ve(f)/I Q ]d 

= +41KI . 21lfllQ/lel  
< 6 + 8 N c S = t S ( l + 8 N ) =  

Also F(ql)=f(ql)  and F(q2)=f(q2)  since g(d) 

(by Lemma 1) 

1. (since Ilf IIQ < ~) 

= 1. So K1 and (qx,f(ql) + e) 
lie strictly above graph(F) and K 2 and (q2,f(q2)- e) lie strictly below graph(F). 

Since F is affine, graph(F) strictly separates the convex hulls, which must then be 

disjoint. 

So L1 and L 2 are disjoint convex sets in E x R. They are also compact since 

K1, K2, graph(f+  e) and graph(f-e)  are all compact. So L 1 and L 2 can be sepa- 

rated by a dosed hyperplane H [3,14.4]. If  H' is the translate of H which passes 

through the origin, then H '  is the graph of a linear functional on E. Since H '  is 

closed this functional has closed nullspace H '  n E, and so is continuous [3, 5.4]. 

Hence H is the graph of a continuous affine function on E and so the set of points 

{ (k , y ) eH:k~K}  

is the graph of a continuous affine function h on K. Since H separates K1 and 

K2, I h(k) [ < 1 for k e K. Since H separates graph ( f  + e) and graph ( f -  e), 

I [h[Q-f l le_-<e.  

REMARKS. 1) The possibility of characterizing the extension property with a 

notion of "relative width" seems to have been first considered by Alfsen. In 

[1, theorem 5] he showed that for an Archimedean face of K the extension property 

and the bounded extension property are both equivalent to a condition of bounded 



Vol. 11, 1972 EXTENSION PROPERTY 163 

"relative width" somewhat different from ours. Indeed it was this theorem together 

with his example [-1, prop. 10] which motivated our Theorem 1. 

2) I am grateful to David Gregory and George Elliott for several enlightening 

discussions about the extension property. In particular, Elliott pointed out that 

the use of [.4, 7G, Lemma 1] greatly simplifies my original proof of 2) ~ 1). 

3) I am grateful to the referee for providing the neat proof of Lemma 1. 

4) L. Asimow has pointed out to me that in [5, theorem 3.1] he has a condition 
for the extension property easily seen to be equivalent to condition 2) of 
Theorem 1. 
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