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ABSTRACT 

Let T be a Markov operator  on L~(X,X,m) with T * =  P. We connect 
properties of P with properties of all products P x Q, for Q in a certain class: 
(a) (Weak mixing theorem) P is ergodic and has  no unimodular  eigenvalues ~" 1 
¢~ for every Q ergodic with finite invariant measure  P x Q is ergodic ¢:~ for 
every u E L, with f udm = 0 and every [ E L .  we have N -1X~.~ I(u, P"f)l'-* O. 
(b) For every u E Lt with f udm = 0 we have II T"u Ih ~ o ¢:~ for every ergodic 
Q, P x Q is ergodic. (c) P has a finite invariant measure  equivalent to m ¢:~ for 
every conservative O, P x O is conservative. The  recent notion of mild mixing 
is also treated. 

1. Introduction 

In the ergodic theory of measure preserving transformations of a finite 
measure space there is a fairly well understood hierarchy of mixing conditions: 

ergodicity, weak mixing, mixing, mixing of all orders, K-automorphisms, 
B-shifts, and various other intermediate concepts. Various attempts have been 

made to extend some of these notions to transformations, and more generally to 

Markov operators, that preserve an infinite measure (cf. [13], [14], [16]-[20]). In 

particular the Koopmans-von Neumann-Halmos (K-vN-H) theorem, which 

says that (for probability preserving transformations) weak mixing is equivalent 

to a condition on the spectrum as well as to a multiplier property (T is weak 

mixing if and only if for all S ergodic T × S is ergodic), presents a challenge to 

find an appropriate analogue. It was this challenge that motivated much of the 

work that we shall now describe. 
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Let (X, E, m ) be a tr-finite measure space, and let P be a Markov operator on 

L®(m), i.e., P is the adjoint of a positive contraction T on LI(X, E, m) (see [7] 

for the properties and definitions that won't be made explicitly in what follows). 

Recall that P is said to be ergodic if for all u (E L1 with zero integral (f udm = O) 
we have 

(1) ~,=, T"ul =0. 

By the Hahn-Banach theorem P is ergodic if and only if Pf = f implies that f is a 

constant. Next we shall say that P is weakly mixing if for all u with zero integral 

(2) lim s u p ~  I(u, Pnf)l=o. 
N ~ ®  ii/ll=__ < 1 n = 1 

In [13] it is shown that this is equivalent to 

1 N 
(3) lim I<T"u,/>l = 0 

N ~  1~/ n = 1 

for all f E L~ and all u with zero integral. We say that P is mixing if for all u 

with zero integral Tnu ~ 0 weakly in L ,  and that P is completely mixing if for all 

such u, It T"u II1--,0. In [16] it is shown that if P has no finite invariant measure 

and is mixing then P is completely mixing; thus an invertible ergodic transforma- 

tion with infinite invariant measure cannot be mixing with this definition of 

mixing. We shall also investigate a mixing notion recently introduced in [8] for 

point transformations with finite invariant measure, namely: P is said to be 

mildly mixing if P",f---~f weak-* in L~ implies that f is constant a.e. Since P is 
mixing if and only if all weak-* limit points of {pnf} are constants [17], if P is 

mixing it is mildly mixing. 

The cartesian product of two Markov operators P on L~(X, E, m) and Q on 

(Y, .~,/z) can be defined from P(x, A) and Q(y, B), the transition probabilities 

of P and Q, by using P(x,.)× Q(y,.) to define a transition probability on 

(X × Y, E × ,~) and so P × Q is again a Markov operator. After these definitions 

we can describe the main results that will be presented here. It turns out that we 

do not need to assume existence of a or-finite invariant measure. 

Generalizing the K-vN-H weak mixing theorem we show in §4 that P is 

weakly mixing if and only if "for all ergodic Q with finite invariant measure 

P × Q is ergodic" if and only if " P  is ergodic and has no unimodular eigenvalues 

other than 1." Complete mixing also is a multiplier property, namely: P is 

completely mixing if and only if for every ergodic Q, P x Q is ergodic (Theorem 
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5.1). A sample result relating mild mixing to a multiplier property is Corollary 

6.4 which says that if P is mildly mixing and Q is ergodic and conservative with 

~r-finite invariant measure then P x Q is ergodic. Section 3 treats in a sense a 

more fundamental question and shows that for any conservative P there always 

are Q such that P x Q is conservative. Conversely, if P preserves no finite 

measure then there always is a conservative ergodic Q such that P × Q is not 

conservative. Finally, or firstly, we give a rapid discussion in §2 of the 

construction of a point transformation, the Markov shift, associated with a 

Markov operator and in particular compare the various mixing properties of the 

operator with those of the corresponding shift. 

All multiplier-mixing questions have by no means been resolved. We should 

like to mention in particular the following: What is the mixing property (if any) 

of P that is equivalent to the "multiplier property": for any ergodic Q such that 

P x Q is conservative, P x Q is also ergodic? 

2. Ergodic properties of the Markov shift 

Let (X,E) be a measurable space, and P(x ,A )  a transition probability on 

X × E. Define ~ = 1-I7~o Xi, with X, = X for each i, and let ~ be the g-algebra 

generated by the cylinders. For x ~ X and Ao, A~,. •., Ak E E define 

Px (A0x A1 × " '"  x Ak) = I,~P(1,%P(". IA~_,P(IAk 1) . ."  )(x) 

(where IA is the operator of multiplication by the indicator function 1A, and 

Pf(x) = f f ( y )P(x ,  dy)). Px is uniquely defined, since P1 = 1 and P is linear, and 
can be extended to a probability measure Px(" ) on ~.  Denote QB(x) = Px(B) 
for x E X, B E 9~. Then {B E 9~ : Qa (") is E-measurable} is a monotone class 

containing all finite unions of disjoint cylinders, hence equals 9~. 

For an element to ~ f l  we denote its n-th coordinate by x,(to). Then xn(. ) is a 

measurable map, and for any g(x) bounded X-measurable, hn(to)= g(x,(to)) is 
-measurable. 

For h(to) bounded ~-measurable,  we define 

,~(x)- f h(to)dPx =- f h(to)P,,(dto). 

For B E ~,  iB(x) = P,,(B) = OB(x), and by approximation we have that/~(x) is 
E-measurable. 
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Now, given g E B ( X , E ) ,  let h(to) = g(xo(to)). We show that h = g: If g = 1A 

with A E E, then 

/~(x) = f 1A (Xo(to))Px (dto)= Px ({x0(to) ~ A}) = 1A(X). 

Approximation yields the result. 

We now define the shift transformation 0 in f / b y  O(Xo, Xl," • • ) = (Xl, x2,. .  • ), 

which is clearly G-measurable  and let (Th) ( to )=  h(Oto) be defined on ~ -  

measurable functions. 

LEMMA 2.1. T 'h  = P"t~, for h ~ B (f~, ~ ). 

PROOF. Let B = Ao x A,  × A2 x • • - x Ak, with Aj E E. Then 

T"~"18 (x)  = ie-.B (x)  = Px(O-"B) = Px(X x X . . .  X x A0x  "." Ak) 

= P " I , ~ P ( ' . .  P(IAk 1 ) . . .  )(x).  

= = T "  Hence T " l n  P"Qn P ' i s .  Now {B E ~ :  lo = P"iB} is monotone and 

contains finite unions of disjoint cylinders, hence equals ~ .  Linearity and 

approximations finish the proof. 

For a finite measure /x on E de f ine / /  on ~ by 

/2(B) = f iB(x) l~(dx)  = f Px(B)l~(dx).  

Then/2  is a measure, and (/2, h ) = (/~,/~) for h E B (~, ~ ). The following lemma 

is now easy. 

LE~tA 2.2. (a) (~, T " h ) =  (~,P"/~). 

(b) I f  l~ ~ m ,  then ~ ~ ~.  
(c) I f  mP ~ m, then r~O -~ ~ r~. 

For the rest of this section, we assume m P  "~ m. Then P induces a Markov 

operator  on L®(m) (still denoted by P), and 0 is th-non-singular. We assume 

that m (X) = 1. 

THEOREM 2.3. Let C and D be the conservative and dissipative parts for P. The 

conservative and dissipative parts for 0 are {to : Xo(to) E C} and {to : Xo(to) E D}, 

respectively. 

PROOF. Let /5 be the dissipative part for 0. 
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It is known [11] that D =  l,.J~=tAk with Y~7_oP"IA~EL®(m). Let Bs = 

{to : Xo(OJ) ~ As}. Then is, = 1Ak, and 

= <m, ~0 P" 1Ak> <°°" 

Hence 27=oT" lB ,<°°  th-a.e., and BkC/5.  Hence {oJ:xo(~o)ED}= 

I,.J~=IBs C/~. Now let B C15-{Xo(Oo)ED}, such that 27=0 T"IBEL®(#z).  

Hence 

m, t " i s  = (m,P"i , ,>= <m,T"ls><oo. 
= n - - O  n ~ O  

Hence ET=oP"l 's<oo a.e., and {x : i s ( x ) > 0 } C D .  But B C{xo(oJ)~C}, so 
i s  =< lc, so it is zero on D. Hence rfi (B) = (m, i s )  = 0. Q.E.D. 

For the next results, we need the following formula: 

LEMMA 2.4. F o r f ~ B ( f ~ , ~ )  and Ao, A I , " ' , A s  EY,, 

PRoof. Take first f an indicator function of a cylinder, and apply the 
definitions. Then use linearity and approximation. 

THEOREM 2.5. P is ergodic ¢:~ 0 is ergodic. 

Paooz. (a) Let P be ergodic. Let h E B (fl, ~ )  satisfy Th = h na-a.e. For 

every finite g < m we have 

(/x,/~) = (~, h)  = (/2, Th) = (/x, ~ h ) =  <g, P/~), 

so that Ph = / t  a.e., and /~ = const, a.e. Let ~ - a. 
Let v be the measure on ~ defined by dr, = hdth. Then, using Lemma 2.4, 

z,(Ao x A, x . . .  x Ak) = f lao×a,×...×a,(~o)h(oJ)r~ (am) 

= f 1"% ' 'A , , (~ )h (os+ '~° ) r f i (d~ )  

= f (IAoe( . . .  IA, el~)''" )din 

= a f l ( A o X A ,  X "'" XAk). 
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H e n c e  v = arh and h = a n~-a.e. 

(b) A s s u m e  now that  0 is ergodic.  If p. ~ m is a finite s igned measu re  with 

/z ( X ) =  0, then /2 ,~ rh a n d / 2  ( l l ) - - 0 .  H e n c e  by ergodici ty 

N -t £ /.tO-" ) 0. 

For  A E E, let fi, = {to : Xo(to) E A}. Then  

N' N 

N - '  ~'~ ( / z , P " I A ) =  N - '  ~'~ /2,0-"(.,~) ,0 ,  

since i,~ = 1A. H e n c e  P is ergodic.  

THEOREM 2.6. P on L~(m ) has the same unimodular eigenvalues as T on 

L~( r~ ). 

PROOF. (a) Let  [it [ = 1, h J 1, be an e igenvalue  of T. The re  exists 0 ~ h E 

L~(rfi) with Th = ith rfi-a.e. For  /z ,~ m we have  

A (tz, l~)= A (12, h) = (12, Th) = (p., P/~). 

H e n c e  P/~ = M~. W e  show that  g ~ O  (rood m) .  Let  v be  the finite complex  

measu re  on ~ def ined by dv = hdrh. We obta in  

it k+ 'v (Ao x At  x . . .  x Ak)=  f I A , , P ( I , , , , ' ' "  ( I , , , ,Pi?t)  ' ' '  )dm. 

Hence ,  if /~ -- 0, v = 0, and h = dv/dth = 0 a.e., a contradic t ion.  Thus,  it is an 

e igenvalue  of P. 

(b) Let  l itl = 1, it # 1, be  an e igenvalue  of P. H e n c e  there  exists a finite 

complex  m e a s u r e / z  ,~ m such that  N -~ ET=~ it-"/~P" does  not  converge  to  zero  (if 

Pg = itg, g~O,  take  /z with f gdlzJO). 
A s s u m e  A is not an e igenvalue  of T. T h e n / 2  is o r thogona l  to the fixed points  

of i t -~T ( there  are none),  so that  ]]N-'Y~=,it-"tZ0-"lf~0, and 

N -~ E~=~ A -"/zP" ~ 0 weakly  is shown as in the prev ious  proof ,  a contradic t ion.  

REMARK. It now follows immedia te ly  that  the un imodu la r  e igenvalues  of  P 

are a subg roup  of the  unit circle. 

THEOREM 2.7. P on L . (m ) is weakly mixing ¢~ T is weakly mixing on 
L®( r~ ). 
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PROOF. (a) Let T be weakly mixing. Let IX ,~ m be a finite signed measure 

with IX (X) = 0. Then/2  "~ rh and 12 (12) = 0. For A ~ E, let ,4 = {to : Xo(to) E A}. 

Then, by Lemma 2.2, 

N N 

N - ' ~  I(/z,P"IA)I = N-I E 1(12, T"lA )I, 
n ~ l  n = l  

which converges to 0 since T is weakly mixing. Hence P is weakly mixing. 

(b) Let P be weakly mixing. We assume w.l.g, that m ( X ) =  1. Hence also 

th (1))= 1. Let u be a measure on (12, ~,  rh) with du/dth = 1Ao×A,×..×,%. Let 

a = nq(Aox A~ x - . .  x Ak). For h E L®(rh) we have 

( u -arh ,Tk+ 'h )=  f 1A°×a,××A~(to)h(ok+'to)rh(dto)--otf h(Ok*'to)fft(dto) 

= f Iao(PIA,(''" IA, P ' t~ ) . "  ) d m - a  f P'+'t~dm 

= (~, - a m p  k, P ' f ~ ) ,  

where 1) = ( . . - ( (mI,~,)PIA,)--- )Pla , .  By the definitions, ~(X) = a. Hence 

( f , -  a m P k ) ( X ) =  0, and by weak mixing of P we have 

N N 

N - t ~ ' . l ( u - a t h ,  Tk+ 'h} l=N- '~ '~ l ( f , -amPk ,  P 'g)  I ,0. 
r = l  r = l  N ~  

Hence N-lY,N=I[(u- ath, T'h)[---~O for every h E L®(m). Standard approxima- 

tions yield that T is weakly mixing. 

THEOREM 2.8. P on L=(m ) is mixing (completely mixing) ¢~ T on L=(rfi ) is 
mixing (completely mixing). 

The proof is similar to the previous proof. The result for complete mixing is 

essentially due to Jamison and Orey [12]. The mixing case is well-known. 

Furstenberg and Weiss [8] have introduced the concept of mild mixing for 

(invertible) ergodic transformations with finite invariant measure. We now have 

the following 

THEOREM 2.9. P on L~(m ) is mildly mixing ~ T on L~(~fi ) is mildly mixing. 
I f  Lt(m ) is separable, also the converse is true. 

PROOF. (a) Let P be mildly mixing. Let h E L~(n~) satisfy T",h ~ h weak-*, 

for some {n~}. Then for any finite measure IX ,~ m, we have by Lemma 2.4 that 

(ix, P",t~ ) = (i 2, T",h ) ~ (12, h ) = (ix, t~ }. 
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H e n c e  P",h ~ h weak-*  in L®(m), so h is cons tan t  a . e . m .  T h e  first part  of  the 

p roof  of T h e o r e m  2.5 shows that  h is constant  a.e. th. H e n c e  T is mildly mixing. 

(b) Let  T be mildly mixing. If g E L~(m ) satisfies P",g ~ g weak-*  in L=(m),  

we look at h @ L=(th)  such that  h = g. 

We  now use the separabi l i ty  of Ld th  ), impl ied by that  of L d m  ). T a k e  a 

subsequence  of {T",h} which converges  weak-*  in L=(m).  By passing to the 

subsequence ,  we may and do assume that  T",h converges  weak-*,  say to f. 

Hence ,  for  each j, 

T'+Jh > Tif (weak-*). 

Fix k, and for  v "~ tfi with dv/d th  = 1Ao×A,× .... A, we have,  by L e m m a  2.4, that  

for  j > k ,  

(u, T",+ih) = (~, p , ,+ j -k- ,g )  ,~> (~ ,p j - k - , g )  = (v, TJh), 

where  13 = mla, ,PIA,""  IakP. 

Now,  for  j > k, (v, T i f )  = (~,, TJh ), so also (v, T",f)  = (v, T",h ) for  all large i. 

H e n c e  

lim (v, T",f)  = lim (v, T " , h ) =  (v , f ) .  

It now follows by l inearity and approx ima t ion  that  T",f--->f weak-*  in L~(th),  

hence  f is constant ,  say f = a th-a.e. ,  by mild mixing of T. For  /z , ~ m  a 

probabi l i ty ,  

(/z, g> = lim (p., P " , g ) =  lim (/2, T" ,h)  = (/2, f )  = a. 

H e n c e  g = a a.e., and P is mildly mixing. 

We shall need in the sequel  the following wel l -known lemma.  

LEMMA 2.10. Let tr be conservative (ergodic ) on (X, m ), ~- non-singular on 

( Y, # ) .  I f  ~r is mapped onto r, i.e., there exists p measurable from X onto Y such 

that ptr = -;p and mp  ~ = I.t, then ~" is conservative. (ergodic). 

PROOF. If f E L ~ ( Y )  satisfies f ( ry )_ -< f (y )  a.e.,  define g ( x ) = f ( p x ) .  Then  

g(crx ) = f(pcrx ) = f (Tpx ) <= f (px  ) = g (x  ). Since cr is conservat ive ,  g(crx ) = g(x  ) 

a.e. H e n c e  f ( ' r y ) = f ( y )  a.e. H e n c e  cr is conservat ive .  Ergodici ty  is p roved  

similarly. 
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Now let /~ be a o'-finite invariant measure for P (i.e., f P f d l z  = ffd/_t for 

0 = < f E  B(X,E)) ;  i f /z  is finite,/2 is a finite invariant measure for 0, by Lemma 

2.2. If p. is o'-finite and infinite,/2 can still be defined on ~,  and will be o--finite 

and invariant for 0. Let I~ = I-IT=_~X,, with X, = X for every i, and let ~ be the 

o-algebra generated by the cylinders. Let Ao, A~,-- . ,  Ak E E. We look at the 

cylinder in ~ ,  

B = {xj E A0, xj÷lE Al , ' ' ' ,Xj+k E A~}, 

and de f i n e / ] (B)  =/2(Ao × A~ × . . .  × Ak). The invariance of/2 under 0 makes 

/~ well-defined, and it can be extended to a o'-finite measure on ~t .  Let o" be the 

two-s ided  shift tr(x,)7=_®= (x,÷~)7=-~. We obtain that /~o --~=/] ,  and have the 

following well-known result. 

THEOREM 2.11 [10]. Let  P have a tr-finite invariant measure t~. P is conserva- 

tive and ergodic ¢:~ the two sided shift or is conservative and ergodic. 

REMARK. If P is ergodic and dissipative, o- will not be conservative; if it 

were, the shift 0 would be conservative by Lemma 2.10--contradict ing 

Theorem 2.3. Since o" is invertible non-conservative (on a non-atomic space), it is 

not ergodic. 

3. Conservative Cartesian products 

Let P and O be conservative Markov operators on L~(X, m )  and L . ( Y , / . t ) ,  

respectively. We know that P x O need not be conservative (e.g., P is the 

two-dimensional random walk, O is the one-dimensional random walk). 

In this section we will be concerned with finding O, for a given P, such that 

P x O will be conservative. 

DEFINITION. A sequence {u,}~=o is called a recurrent renewal sequence if there 

exists a recurrent Markov chain such that u. = p]'~ (so uo = 1, and E~=o u. = ~). 

For n => 1, we define, in that chain, f,  = Pr{first return to 1 at time n} and 

f ~ ) =  Pr{k-th return to 1 at time n}. We then have f ~ =  ,~j=lv"-l~f~k-l)SJS.-j , and 

u. = X~=~f~ ). Also, by recurrence, Y,:=zf, = 1. On the other hand, given a 

sequence a.=>0 for n_->l, such that E ~ = l a . = l ,  we may define a~  ~= 

X . - l , ~ k - l )  (for k < n), and u, = "v- ~kl We then define P~i = a,  p~.,-~ 1 for j= l  Ujt~'n--j = Z - a k = l  ( - / -n  • 

i >= 2, P~s = 0 for the other entries. Then f .  = a., so that p~]~ = u,. 
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LEMMA 3.1. (Brunel  [3]). I]: b. >= 0 and lim,~® b, = 0, there exists a recurrent 

renewal sequence {u,}, 0 < u,+l <- u., u.+Ju, "[ 1, such that ET=o u.b, < oo. 

THEOREM 3.2. Let P be a Markov operator on L=(m ). Then P has a finite 

invariant measure equivalent to m if and only if for every conservative Markov 

operator Q the Cartesian product P × Q is conservative. 

PROOF. 

such that  

(1) A s s u m e  P has no finite invar iant  measu re  m. T h e r e  is a set A 

IN-1  ~=1P"IA N ~  0 

N E . = l m P  (A)---~0. Let  b. = n-lX'~=lmPJ(A), and let w, = (see [71), and -~ ~ " 
m P " ( A ) .  Let  {u,} be  the recur ren t  renewal  sequence  given by the l emma,  and 

(2n)  let v. = u2,. Then ,  for some  chain, v, = p 11 , and,  since the chain with transi t ion 

probabi l i t ies  qij = p~) is also conservat ive ,  {v,} is a recur ren t  renewal  sequence.  

Now,  since u.+l < u., 

w,v. = w.uz, <- w,2 --~ = 2 w, k~_ " -~ 
r t = l  r t ~ l  r t = l  k = n + l  

= 2 ukk-1 w, = 2 u~bk < oo. 
k = l  n = l  k = l  

H e n c e  fZ~=l  v .P" ladm = E~=lV, W, < %  so that  Z~=lv ,P" la(x )<oo  i .e .  

Let  q~j be  a recur ren t  M a r k o v  chain on N = {1, 2, 3, • • • } with q~']) = v.. Then ,  

in X × N, we have  

( P ×  Q)" la× , l , (x ,  1) = 2 q ~ g ' e " l a ( x ) < o o ,  
n = 0  n ~ 0  

so that  E~=o(P x Q)"  la×m < oo a.e. on A × {1}. H e n c e  P x Q is not conservat ive:  

A x {1} is in its dissipative part .  

(2) W e  adapt  Flytzanis '  p roof  [6] of the cor responding  result for  point  

t rans format ions .  

W e  may  assume that  m is invariant  for  P, r e ( X ) =  1. Let  O on ( Y , S , / z )  be  

conservat ive ;  we a s s u m e / z  ( Y ) =  1. D e n o t e  R = P x O, and for  f E L®(X x Y )  

we have  

(Rf) (x ,  y)  = ( f(u, v)P(x,  du)Q(y ,  dr).  
2 
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Assume that O<=fE L®(X× Y) with Rf<=f a.e. Define h ( y ) =  

f f(x, y)m (dx). Then 

Q h ( y )  = f h(v)O(y, dv)= f f f (x ,v)m(dx)Q(y,  dv) 

= f f 
f f(x, y)m(dx) = h(y) .  <__ 

Since Q is conservative, Qh (y) = h (y) a.e., and f [f(x, y) - R/(x,  y)]m (dx) = 0 

for a.e. y, so that f f f f -  Rf)dmdtz = 0. Hence  Rf  <-<_ f f f  R f  = / ,  and by [7] this 

is equivalent to R being conservative. 

REMARK. If P is given by a point transformation without finite invariant 

measures,  Q conservative, such that P × Q is not conservative, can be chosen to 

be also given by a point transformation: Take  the Markov shift of the chain (q~j) 

constructed in the first part of the proof. This construction is taken from [1]. By 

taking a two sided shift, we can have Q given by an invertible transformation.  

Note that we always construct Q with a tr-finite invariant measure.  

THEOREM 3.3. Let or be an invertible measurable transformation in (X, m ), 
with m ~r-finite and invariant for or. If o" is conservative and ergodic, there exists a 
conservative and ergodic measure-preserving transformation r on a tr-finite 
measure space ( Y, "Z, ix) such that o-× r is conservative. 

PROOF. Let 0 = o  "-~. Fix A with 0 < m ( A ) < o o .  For x E X  and 0 < t < l  

define u(t,x) = X~=ot"lA(O"x). For a.e. x, u(t,x) ~ oo as t 1' 1-, since also 0 is 

conservative and ergodic. By Egorov 's  theorem, there is a set Bo of positive 

measure such that 

a( t )= in f {u ( t , x ) : xEBo}  ,oo. 

Since a (t) is increasing on [0, 1) and unbounded,  there is a 0 -< g E L~[0, 1] such 

that f~a(t)g(t)dt = o% and fl, g ( t ) d t  = 1. 

{x E X: f~ou(t,x)g(t)dt = oo} is 0-invariant (since u(t,x)<= 1 + u(t, Ox)), and 

contains Bo. By ergodicity of 0, we have f~o u(t,x)g(t)dt = oo a.e. on X. 

Let u, = f~ot"g(t)dt. Then u, $ 0, and 

u. >-_ U. IA(O"x) = u(t,x)g(t)dt = ~. 
n = 0  n = 0  ) 
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Now by the Schwartz-Cauchy inequality 

1 1 I ] 2  1 1 / 2  

u.+,=fot"/zt~"+2)/Zg(t)dt<-_(fot"g(t)dt ) (fot"+~g(t)dt) =Vu.u.÷~. 

Hence {u.+du.} is increasing, and u.÷~u. ~ 1. 

CLAIM. For every B with 0 < m ( B ) < ~  we have E~=ou.18(O"x)=~ a.e. 

PROOF OF CLAIM. Since we have 

N n - 1  N 

u. l . (O"x)= 2 (u._,-  u.) ~'. 1. (0kx)+ u N ~  i . (0~x)  - 1.(x),  
n = 0  n = 1 k = 0  k = 0  

and by Hopf's theorem (Chacon-Ornstein's theorem for 0) 

1A(0"x) 1B(O"x)~m(A) /m(B)  
n ~ O  n = O  

a.e., 

u.l.(O"x)<~ ¢~ ~ u.lA(O"x)<~. 
n = o  n = o  

By Kaluza's theorem [15], {u,} is a recurrent renewal sequence. Let (@) be an 

ergodic and conservative Markov chain such that u. = q~]), and let r be the 

(one-sided) Markov shift, which has a o'-finite invariant measure/~ (on the path 

space Y). Let Sf(x)= f(~'x) be the Markov operator induced by ¢, and 5~ the 
dual Markov operator. 

By Orey's theorem [20] (qq) has the strong ratio limit property. Let {Y0 = 1}-= 

l~0C Y be the set of paths starting at 1. By example 3.2 in [19], for every FCI I0  
we have 

!ira tz (1~o N (r-"F))//z ((r-" f~o) N rio) = p. (F)/p. (rio). 

Also /~(~'-"flo)= u, by the construction of the shift. 

Now 0 x ~ is a contraction of L,(m x p.). For B C X  with 0 <  m(B)<oo,  we 

let F = { ( x , y ) E B  xl)o: Z~=oS" l~,(y)lB(0"x) < oo}, and Fx ={y ~ l'lo: 

(x, y) E F}. Let Fx.k = {y E lIo: ZT=o 1B(0"x),~" lno(y) ----< k}. Then 

k~,(F~)>= ~, 1.(o"x)S~ ~ g"l.o(y)ao(y) 
n = O  .k 

= ~] 1B(O"x)($"l~, 1F~.,) 
n = O  

= 2 1B(0"x)/z(Ilon r-"Fk,x). 
n = 0  
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Since/~ (rio n ~--"Fk.~ )//z (rio n z-" flo) ~ / ~  (Fk.x)/V- (rio), we obtain, if ~x (Fk.x) > 0, 

that, for a.e. x E B, X u, 1B (0"x) < 0% a contradiction. Hence/~ (Fx) = 0 for a.e. 

x ~ B, so that ( m x / ~ )  (F) = 0. Hence B x rio is in the conservative part of the 

Markov operator (0 x S)* = o" x 7. Hence X x ~0 is in the conservative part of 

o- x % and so is, similarly, X x 7-"1-10. Hence o- x 7 is conservative. 

THEOREM 3.4. Let P be a conservative and ergodic Markov operator on L®(m ), 

with m o,-]inite invariant. Then there exists a conservative and ergodic Markov 

operator Q on l® such that P x Q is conservative. 

PROOF. Let or be the two-sided Markov shift of P, and let Q be the Markov 

chain constructed in Theorem 3.3, with shift ~- such that cr × r is conservative. 

Let 0 be the one-sided shift of P. Then o" x T is mapped onto 0 x ~- (with the 

respective measures), and by Lemma 2.10, 0 × z is conservative. P x Q is now 

conservative, since its shift is (isomorphic to) 0 x r. 

4. Ergodicity of Cartesian products and weak mixing 

Let P be a Markov operator on L®(m), with m an invariant probability for P. 

It is well-known [9] that in this case, the following conditions are equivalent (T is 

the contraction on L~(m) with T* -- P): 
(i) For every u E L~(m) with f udm = 0 there exists a sequence {nk} such 

that T'~u---~0 weakly in Ll(m). 

(ii) P x P is ergodic. 
(iii) For every ergodic Markov operator Q with a finite invariant measure, 

P x Q is ergodic. 

(iv) P is weakly mixing. 
(v) P is ergodic, and has no unimodular eigenvalues J 1. 
The existence of a finite invariant measure for P implies that P is conservative 

[7]. Each of the five conditions above implies that P is ergodic. 

We would like to investigate the relationships among the above conditions, 

assuming only that P is ergodic. The trivial implications are (ii) ~ (iv) ~ (v). 

The implication (i) ~ (iv) follows from a general Banach space result of Jones 

and Lin [13]. (iii) ~ (v) is also easy. 

We start by showing that (ii) does not imply (i), and (iv) does not imply (ii), 

even if P has a o--finite invariant measure conservative. We then show that (iii), 

(iv) and (v) are equivalent. In short, 

(i) ,;g: (ii) ~ (iii) ¢¢, (iv) ¢¢, (v) ~ (i). 
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EXAMPLE 4.1. A conservative and ergodic contraction T on L~(m) with 

tr-finite invariant measure,  such that T × T is conservative and ergodic (hence T 

is weak mixing), but there exists a function v ~ L~(m), with f vdm = 0, so that 

{T"v} has no subsequence converging weakly to zero. 

CoNsaa~uc'norq. Let 0 be the one-sided shift of an aperiodic recurrent 

random walk on the integers, such that also 0 × 0 is conservative and ergodic 

(e.g., P,a = ¼ if j = i - 1, P,., = ½). 

Let T f ( x ) = f ( O x ) .  Then T is a contraction of L~(m) and L=(m), since the 

random walk has an invariant measure,  and m is ~r-finite non-finite. Also 0 is 

exact, i.e, E®--- n~=~ 0 - - E  = {0, fl} (mod m),  since the Markov opera tor  of the 

transition probabilities is mixing. 

Let T* = S. S is also a contraction of L1 and L=. I f f  E L2 is such that there are 

f ,  ~ L2, I/f. 115 <= 1, and T"f,  = f, then f is E=-measurable, hence f = 0. Thus [17], 

S"--->0 strongly in L2, hence for every A , B  with m ( B ) + m ( A ) < ° ° ,  

(T"  1A, l a )  = (S'~ 1R, l a ) - - ,  0. 

Next, note that S × S = (T  × T)*, so T × T and S × S are both conservative 

and ergodic [7]. 
Recall that a transformation 0 preserving a o'-finite infinite measure m is 

called of zero type if f f (O"x)g(x)dm--->0 for f ,g  E L2(m). Thus, we have 

constructed a zero type transformation,  and the next lemma finishes the 

example.  

LEMMA 4.2. I f  0 is Of zero type, there exists a v E L j(m) with f vdm = 0, such 

that no subsequence of {v o 0"} converges weakly in L~ to zero. 

PROOF. Take  A and B with A N B = O ,  m ( A ) = m ( B ) = l ,  and define 

v = 1A - 1,. Denote  Tf (x )  = f(Ox). 

Let Nr be such that for n >/'4,, 

1 
m(O-"B n A )  = (T"IB, 1A) < 27.,, 

1 
m(O-"A A B ) = ( T " l A ,  1B)<27+,. 

Let {nk} be an increasing subsequence. We take a further subsequence of it, so 

we may assume that nk÷~-n~ > Nk. 

Let E = U7-10-"~A. Then 
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(T",u, 1E)= (T~ 1A, 1~ ) - (T" ,  1B, 1~) 

= m(O-"JA A E ) - m ( O - " , B  A E )  

= m(O- '~A) -  m(O-',B n E)  

= 1 - m (O-',B n E). 

We conclude by showing m(O-'~B N E)<=½. 

m (0 -",B n E)  = 

_-< ~'. m (O-",B n o -"~A ) 
k = l  

= m(O-',B A O - " . A ) + m ( A  N B )  
k = l  

+ ~ m(O- 'JBAO-"~A) 
k =i+1 

= ~  (T'-"~IB, 1A)+ ~'~ (ls, T'~-~'IA) 
k = l  k = i + f  

Israel J. Math. 

1 
m 

2'  

since for j > k, ni - nk > n~+~- nk, and for k > j ,  nk - n~ => nk - nk 1. 

PROPOSITION 4.3. Let 0 be a non-singular transformation in (X,~,, m). I f  
0 × 0 x 0 is ergodic, then tr = 0 × 0 is weakly mixing. 

PROOF. We may and do assume r e ( X ) =  1. Let u ( x , y ) E  L~(m × m), with 

f f u ( x ,  y)dm (y)dm (x) -- 0. 
Step 1. Assume u E L~(m x m ), and f u(x, y )m(dx )  -- 0 for a .e .y.  Then for 

any f E L~(m x m), we have, using Schwartz-Cauchy inequality in L2(m (dy)) 

" 2 

N u }2 
{ f  l f  ( x , y ) f (O"x ,O"y)m(dx)[m(dy)  
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REMARK. The construction can be adapted to obtain any ergodic index k, and 

is simpler than the one given in Kakutani and Parry [14]. 

THEOREM 4.4. Let P be ergodic Markov operator on L=(m ). Then (iii) :~ (iv). 

PROOF. Let B be the unit ball of L~(m ), with the w * topology, and denote  by 

(r the continuous map of B into itself defined by restricting P to B. We may and 

do assume m ( X ) =  1, and let T be the contraction on L~(m) with T * =  P. 

Fix u G L~(m) with fudm = 0. We have to show that N-1E~I(u,P"h)I---~O 
for every h @ L~, or, equivalently, for every h E B. 

Let /z be an ergodic invariant measure for o'. We shall show that 

fl(u, h)ld/z(h ) = 0. Let R be defined on L~(B,~) by Rg(f) = g(trf) = g(Pf). 
Then R is a contraction of L~(B, ~). Then S = T × R is an ergodic contraction 

of LI(X×B,m x/Z), by (iii). Define w E L ~ ( X x B )  by w(x,h)= u(x)(u,h). 
Then f f  to(x, h)dm (x)d/z (h) = 0, and ergodicity of S yields 

O:~NI~m~IN-1Nn~=ISnW I=~N[m~B fX IN '~,T"u(x'R"u(h'I dm(x'd/z(h)" 
Let 

FN(h)= fx IN-' lT"u(x)R"u(h)lm(dx) 

Then FN(h)>=O, and we have obtained that [[FN]],--~O in L,(/z). Hence 

FN (h)---~0 in /z-measure, and there is a subsequence {Nj} such that FN, (h)---~O 
a.e. /Z. Fix h E B  for which FNj(h)---~0, and define vN(x)= 
N-1E~=~ (u, P"h ) T"u (x).. Then II vN, tf~ ~ 0 in L,(m ), and 

N N / .  

N;! I(u,P"h)l 2= N;' (u,P"h)(T"u,h) = J vNj(x)h(x)dm )0. 
n = l  n = l  J ~  

Thus, N;'E,=,[(u, P"h)[2---~j_~O for/z a.e. h E B. By invariance of/x, we have 
/,q 

f I(u,h)12dl.*(h ) = f  N;' ,,=,2 I(u,P"h)12d/z--~0. 

Hence I(u, h) I = 0 a.e. Since u is continuous on B, {h E B :(u, h)} = 0 contains 

the support of/Z. 
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fir <-_ u(x,y)f(O"x,O"y)m(dx) m ( d y )  

= f {  fu(x,  y)f(O"x, O"y)m(dx)}{fu(z, y)f(O"z, O"y)m(dz)} m (dy)  

= f ffu(x,y)u(z, y)f(O"x,O"y)f(O"z,O"y)m(dx)m(dz)m(dy). 

Now let v(x, y,z)= u(x, y)u(z, y), g(x, y,z)= f(x, y)f(z, y). Since 

f ffv(x, y,z)d(m xm ×m) = f l fu(x'y)m(dx)[ 2m(dy)=O' 
= N E,=l(v,g(O3(x,y,z)))---~O. The we have, by ergodicity of 03 0 x 0 x 0 ,  that -1 N 

N E,= l l (u , f (o -  (x,y)))12---~0, hence  also above  computa t ion  yields ~ N 

N 

N - ' ~  I(u,f(o-"(x,y)))l--~o, forfEL®(m ×m). 
. = 1  

Step 2. Assume  only u(x,y)EL=(m×m). Define ul(x,y)=u,(y) = 
fu(x,y)m(dx). Then ful(y)m(dy)=O. Let  u2(x,y) = u ( x , y ) - u l ( y ) .  Then  

fu2(x,y)m(dx) = 0 for almost  every y. Clearly u,, uzE L=(m x m). 
Now u = u l +  u2, and for f E L=(m × m) we have 

N N N 

N-' ~ I(u, foo")l<=N-' ~ I(u,,foo")l+ N ' E t(u2,f°°")l • 
n = l  n = l  n = l  

Last term tends to 0 by step 1 applied to u2. First one tends to 0 by changing roles 

of x and y in step 1, and applying it to u~. 

Step 3. If u ~ L~(m × m)  with f fud(m × m ) = 0 ,  w e c a n  approximate  u (in 

L~) by ulEL~(m × m )  with f fu ld(m×m)=O. Hence  the proposi t ion is 

proved.  

To obtain an example such that (iv) does not imply (ii), we show how to 

construct  0 such that 0 × 0 × 0 is ergodic, 0 × 0 × 0 × 0 is not  ergodic. The  

t ransformat ion ~r = 0 × 0 will be the required example.  

Let  u. = (n + 1) -1/3. Then  u, $ 0 and u,+~/u, 1' 1. By Kaluza 's  t heo rem [15], 

{u,}~=0 is a recurrent  renewal sequence,  and the cor responding  recurrent  

Markov  chain P = (p,,) is aperiodic (see §3), since P~q~ = u, > 0 for  every n. Let 0 

be the two-sided shift of P. Then 0 is conservat ive and ergodic.  Now 

O P x P x P  is recurrent ,  since Y,q~]~ y t ~,~3 = = = h o . ~  = Z ( n + l )  -1 oo, but 

P x P x P x P is not recurrent  (hence the invariant measure  is infinite). Now 

0 x 0 × 0 is ( isomorphic to) the two-sided shift of P x P x P and is ergodic,  

0 x 0 x 0 x 0 is the two-sided shift of a non-recurrent  chain, so is not conserva-  

tive, hence  cannot  be ergodic.  
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Thus, f l u I d/z = 0 for every ergodic invariant probability/z. But the extreme 

points of the set of invariant probabilities for o- are the ergodic invariant 

probabilities, and lu lEC(B) ,  so {v~C(B)*:  v~O, v ( 1 ) = l ,  f lu ldv=O} 
contains all tr-invariant probabilities, by the Krein-Milman theorem. R is also a 

positive contraction of C(B), hence IIN-'EL~R"Ju I I1  0, or 

N 

ShUpN-X ~ I(u,P"h)l N--~-~ O, 

which is weak mixing. 

Flytzanis' main result [6] is wrong, as is shown by the result of [8], so it cannot 

be used to show that (v) ::> (iii) (for conservative Markov operators). We now 

turn to proving (v) ::> (iii). 

A seemingly weaker condition than (iii) is: (iii)' For every ergodic Markov 

operator  Q on a separable space with finite invariant measure, P × Q is ergodic. 

LEMMA 4.5. Condition (iii)' is equivalent to condition (iii). 

PROOF. Let P on L®(X, ~,, m) satisfy (iii)'. Assume m (X) = 1. Let O be an 

ergodic Markov operator  on L=(Y, I~ ), with ~ an invariant probability for O. 

Let v ~ L~(Y, @,/t). Let ~0 be the smallest sub-o--algebra with respect to 

which v is measurable. ~0 is countably generated, and we can find a countably 

generated tr-algebra ~ 0 C ~  C ~  such that L®(Y,~l, tz) is invariant under O 

(see Doob's  book [4, p. 209]). Let Q~ be the Markov operator  on (Y, ~l) ,  and 

~ = # I N1. Clearly Q~ is ergodic, with/zl  invariant. Now P x Q~ is ergodic by 

(iii)'. Let T be the operator  on L~(x) with T* = P, R the operator  on LI(Y, #) 
with R*=Q.  Let R1 be on Ll( Y, ~l ,  /z l) with RT=01.  Then R~v=Rv. If 

u E L~(X) with f fu(x)v(y)dmdl~ = 0, then by ergodicity of P x Ql we have 

Now let f E L,(m x p~) with f f f(x, y )dmdtz = O. 
For e > 0 ,  let u, E L~(X), v, E L,(Y)  such that ][E~=,u,v, - f l l ,  < e. Then 

f(x, y ) = f - ~, u,v, + ~ ( u,(x ) -  f u,dm ) v,(y ) 

+ 2 (fu, dm)(v,(y)-fv, d.)+ 2 (fu,dm)(fv, 
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The last sum is a constant function with integral close to f f  f(x, y)dmdtz. Hence 

l imsup N - 1 ~  ( T Q R ) " f  <=2e. 

This shows that P × Q is ergodic. 

PROPOSITION 4.6. Let 0 be a non-singular measurable transformation on a 
finite measure space (X, 2, m ). Let U be a unitary operator in a separable Hitbert 
space H, and let F(x) be a measurable function from X into H, satisfying 
F(Ox) = UF(x) a.e. If  0 has no unimodular eigenvalues J 1, then UF(x)= 
F(x)  = F(Ox) a.e. 

PROOF. Note first that if A C X is invariant for 0 (0,4 C A  and O(X - A ) C  
X - A)  the restriction of 0 to A satisfies all the hypotheses. Secondly, if 0 ~ If] 
is finite and f(Ox) = Xf(x), there is also a solution in L~, since A = {x : If(x)l--< 

k} is invariant. Thus we assume no finite measurable solutions to f(Ox) = Af(x) 

for A# 1, IX[=1 .  

By separability of H, [IF(x)[[ is measurable finite valued, and UF(x)= F(Ox) 
shows that it is invariant for 0. Thus we may restrict ourselves to invariant sets on 

which tlV(x)H--< k. Thus we assume IIF(x)ll--< k. 
Let Ho = {h E H :  [IN-~E,N=I U"h [[---~0}. To prove the result, we show that 

F(x ) ± go a.e. 

Fix h EHo,  and let H~=clm{U"h : - o o < n  <oo}. Let P be the orthogonal 

projection onto H~, and define F~(x) = PF(x). Then F~(x) is measurable from X 

into H~, and UP = PU implies F~(Ox)= UF,(x) a.e. 

By [5, part II, X.5.2], H~ is isometrically isomorphic to L2(F, r/), where 

F = {h :[ h l = 1}, and 7/ is a positive finite Borel measure. U then corresponds to 

multiplication by the function h. Hence we may and do assume that F~ maps X 

into L2(F,'0). By [5, part I, III.11.17], since F~(x) is m-integrable ([IF,(x)[l is 

bounded), there is a bi-measurable function f(x, A) such that F,(x)= f(x, .  ) for 

a .e .x.  Hence for x in a set of full measure, f(Ox, A) = Af(x, A) for a .e .h.  Thus we 

have hf(x, A) = f(Ox, h ) for m × "O a.e. (x, h). This shows that for h in a set of full 

r/ measure, f(Ox, h ) = h f ( x , h )  for a . e . x .  Let f~(x)=f(x ,h) .  Then fA(Ox) = 
h/(x) ,  and f, is finite a.e. Hence f,  = 0 m-a.e, for A J 1. Since 7/{1} = 0 (h E Ho), 

we have a.e. f(x, A) = 0. Hence F~(x) = 0 a.e., or F(x)±H~ a.e. Taking h, dense 

in Ho, we obtain F(x)±Ho,  showing UF(x)= F(x) a.e. 

REMARK. Considering the same "eigenoperator  equation," A. Beck [2] 

showed that if 0 is conservative, for a.e. x there is an {n,} such that H U",F(x)-  
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F(x)ll-->O. If 0 is not conservative, Beck's result fails: X is the set of integers, 

0(1" ) = j + 1, H = 12, U the shift and F ( j ) =  ej. 

THEOREM 4.7 (Weak mixing theorem). Let P be an ergodic Markov operator. 
Then conditions (iii), (iv) and (v) are equivalent. 

PROOF. We have to prove only (v) ~ (iii). Let Q be an ergodic Markov 

operator with finite invariant measure, let 0 be the one-sided shift of P, and let 

tr0 be the one-sided shift of Q, tr its two-sided shift. P × Q is ergodic if and only 

if 0 x tr0 is ergodic, and it is enough to prove that 0 × o" is ergodic (or is also 

conservative and ergodic). By Theorem 2.6 also 0 satisfies (v), and is ergodic by 

Theorem 2.5. 

Thus, the problem is reduced to point-transformations, and tr invertible on Y, 

preserving a probability measure /x. Lemma 4.5 shows that we have to prove 

ergodicity only for separable L2(Y,/~). 

Let f(Ox, o-y)= f(x, y) a.e., with If(x, Y)I < 1. Define F from X into L2(Y, i~) 
by F ( x ) ( y ) =  f (x ,y) .  Let U be the unitary operator in L2 induced by (the 

invertible) o --~. Then F(Ox)= UF(x) for a.e. x, so by Proposition 4.6 F(x)= 
UF(x) for a.e.x. Hence, for a.e. x, f (x , .  ) is invariant for tr, so by ergodicity of o', 

it is constant a.e. Thus f(x, y) does not depend on y, or f(x, y ) =  f(x).  Now 

F(Ox) = f(x),  so f is constant by ergodicity of 0. 

REMARK. Proposition 4.6 was also proved independently by Michael Keane. 

COROLLARY 4.8. If  P is weakly mixing, and Q is weakly mixing mixing with 
finite invariant measure, then P × Q is weakly mixing. 

PROOF. Use condition (iii). 

COROLLARY 4.9. Let P be a conservative and ergodic Markov operator with 
tr-finite invariant measure. 

(a) P is weakly mixing if and only if its dual Markov operatoris weakly mixing. 

(b) P is weakly mixing if and only if its two-sided shift is weakly mixing. 

PROOF. (a) Let P be weakly mixing, and let/5 be the dual Markov operator. 

If Q is ergodic with an invariant probability, P × 0 is conservative and ergodic, 
and so i s / $ x Q = ( P x t ) )  ^. 

(b) is also proved using condition (iii) (and [10]). 
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REMARK. Even in the absence of a finite invariant measure, weak mixing is 

weaker than mild mixing. For example, let ~ be mildly mixing, p invertible weak 

mixing with invariant probability which is not mild mixing. Then 0 = r × p is 

weak mixing, not mild mixing, and has no finite invariant measure if z has none. 

5. Ergodicity of Cartesian products and mixing 

THEOREM 5.1. P is completely mixing if and only if P x 0 is ergodic for every 
ergodic O. 

PROOF. (i) Let P be completely mixing in the (probability) space (X, E, m). 

Take Q ergodic in (Y, ~,/x),  and let T be the linear contraction in Ll(m) with 

T*= P. (Remember that we assume that P and Q are given by transition 

probabilities.) 

Let f(x, y) E L®(X x Y) be invariant for P × O. Take u E Ll(m) with f udm = 
O. Then, for a.e. y, 

I fx u(x)f(x, y)dm(x)l= ]fx u(x)[(Px O)"f](x,y)dm(x)l 

= I f  T'u(x)f~.,(x)dm(x) I 

=< I1T"u II, II fo.y IP 

.---.> 0, 

since for  ~ ( x )  = If(x, t )O ' " ' (y ,  dt) we have IlK, IP --< llfl[-. 
Hence f u(x)f(x, y)dm (x )=  0 for u E L~(m) with f udm = 0, so that for any 

u ~L~(m) we have fu(x)f(x,y)dm(x)=ffudm).ff(x,y)dm(x). Let h ( y ) =  

fxf(x, y)dm (x), and take v(x, y) E LI(X X Y). Then, using Fubini's theorem, 

fx×v v(x, y)f(x, y)d(m x /z )  

:L 

L 
=L h(Y)L 

[f× v(x, y)f(x, y)dm(x) ]d.(y) 

v (x, y )din (x)dlz (y) 

= fx×v v(x,y)h(y)d(m x/z).  
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This shows that f(x, y)= h(y) ,  and Oh = (P x Of f  = f = h. Hence f(x, y) is 

constant, by ergodicity of Q, and P x O is ergodic. 

(ii) Let P satisfy the condition. To show that P is mixing, we have to show that 

if there is a sequence {f,} in L~ with IIf, Jl_-<l such that P[,+~=[., then 

f.  - -constant  for each n [17]. 

Let {f.} be such a sequence. We take for O the shift on the integers Z ;  by our 

assumption P x O is ergodic on X x Z. Define F on X x Z by F(x, n) = fn(x). 
Then Ilffr = < 1. 

( P x  Q)F(x,n)= f~, fx F(t,k)P(x, dt)Q(n, dk)= fx F(t ,n+ 1)P(x, dt) 

= fx f,+,(t)P(x, dt) = Pf,+t(x) = f,(x) = F(x, n). 

Hence F(x, n) is constant a.e., and for each n fixed, f ,(x) is constant a.e. Hence 

P is completely mixing. 

REMARK. A non-singular transformation 0 is completely mixing if and only if 

it is exact (i.e., (-l~_,0-"X = {O,X}). See [171. 

COROLLARY 5.2. If P and Q are completely mixing Markov operators, then 
P x Q is completely mixing. 

COROLLARY 5.3. If P is conservative and mixing, then P x Q is ergodic for 
every conservative and ergodic Q. 

PROOF. If P has no finite invariant measure, it is completely mixing [16], and 

Theorem 5.1 applies. If P has a finite invariant measure, it is equivalent to m. 

Since mixing implies mild mixing, P x O is ergodic for every ergodic and 

conservative O, by [8]. 

EXAMPLE 5.4. Products of conservative mixing Markov operators which are 

not mixing. 

Take P mixing with invariant probability, but not completely mixing (e.g., P 

obtained by an invertible mixing transformation). Take O completely mixing 

without a finite invariant measure. Then P × O has no finite invariant measure, 

since O has none. If P x O were mixing, it would have been completely mixing, 
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by [16], implying complete mixing of P which is false. (Note that P x Q is 

conservative and weak mixing, in this example, and satisfies also the conclusion 

of Corollary 5.3.) 

REMARK. It is shown in [18] that for P conservative and mixing, P x P is 

mixing. This can also be proved using Theorem 5.1. 

6. Mild mixing and Cartesian products 

THEOREM 6.1. Let 0 be a mildly mixing transformation in (X,E, m ). Then for 
every invertible ergodic and conservative t7 (in (Y, ~, ~ )) 0 × o" is ergodic. 

PROOF. We assume that L~(X,~,, m) is separable (see Lemma 4.5 for the 

reduction to this case). Let B be the unit ball in L~(X; E, m), which is compact 

metric in the weak-* topology. We may and do assume ~ (Y)  = 1. Let f(x, y) be 

invariant for 0 x o', and w.l.g. Ilfll~---- 1. Define a map F(y)  from Y into B by 

F (y )  (x) = f(x, y ). It is easy to check that F is measurable. Let { U~ } be a covering 

of B by balls (in its w * metric) of diameter < 1/r. Then Y = UjF-I(Uj) .  For a.e. 

y E F-I(Uj) there is an n,(y) such that o'-":Y)y E F-~(U~), since 0 "-1 is conserva- 

tive. Hence, for a.e. y E Y, F(o--",<Y)y)---~ F(y )  weak-* (in B). Hence for every 

u (x)  1_,,(x), 

f f(x,y)u(x)dm= f F(y)(x)u(x)dm =!imf F(~-° ."y)(x)u(x)dm 

= ! i m f  f(x,o'-":')y)u(x)dm = ! i m f  [(O",")x,y)u(x)dm, 

for those y E Y such that F(tr-",CY)y)---~ F(y)  weak-* and f(O"x, y) = f(x, o'-"y) 

for all n and a.e.x. Thus, for a.e. y fixed, f(O":Y~x, y ) ~ f ( x ,  y) weak-*. Since 0 is 

mildly mixing, f(x, y) does not depend on x, or f(x, y ) =  fl(y). Now f l (o 'y)= 

fl(y), and ergodicity of o- implies that f is constant. Hence 0 x o- is ergodic. 

COROLLARY 6.2. An invertible transformation 0 which has no finite invariant 

measure is not mildly mixing. 

PROOF. Let 0 be an ergodic invertible transformation. We assume that 0 is 

not the shift on the integers (which has unimodular eigenvalues and is not mildly 

mixing) and therefore 0 is conservative. By the remark following Theorem 3.2, 
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since 0 has no finite invariant measure,  there is an invertible conservat ive and 

ergodic o- (ergodicity of o- follows in the construct ion f rom L e m m a  3.1) such that 

0 x or is not  conservative.  Hence  0 x o- cannot  be ergodic (since it is not the shift 

on the integers). T h e o r e m  6.1 shows 0 cannot  be mildly mixing. 

COROLLARY 6.3. Let 0 be mildly mixing. Then for every ergodic conservative tr 
with o'-finite invariant measure, 0 x tr is ergodic. 

PROOF. Let ~0 be the two-sided shift of o-. Then  0 x ~r0 is ergodic.  Hence  so is 

0 × tr (see L e m m a  2.10). 

COROLLARY 6.4. Let P be mildly mixing. Then for every ergodic conservative 
Q with o'-finite invariant measure, P x Q is ergodic. 

REMARK. The  result of [8] shows that if P has a finite invariant measure,  

Corol lary  6.4 is t rue even if Q has no o--finite invariant  measure.  

THEOREM 6.5. If P is completely mixing and O is mildly mixing, then P x 0 is 
mildly mixing. 

PROOF. Let P be defined on L~(X,m), O on L~(Y,/x).  Let  f E  L~(X x Y) 
satisfy (P  x O ) ' f ~ f  weak-* in L ( X  × Y). 

Take  u E LdX) with f udm = O, and v E L d Y  ). Then 

I f l u(x)v(Y)(Px O)"fdmd~l 

= f fuP"(x)vO°(y) f (x ,y )dm(x)d~(y) l  

=< i v O " ( y ) l  f uP"(x)f(x,y)dm(x)ldt~(Y) 

J r vO°(Y)l I/uP ° _< Illllflt~ d ,  

--< II v [I, [[[ll~ll uP" Ill 

~0. 

Hence  f fu(x)v(y) f (x ,y)dmdl~=O=fu(x)[ f f (x ,y)v(y)d~]dm. Fix v E 

LI(Y), and deno te  h(x)=ff(x,y)v(y)dlz.  Since fu(x)h(x)dm = 0 for every 

u E LI(X) with fudm = 0, we have that h(x) is constant  a.e. on X. D e n o t e  the 

constant  by a (v). Then l a (v) l_-  < Ilfll ll v [I,. Since a ( v ) i s  linear in v, there  is a 
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g E L=(Y) such that a (v )  = f v ( y )g ( y )d t z .  Hence f(x,  y) = g(y)  a.e. on X × Y. 

The assumption yields that Q",g-~g  weak-* in L®(Y), and mild mixing of Q 

implies that g is constant a.e., hence so is f. 

EXAMPLE 6.6. A conservative mildly mixing transformation with infinite 

invariant measure and non-atomic tail field. 

Let 0 be exact conservative with o'-finite infinite invariant measure, and let o- 

be invertible probability-preserving and mild mixing (on a non-atomic space). 

Then 0 x ~r has the required properties. 

THEOREM 6.7. Let 0 be the two-sided shift of a conservative mildly mixing 

Markov operator P with o'-finite invariant measure. I f  tr is a conservative and 

ergodic transformation with tr-finite invariant measure such that 0 × tr is conser- 

vative, then 0 x tr is ergodic. 

PROOF. Let p be the two-sided shift (natural extension) of tr. Let 01 be the 

(one-sided) shift of P. Then 0 x tr conservative implies 0~ x tr conservative 

(Lemma 2.10), and by Corollary 6.4 (and Theorem 2.9) P × tr and 01 × tr are 

conservative and ergodic. By Theorem 2.11 0 × p is (conservative and) ergodic, 

so by Lemma 2.10 0 × tr is ergodic. 

REMARKS. (1)  If 0 has a finite invariant measure, the conditions of the 

theorem are equivalent to mild mixing (since the construction in [8] yields a 

transformation with tr-finite invariant measure). If the invariant measure is 

infinite, 0 is not mildly mixing (by Corollary 6.2). 

(2) In contrast to the finite invariant measure case, the condition on 0 in 

Theorem 6.7 does not imply that 0 x 0 is ergodic, since it may fail to be 

conservative. Such an example is given by o" in Example 4.3 (where we take 

two-sided shifts of aperiodic Markov chains). However,  Corollary 4.9 shows that 

0 must be weakly mixing. 

EXAMPLE 6.8. A weakly mixing invertible transformation with an infinite 

o'-finite invariant measure, which does not satisfy the conclusion of Theorem 6.7. 

Let p be an invertible weakly mixing transformation with an invariant 

probability, which is not mildly mixing (it is indicated in [8] how to construct 

such transformations). By [8] there is an invertible ergodic (and conservative) o-, 
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p r e s e r v i n g  an inf in i te  o--f ini te  m e a s u r e ,  such tha t  p x o- is no t  e rgod i c .  B u t  p × 

is c o n s e r v a t i v e  by T h e o r e m  3.2. Le t  ~ be  t he  t r a n s f o r m a t i o n  c o n s t r u c t e d  in 

T h e o r e m  3.3, and  let  -q be  t h e  t w o - s i d e d  shif t  of  t h e  cha in  in tha t  p r o o f  ( r  is i ts 

o n e - s i d e d  shift) .  T h e n  ~-, is c o n s e r v a t i v e  a n d  w e a k l y  mix ing  (see C o r o l l a r y  4.9) 

wi th  t r - f in i te  inf in i te  i n v a r i a n t  m e a s u r e .  N o w  tr x r is c o n s e r v a t i v e  by T h e o r e m  

3.3, and  e r g o d i c  by T h e o r e m  5.1. H e n c e  o- x ~-1 is c o n s e r v a t i v e  a n d  e r g o d i c .  W e  

d e f i n e  0 = r ,  x p, wh ich  is w e a k l y  mix ing  by C o r o l l a r y  4.8. T h e n  0 x o - =  

r,  x p x t r ,  which  is no t  e r g o d i c  s ince  p X o -  is no t  e rgod i c .  Bu t  0 x o -  

p x (o" x 1-1), wh ich  is c o n s e r v a t i v e  by T h e o r e m  3.2, s ince  tr x "r~ is c o n s e r v a t i v e .  
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