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ABSTRAC'r 

Two ratio limit concepts for transformations preserving infinite measures, 
rational ergodicity and bounded rational ergodicity, are discussed and com- 
pared. The concept of rational ergodicity is used to construct some continuous 
measures on the circle, which show that the exceptional set in the weak mixing 
theorem may be rather large. 

§0. Introduction 

We study two ratio limit properties of conservative ergodic, measure preserv- 

ing transformations (c.e.m.p.t.s) of infinite measure spaces. The weaker property 
is rational ergodicity. Let (X, ~,/z,  T) be a c.e.m.p.t. Recall from [1] that T is 

said to be rationally ergodic (r.e.) if there is a set A ~ ~,  0 < /z  (A) < oo such that 

 01, suo f  \ ~ = o l A ° T k / a " ( A )  dtz <oo 

where here and throughout a,,(A)= E'~-~otx(A f'l T-kA). The collection of sets 

satisfying (0.1) is denoted by B(T). It was shown in [1] that if T is r.e. then 

::ta,,(T) '~ oo such that 

rt-1 

(0.2) a.(T) k~,o~(BNT-kC)-->tz(B)~(C ) asn--.ooifB, C E ~ ,  

B U C E B ( T )  

Received July 25, 1978 

181 



182 J. AARONSON Israel J. Math. 

and that 

lim 1 ~-,' 
(0.3) .~®a.(T)k~z, .ol~(BNT-kC)>=g(B)tx(C),  VB, C E ~ .  

The sequence {a.(T)}. is clearly defined uniquely up to asymptotic equality, 

and is known as a return sequence for T. The collection of all sequences 

asymptotically proportional to an(T) ( i . e . a . / a . ( T ) - ~  c E (0, o0)) is known as the 

asymptotic type of T and denoted by M(T). 

It was also shown in [1] that ergodicity is not sufficient for rational ergodicity. 

In §1, we show that dyadic towers over the adding machine are rationally 

ergodic. 
It turns out that the proof of this result actually establishes the stronger ratio 

limit property, bounded rational ergodicity, which we study in §2. 

By a result in [5], bounded rational ergodicity characterises the occurrence of 

mixed ratio limit theorems, which were introduced in [5, §4] for Markov 

operators. A consideration of transformations admitting recurrent events 

(shown to be rationally ergodic in [1]) yields that some are boundedly rationally 

ergodic, and that some are not. Thus rational ergodicity is not sufficient for 

bounded rational ergodicity. 

In the last section, we use the result of §1 to construct some continuous 

measures on the circle, which show that the exceptional set in the weak mixing 

theorem may be rather large. 
Part of the material of the first two sections is taken from the author's Ph.D. 

thesis, which was written at the Hebrew University of Jerusalem under the 

supervision of B. Weiss, whom the author wuold like to thank together with J. P. 

Conze and M. Keane for some helpful discussions. 

§1. Dyadic towers over the adding machine 

We first recall the well known definition and basic properties of the (dyadic) 

adding machine. 
Let ~ = {0, 1} N and let 

l ( x ) = i n f { n  >= l : e . ( x )=O}  (=<oo) 

where x = ( e , ( x ) , e z ( x ) , . . . )  = (1, 1 , . . . ,  1,O,e,x~+~(x),.-.)E ~. 

The (dyadic) adding machine ~ - : ~  t l  is defined by 

~'x = (0, '" ",0, 1, e ,.~+,(x ), . . . ). 
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The transformation ~" is called the "adding machine" because 

2~-~ek(rX)= ~ 2k-'ek(X)+ 1 mod 2", 
k=l k~l 

(1.1) Vn _--> 1, x E l l  

and this has the consequence 

{(e,(rkX), ' '  ", e.(rkx)) :0 =< k < 2"} = {0, 1}", 

(1.2) Vn=>l,  x ~ l l .  

Now let ,ff be the o'-algebra of subsets of II generated by cylinders, and let P 
, , N (it, M). It follows from (1.2) that if be the product measure (~,~) defined on 

[ : f l - - -~R is a function depending on only finitely many coordinates, 

rt-i IN 1 [de. 
(1.3) n k-0 

In particular, (It, M, P, r)  is an e.m.p.t. 
Now let {y(n)}~. ,CN.  We define the dyadic height [unction with heights 

{y(n)} by 

6 ( x )  = y ( l (x) )  

and the dyadic tower over the adding machine with (dyadic) height[unction 6(x ) 
as follows: 

x = {(x, n) :  6 ( x )  --> n _-> 1}, ~ = v (s¢ n [6  -- n], n),  
n=l 

n=l 

f ( x , n + l )  if ( x , n + l ) E X ,  
T(x,n)= 

(rx, 1) else. 

It follows ([8]) that (X,~,I.t,T) is a c.e.m.p.t, and that i x (X)=fa6dP= 
X:=, y(n)/2". 

The purpose of this section is to show that (X, ~ ,  Ix, T) is rationally ergodic. 

First, we introduce some more notation which will help identify the asymptotic 

type of T. 
Let F(n) = X~=12"-ky(k) and /3(n) = F (n )+  y(n  + 1) for n --- 1 and /3(0)= 

y(1). It follows that 
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. - 2  

(1.4) 3,(n) = /3 (n  - 1 ) -  ~ /3(k) for n _-> 2 (and ,/(1) =/3(0)). 
k - 0  

We will refer to {/3(n)} as the growth sequence of the dyadic height function 
y(l(x)) .  It is clear that if {/3(n)}_C N is the growth sequence of some dyadic 

height function, then 

~.l--I 

(1.5) /3(n) > Y~ /3(k) for n => 1. 
k m 0  

Conversely, any sequence {/3(n)}7-o satisfying (1.5) is the growth sequence of 

the dyadic height function with heights defined by (1.4), so we term such a 

sequence a growth sequence. Note that any growth sequence must satisfy 

/ 3 ( n ) >  2 ". = 

The reason for the name "growth sequence" is 

(1.6) 

(1.7) 

(1.8) 

where tk.(x) = Z~--~Od~(r kx ). 

LEMMA 1. Let ¢k :I'~---~N be the dyadic height function with heights {y(n)} 

and growth sequence {/3 (n)}, then 

= r ( n ) +  v ( n  + l(or"x)) 

where tr(e, . . . ) = (e2. . . ) V x E I I ,  

> / 3 ( n  - 1), 

P(~b2- =/3 (n)) => ½, 

PROOF. By (1.2), Vx ~ 1"~, n --> 1, 3! k = k , (x)  < 2" such that e~(~'k.x) . . . . .  
e,(zk.x)  = 1 and e,,(~'k.x) = e,,(x), Vm -> n + 1. Hence l (zk .x)= n + l((r"x). 

Now, also by (I.2) 

62,(x) = ~ y ( k ) x  # { e  E {0,1}" :ej = 1 

for j < k and ek = 0}+ ,b(z~-x) 

= ~ y(k)2  "-k + y(l(~'k,x)) 
k - 1  

= F ( n ) +  y(n + l(or"x)). 

This is (1.6). It implies (1.7) as F(n)_- > / 3 ( n -  1); and (1.8) as P(~b2. =/3(n))  -> 
P(/o o'" = 1) = ½. []  
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Tr~OREM 1. Let (X, ~, tz, T) be the dyadic tower over the adding machine 
with height function ok(x) with growth sequence {13(n)}. Let c ( n ) =  inf{k _-__ 

1 : It(k) >= n}. Then T is rationally ergodic and a . (T)~2 "(") (i.e. lira a.(T)12 "(") > 0 
and l ima.(T)/2 "<") < oo). 

PROOF. We first show that l ) =  (f/, 1)(~ B(T) .  
Note that 

4, i x )  

lti o T k (x, 1) = n, Vx E f l ,  k=l n>l .  

Consequently, if x E [~ then 

Is( , ( . ) )  

~, 1.°r~(x,1)~ E l~°r~(x,1) 
k ' l  k - - I  

since fl(c(n)) > =n 

< lao Tk(X, 1) by (1.7) 
k = l  

=2,(-)+1. 

This implies 

(1.9) ~ lao T k --< 2 "(")+' on X. k-I 
It will now follow from 

(1.10) lim,_~ a,  (~)/2"(") _- > 1/4 

that ~ B(T) ,  since if this is true, then 

f ( ~  )2 la  o T k d/~ ~ 4(2"(")) 2-~ 100a. (~/)2 
l i  k = l  

for n large. 

We now establish (1.10). 

By the mean ergodic theorem, if/~ ( X ) <  oo then T is rationally ergodic. We 

therefore consider the case 

~,(x)= ~] v(n)/2" = ~ .  

It is not hard to see that 

a.(~) = ~] ~(f in T-'~)= ~] a(~  _-< n) 
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and hence that, if l = [log2n], then 

2, 

a. (fi)_-> ~ P(~bk < n)--> P(4)2, _-< n)2 j'. 
k ~ l  = - 2 k = l  

Now, since we assume /z ( X ) =  o0, we have that 

/3 ([log2 n ]) => F([log2 n ]) > n for n large enough. 

Thus we obtain, for n large enough, 

I ! 

P(~b2~ =< n)2 k = ~] P(4)2~ =/3(k))2 k 
k = 1  k = l  

O ( k ) < n  

c ( n ) - - I  

= ~ P(4)2 ~ =/3(k))2 k 
k = l  

c ( n ) - I  

> 1 2 k = ~  2 by (1.8) 
k = l  

= ½(2 " " ) -  2).  

This establishes (1.10), and the rational ergodicity of T. We also have since 

f~ E B(T),  a,(T) ~ a,(l~), and it follows from (1.9) and (1.10) that a, (fl)~2 c<"). 
[]  

COROLLARY. Let (X, ~, tz, T) be a dyadic tower over the adding machine. 
Then any measurable, /~-non-singular transformation of (X, ~,  tz ) which com- 
mutes with T preserves Ix. 

PROOF. The result follows immediately from the rational ergodicity of T. 
This corollary was established, using different methods, in [7] for the dyadic 

tower over the adding machine with heights y(n)= (1 + 22"-1)/3. 

§2. Bounded rational ergodicity 

Let (X, ~,/x, T) be a c.e.m.p.t. We will say that T is boundedly rationally 
ergodic (b.r.e.) if :IA E ~ ,  0 < t~ (A)  < oo such that 

F F (2.1) su=pess-sup a---~-~k~__0 1A(Tkx) <0o. 

We denote the collection of sets satisfying (2.1) by S(T). It is clear that 
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S(T)  C_ B(T) ,  and it follows from theorem 4.1 of [5] that A E S(T)  iff T satisfies 

a mixed ratio limit theorem on A, i.e. 

n- -1  

a , (A)  E P(T-kB) --~ /~(B) k=o /z(A) 2' 

(2.2) VB ~ ~ O A ; P '~/z, P(X) = 1. 

It follows immediately from (1.9) and (1.10) that if T is a dyadic tower over the 
adding machine, then (I E S( T). 

The rest of this section is devoted to identifying some other b.r.e.m.p.t.s, and 

to showing that rational ergodicity does not imply bounded rational ergodicity. 

LEMMA 2. Let (X, ~, t~, T) be a c.e.m.p.t., then T is b.r.e, iff T is r.e. and 
3or = a ( T ) E  [1,oo) such that 

1 "-' f× l i m ~ f o r ~ = ~  fd~ a.e., 
~®a.(r)k=o 

(2.3) 
V f E L ' ( X ) ,  f>-O. 

PROOF. First, suppose that T is r.e., and let, for f E  L 1, f ~ O  

t a - 1  

aft, x) = ! ! m - -  ~ f(Tkx). 
~=a.(T) k~o 

Clearly a (f, Tx)>= a (f, x ) and hence a (f, x ) =  a (f) for /z-a .e .x .  Furthermore, 

the Hopf ergodic theorem yields that 

a~)/ fx fd~ = a(g)/ fx gdlz, 

Hence, ::la E [0, oo] satisfying (2.3). 

A E B ( T )  such that / . t (A)>0 ,  a ' E ( a ,  1), noEN,  and B E ~  A A  such that 

W, g e L '(x) ,  f,g_->0. 

Now, if a < l  then we can choose 

n 1 

a,7T) k=01A(Tkx)= < a ' I z ( A ) ,  Vn=>no, x E B .  

Integrating this inequality on B violates (0.2) and therefore the assumption 

that A E B(T).  Hence a => 1. 

We have shown that if T is r.e. then (2.3) is satisfied with 1 <- a < oo. 

Suppose that a < ~ and choose A E B(T).  We can find B _C A,/~ (B) > 0 and 

M < oo such that 



188 j. AARONSON Israel J. Math. 

whence 

M-1 

a,7"T) E t  k - o l a ( T k x ) < - M '  Vn_->l, x E B  

n - I  

a,(T)~o 1B(Tkx)<M' Vn_->l, x E B  

and hence Vx E X. Thus B E S(T), since a, (B)~  I.t(B)2a,(T). 
Conversely, suppose that T is b.r.e., then T is r.e., and if A E S(T) then 

a,(A )~ ix(A )2a~(T) and hence 

- -  1 n - - I  

a /z (A)=l im-- - - - r~ ,~ ' ,  1AoT k <o~ a.e. 
n--*~ a n  ~ / ) ~'-=__ o 

by (2.1). []  

Note that (1.9) and (1.10) show that a(T)<= 8 for T a dyadic tower over the 

adding machine. 

We now turn our attention to c.e.m.p.t.s admitting recurrent events, whose 

definition we now recall from [1]. 

Let (X, ~, /z ,  T) be a c.e.m.p.t. A set A E ~,  0 < /x  (A)  < ~ is called a recurrent 
event for T if, for 0 < nl < -- • < nk, 

k 

tz(A f3 T-",A t') . . .  f3 T-"kA )= iz(A ) I- I / z (A  fl T-%-~-,)A )/lx(A ). 
/ - 2  

The collection of recurrent events for T is denoted by M(T) ,  and T is said to 

admit recurrent events if M(T) J 0 (all Markov shifts admit recurrent events). 

It was shown in [1] that transformations admitting recurrent events are 

rationally ergodic and that M(T) C B(T). 
As the next results show, the bounded rational ergodicity of a transformation 

admitting recurrent events is dependent  on its asymptotic type. This is in 

contrast to the situation with dyadic towers over the adding machine. 

THEOREM 2. Let (X, ~, i~, T) be a c.e.m.p.t, admitting recurrent events, and 
assume that a , ( T ) -  niL(n), L ( n ) =  exp(fge(t)dt) and t L o g L o g t .  e(t)--->O 
then T is b.r.e, and a(T)<=e. 

PROOF. Let A E M(T) and let, for x E A, 

4,(x) = inf{n => 1 : T"x ~ A}, 
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shown that a (T) =< e. Bounded rational ergodicity follows from Lemma 2. 

TAx=T*~X)x--the induced transformation on A ([8]) and ~b,(x)= 
n--1 k . Ek-o ~b(TAx), then 

1 A ( T " x ) = ~  lt**=,l(x ), Vn=>l ,  x E A .  
k = l  

Now, it is not hard to show that, since A ~ M(T):  {~b o T7,}7=o are i.i.d.r.v.s 

defined on the probability space (A,B 71A,/za) where p.A(B)= 

/x (A)-~/z (A t"l B). Consequently, the proof of formula (i) in [3] applies and we 

have 

l n - 1  

!ira a ~  k~__o la  o Tk _--< e a.e. on a 

n - 1  

where a(n) = ~ tza (T-kA). 
k = 0  

Since the above lim is constant a.e. on X, and a ( n ) -  g(A)a, (T) ,  we have 
[] 

THEOREM 3. Let (X, ~, tz, T) be a c.e.m.p.t, admitting recurrent events, and 
assume that a , ( T ) =  nSL(n) where 0<=6 < 1  and L(n) is slowly varying as 
n---~oo; then T is not b.r.e., moreover, Vnk ---~oo 

(2.4) 

n k - 1 

~----~m-- Z loT' ks®a,k(T).j=o = ~ a.e., 

V f E L ' ( X ) ,  f>=O, ft>o. 
PROOF. Let A E M(T), u. = tz(A f3 T-"A)It~(A), a(n) = E~=,uk and tO. = 

E~=11A ° T k. We will establish that 

- -  1 
(2.5) lim ---v--z, to,, =oo a.e., Vnk --~ oo 

which, by the Hopf ergodic theorem, implies (2.4) (and hence the result) since 

a ( n ) -  tz(A )a,(T). 
If (2.5) is not satisfied for nk ~ 0% then, owing to the T-super-invariance of the 

lim in (2.5), 3 M  < oo such that 

1 
< M  a.e .  
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Now let, for x E A, 

~o(x) = inf{n _-> 1 : T"x ~. A}, 
n - 1  

TAX = T~'<~)x and ~o,(x)= ~ ~o(T]x). 
k - 0  

Then, ~,.xx)(x)- n and ~,~ _-< n ::> ~, _-> m. Moreover, since A ~ M(T),  
{~o o T~,}:-o are independent identically distributed random variables on the 

probability space (A, ~ f3 A, ~A), and 

u.-~- tZA (~p > k ) ~  n (n -_> 1). 
k - 0  

It follows from Karanata's Tauberian theory (see [9] and [11]) that /za(¢ - 

n) ~ cola(n) as n ~ oo, where 0 < co < ao depends only on a. In this situation, it 

is known (see [11] pp. 448 A.~9) that 

~A(~O.<xb(n))--~= f . (y )dy  as n - - ~  fo ra l lx  >0,= 

where b(a(n))= n and f(y)_---0 is characterised by its Laplace transform: 

f0 ® e-'~f. (y)dy exp( ) x d.x ° for 0. 

We shall need the faet that f;f~(y)dy > 0 for all e > 0 (which follows from the 

form of its Laplace transform). 
In the light of this (2.6) is impossible, as 

~A(O. ~- xl2a(n)) ~- ~A(O. ~- a(x"°n)) for n large 

> (~o < n) ~_ [,.L A a ( x l l ~ n )  .~- 

= ttA (~o.(~,..)_-< x-~/ab(a(x~'~'n))) 

f O  x - lla 
- - - ,  f . (y )dy  > 0  for all x >0 .  [] 

§3. Rational  ergodicity and cont inuous  measures  on the circle 

Let p be a continuous probability measure on the circle F = {A E C : I A I = 1}. 

It is well known that there is an "exceptional set" K _C N of density zero (i.e. 

IK n [1, nll/n ---, 0) such that 
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(3.1) ~ ( n ) = f r  A"dp(A)--~ 0 as n --~ 0o, n6~K.  

The purpose of this section is to show, using the result of §1, that the 
exceptional set in (3.1) may in general be arbitrarily "thick" within the limitation 

of having density zero. We prove 

THEOREM 4. Let a ( n ) > 0 ,  a ( n ) / n ~ O .  Then 3 a continuous probability 

measure p on F, and L C_ N such that 

/~(n)---~l as n --~, oo, n E L and 

IL n[1,  nllla(n)--*oo as n--*~. 

Theorem 4 has the following 

COROLLARY. Let a ( n ) > 0 ,  a(n)/n--~O. Then il a weakly mixing m.p.t. 

(~, a, P, O) and L C_ N such that f o 0" --~ f in L 2(1)) as n ~ co, n ~ L, V f  E L 2(1)), 

and IL tq[1, nll/a(n)--*oo. 

Since, if p is a symmetric continuous probability measure on F, and L C_ N 
satisfying the conclusion of Theorem 4 for a (n) (no generality is lost in assuming 

p symmetric) and (1), a, P, 0) is the shift of the real Gaussian process {X,} with 

correlation function E ( X m X , ) =  ~(m - n ) ,  then by the theorems of Girsanov 

and Maruyama (see [10]), 0 is weakly mixing and has the maximal spectral type 

"rr = ~ p" */2 "+'. 
n = o  

it follows that ~ (n ) - - * l  as n--,oo, n e L ,  and hence that ~(n)--*~(O) as 
n~o% n E L ,  Vr/'~zr. But if f e L  2 then 

f i fo  "df= ¢~:(n) or ~" 0 where 

and so f o O" ---~ f in L2as  n -.-, oo, n E L, 

Continuous measures, and weakly mixing m.p.t.s satisfying the conclusions of 

Theorem 4 and its corollary for thin sequences L are mentioned in [6]. Here, we 
quantify those constructions, "thickening" L by means of 

THEOREM 5. Let {/3(n)} be a growth sequence (in the sense of §1) such that 

fl(n)/2" --~oo, and let c ( n ) =  inf{k => 1 : /3(k)= > n}. 

I f  p is a probability measure on T such that 
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~ I1- A~(")l<oo [orp-a.e., A E F  
r # ~ l  

then 3L  C N such that #(n)  ~ 1 as n ~ 0% n E L ; and [L N [1, n ] [/2~(")----~ oo as 
n ....-> oo. 

REMARK. If {/3(n)} is a growth sequence,  then /3(n)_->2" and e i ther  

limfl(n)/2" < o% in which case 2~(") X n, or fl(n)/2" ---~oD, in which case 2"(")/n ---~0. 

We will first prove  T h e o r e m  5, and then deduce  T h e o r e m  4 f rom it. The  

following lemma establishes the connect ion between T h e o r e m  5 and dyadic 

towers over  the adding machine.  

LEMMA 3 (cf. [6]). Let (X, ~, Iz, T) be a dyadic tower over the adding machine 

with height function (a and let {/3(n)} be the growth sequence of Oh. 

If 3, ~ F and X~=l[1-  A~(")I <oo then h is an eigenvalue of T, i.e. 

(3.2) 3 g : X - - ~ R s u c h t h a t J g ( x ) l = l ,  g ( T x ) = h g ( x )  tz-a.e. 

PROOF. To  establish (3.2), it is sufficient to  find f : f~- -~  R such that  

(3.3) i[(x)l = 1 and f(~'x)= h*(~)f(x) P-a.e. 

where  (1~, M, P, ~-) is the adding machine,  for  then g(x, n )= h"f(x)  will satisfy 

(3.2). 
Using the notat ions of {}1, we let A ,  = [l -> n + 1], the definition of r, we have 

2 "  
that, 'qn _-> 1, 1~ = 1,3k=lz-kA, (disjoint), , -2"A,  = A., ~--2"A,+1 = [l = n + 1], 

and A ,  = A . . l  tO z - 2 " A n ÷ l .  

Let  [,  = X~",)(*kt ')la.(zkx). It follows that I f , (x) [  = 1 and 

I [ . ( , x ) -  A*(x ' f . (x) [  = 1A. ( , x ) - - ,  0 

Hence ,  if [ , ( x ) ~ f ( x )  a.e. then [ satisfies (3.3). 

Now 

Hence  

a . e .  

2 n 2 n 

- -  2 " +  k 

k = l  k = l  

2 n 

[o - [ .+,  = X %*~ (1 - ,~*~"o ~-~ ) l t ,o .+,j  o ~". 
k = l  



Vol. 33, 1979 RATIONAL ERGODICITY 193 

It follows that if I = n + 1 then lo t r"  = 1, and hence by (1.6), that ~b2, =/3(n) .  

Thus If-- / ,+11 _-<11- ,~-ot-)[ = 11-  )to'")[ so that, under the assumptions of the 

lemma, / ,  (x) converges a.e. []  

LEMMA 4. Let (G, d) be a separable, isometric group with identity 1 (i.e. 

d(g, h) = d(gh -~, 1), Vg, h E G), and let (X, ~, tz, T)  be an re.m.p.t, preserving 

an infinite measure. 
I[ go E G has the property that 

(3.4) 37r : X --~ G measurable such that lr(Tx) = goTr(x ) # -a.e. 

then 3 L  C N such that g~---~ 1 as n --~oo, n E L; and IL n [1, n]l/a.(T)---,~ as 
?1,--~ 00. 

PROOF. We denote, for g G G and e > 0, 

N ( g , e ) = { h E G : d ( g , h ) < e }  and A ( g , e ) = z r - ' N ( g , e ) .  

STEP 1 (cf. [4]). 3g E G such that tx (A (g, e)) > O, Ve > O. 

PROOF. We show (as in [4]) that t x (A( Ir (x ) ,e ) )>O a.e., Ve >0 ,  which 

implies step L Let {g,} be dense in G, and let e > 0. Then 

G =  U N(g.,e/2) ~ X =  U A(g.,e/2) 
n n 

X =  O A(g. , ,e[2)  mod tz 
k 

where /x  (A (g.~, e/2)) > 0, Vk. 
Now, x E A ( g . ~ , e / 2 )  ~ d(g.~,zr(x))<e/2 ~ A(g, , ,e /2)C_A(~r(x) ,e) .  

Hence/z  (A (rr(x), e )) > 0 a.e. []  

We now fix ho ~ G with /x (A (ho, e)) > 0, Ve > 0, and let 

r ( e ) = { n > = l : d ( g g , 1 ) < e }  and a.(e)=lK(e)n[1, n]l. 

STEP 2. tz(A(ho, e))=oo, Ve >O. 

PROOF. Firstly, note that 

0 .5 )  n E K ( e ) , x E A ( h o ,  6 ) ~  T " x ~ A ( h o ,  e + 8 )  
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and that 

(3.6) 

If step 2 is wrong, then ~teo>0 such that 

0 < Ix (A (h,), e )) < ~, V0 < e = e,,. 

such that 0 < e - , 5 < e < e + , 5 < e , , .  Choose e, ,5 > 0 

x ~ A (hi,, ,5), 

A(h , , , e )N  T - " A ( h , , , 8 ) ~ O  ~ n E K(e + ~). 

a.(e)= ~ 1.(.,(k)_ -< ~ lath ..... ~)(Tkx) 
k = l  k ~ l  

Then, for Ix-a.e. 

by (3.5) 

n 

MY, k lath ..... ~)(T x)  as n..-.oc 
k = l  

by the Hopf ergodic theorem 

where M = Ix (A (h,,, e + ,5))~ix (A (h,,, e - ,5 )) 

_-__ M a . ( e )  by (3.6). 

Since we assumed that # (X) = oo, this violates theorem 2 of [2] thus establishing 

step 2. []  

Now let e > 0 ,  and A C_ A(ho, e/2), IX(A)= 1. It follows from (3.6) that 

a,(e)>= ~ IX(A N T-kA(h,, ,e/2)) 
k = l  

and from step 2, rational ergodicity and (0.3), that 

1 k~, tx (A tq T-kA (ho, e/2))--~ oo. 
an  

Thus a,(e)/a.(T)--)oo, Ve >0 .  

Choose e~ $ 0, and nk ~ oo such that a,(ek) >- ka,(T),  Vn >= nk, k >-_ 1. 

Let L = U~.~ K(ek ) M [hE, n~÷l]. Then clearly go7---) 1 as n ---) o0, n E L, and for 

rig ~ /'l <Z nk+ l  

IL n[1 ,  nl] => n [1,.11 = ka,,(T). [ ]  

PROOF OF THEOREM 5. Let (X, ~,  IX, T) be the dyadic tower over the adding 

machine with the height function th(x), which has the growth sequence {fl(n)}. 

By Lemma 3, the assumptions of the theorem mean that the measure p is 

supported on the collection of eigenvalues of T. It is well known that in this case 
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::17/: X x F---~ F, # xpmeasurablesuch that 

r/(Tx, h ) =  hr/(x,h),  p. xp-a .e .  

Now let G be the collection of all p-measurable functions g : F---~ F, and let 

d ( g , h )  = ( f , ' l g -  h I~dp) ''~, then (G, d) is a separable, isometric group and if 

rr(x)(A) = "0(x, A) and go(A) = A 

we have that 

7r :X---~Gismeasurable  and zr(Tx)=gozr(x) /z-a.e. 

By Theorem 1, T is rationally ergodic and a , ( T ) ~ 2  c~, so by Lemma 4 we 
have that ::IL _C N such that [L n [1, n] I/2 "'~--, oo, and g~----~ 1 as n ~ oo, n E L. 

This proves Theorem 5, since 

1) z= f I 1 -  A nlzdp(A)= 2 (1 -  d (g~,, Re/~(n)) 

and I~(n)l<=l, Vn. [] 

PROOF ov THEOREM 4. Let a(n) >0 ,  a(n)/n--+O be given. 

Let q(n) = inf{[log2(k/a(k ))]- 1 : k >= n}, then q(n)--+oo, and 

(3.7) q([Iog2n])= < [log2(n/a(n)]- 1, Vn >= 1. 

Choose nk 1' oo such that nk÷~ > nk + k and 

0.8) q(nk ) >= k z. 

Let W =  {e2"~: ot = O.e,e2... in binary expansion where e, = 0 unless n = 

nk+k  (some k)}, L=l,.J~=l[nk+l,  nk+k]  and L'={k(n)}7 .o  where 

k(n + 1)> k(n) and/3(n)  = 2 kt~. It follows immediately that {/3(n)} is a growth 

sequence. 

Let c ( n ) =  inf{k _-> 1 : /3 (k )=  > n}, then 

c(n)>= sup{k -> 1:/3(k)=< n} = [ I o g z n ] - I L  A [1,[Iog2n]]l. 

Now, if nk <--m < nk+~, we have from (3.8) that 

k 

IL N [1,rail--< ~. j <k2<----q(nk)<=q(m). 
1=1 

So 

c(n) >= [log2 n I - q ([Iog~ n]) 



196 J. AARONSON Israel J. Math. 

and hence  by (3.7) 

(3.9) 2c~")_- > a(n). 

N o w  W is a Can to r  set on F, and  the re fore  ::l a cont inuous  probabi l i ty  

m e a s u r e  p E ~ ' (F)  such that  p(W)= 1. T h e o r e m  4 will follow f rom (3.9) and 

T h e o r e m  5 if we show that  

(3.10) ~ I1- X~(")[<oo, VA E W. 
n ~ o  

Let  )t = e z~a E W where  a • [0, 1]. W e  have  

((fl(n)a))= ~ ((2"a)) 
n n ~ L  

nk+l 

= 5 ' .  
k ~ l  ] - - n k + k + l  

If e2"a E W and nk + k + 1 _-<j =< nk+l then ( (2 Ja ) )<  1/2 "~÷'÷k-j. 

Thus  

E ((/3(n)a))~ ~ "£' 1/2"÷'+k-'~2. 
n k - 1  ] - n k + k + l  

Since I 1 - e 2"~ I - 2 ( (a ) )  as ( ( a ) )  ~ 0, this establ ishes (3.10), and T h e o r e m  4. 
[ ]  
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