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Some time ago, GLAUBER (}) showed that if the Heisenberg equations of motion
of a system of coupled oscillators assume a certain general form, then states of the system
which are initially coherent remain coherent at all times. Examples of physical systems
exhibiting this behaviour (2) include a single free oscillator, a forced oscillator, a dam-
ped oscillator, the phase-diffusion model of a laser beam and the parametric frequency
converter. The quantum correlations present in these systems are easily desecribed in
terms of the Glauber coherent states and associated diagonal P(e) representation (3).
Photon-counting experiments that have been performed (*) give results in agreement
with predictions. We note that in all of the above examples only one-photon emis-
sion and absorption processes oceur.

It is known that quantum parametric amplification systems exhibit quite different
behaviour. The reason for this is that the Heisenberg equations of motion in this case
express the time derivatives of operators a,(f) in terms of the adjoint operators a;(t)
as well as a,(f). For such cases Glauber’s theorem () fails to apply. As a result alterna-
tive modes of description such as dynamic characteristics functions (°) or Wigner distri-
bution functions () have been used.

The purpose of the present paper is to show that the recently proposed new coherent
states () which are generalizations of Glauber coherent states allow a generalization
of Glauber’s theorem (1) in the following sense: the quantum correlations arising from
processes in which two photons are gimultaneously absorbed or emitted, of which para-
metric amplification and the two-photon amplifier are examples, are described by the
new coherent states in much the same way that Glauber coherent states describe the
correlations present in systems where only one photon emission and absorption pro-
cesses occur. Quantum statisties of two-photon transitions have previously been discus-
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sed (3¢#) using different approaches. Our results will be more explicit. We shall show
that the quantum uncertainty of the radiation field arising from two-photon transitions
fluctnates in time and may become less than #/2, the uncertainty value of the usual
coherent states, and cannot, therefore, be described in terms of the usual diagonal
coherent state representation with positive definite weight functions (®). They are,
however, very naturally described by the new coherent states |«)g which are minimum
uncerfainty states with ApAg = %/2 and the ratio & = Ap/Aqg = exp (28] any positive
number. In fact, the radiation field, if initially coherent, is a pure new coherent state
|o>g for all ¢ in the interaction picture, § being determined by the parametrie-coupling
constant of transition matrix element and is a linear function of time.

Consider first the case of two photons of equal frequency: the Hamiltonian may be
written in the Heisenberg pisture as (%)

(1) H= %wa“(t)a(t) — tz—% (a"(t) a'(t) exp [— 2iwt] — a(t) alt) exp [2iwi]) ,

The Hamiltonian (1) may represent a parametric amplifier being pumped at twice
its output frequeney w or atomic transitions with emission or absorptions of two photons
of equal frequency, the pump field or the atomic medium being treated classically.
It can be shown that the mumber of photons in the mode N(t) =a'(t)a(t) increases,
as a result of the external pumping, exponenitally in time as exp [2«t] for large ¢ and
in this sense it behaves as a linear amplifier. In the interaction picture, the interaction
Hamiltonian becomes time independent

(@) HP () = —%‘ (a*(0)a"(0) — a(0) a(0)) .

Because of this the time development operator of the system in the interaction picture
is easily written down

p— 2 ip
(3) T?P(t) = exp[ d;’ t] = exp[—%t (a'a’ —aa)] .

The unitary transformation generated by the time development operator in the
interaction picture can be calculated by explicit power series expansion to be

4) a?(t) = UP(tya(0) UP(ut) = a(0} cosh i — a’(0) sinh xt .

It is immediately evident that the unitary operator U*(xt) generates the canonical
transformation definition in ref. (). Thus if the radiation field is initially coherent, i.e.

(5) a(0) [t = 0> = a(0)|e) = aft = 0>,
then the state at time ¢ in the interaction picture is given by

(6) [t5? = T*2(p)[¢ = 0> = U(#)|ey ,

(*) P.LaMBROPOULOS, C. KigUcHI and R. K. OSBORN: Phys. Rev., 144, 1081 (1966); P. LAMBROPOULOS:
Phys. Rev., 156, 286 (1967); Y. R. SHEN: Phys. Rev., 155, 921 (1967).
(") B. R. Morrow and R. J. GLAUBER: Phys. Rev., 160, 1076 (1967).
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and satisfies
(1) aglt>™® = (a(0) cosh 8 + a'(0) sinh 0)[t)'? = T(0)a(0) U~L(6) Uir(xt)|e) = alt)*?

if 0 = xt.
Thus we have shown that in the interaction picture the radiation field arising from
parametric second-subharmonic generation is a pure new coherent state |ady Wwith
= xt if the state is initially coherent. If the initial state has a positive definite
P(o) representation, then the radiation field in the interaction picture has the same
P(x) representation in terms of the new coherent states for all time:

8)  @®(t) = U(t)g(0) U»-3(t) = f a2oP(a) U¥(t) oy (o] U2(t) " = f 82 oP() |0 6o <
with 0 = xt.

In general, if the initial radiation field possesses a generalized diagonal coherent
state representation (?) in the form

) o0) = f Q2P (o) >0, 0,2
then
(10) o7(t) = j a2 aP(e) |3 o<t

with 6 = 6, -+ «t.
We now outline the generalization to two-photon transitions of different frequencies.
The Hamiltonian may be wriften as

(11)  H=%w,a'(t)a(t) + fiw,bt(t)b(t) — ifix(a’ (t) bT(t) exp [— i(0;, + ) 8] —
— a(t)b(t) exp [i(w; + wy)t]) .

The interaction Hamiltonian is again time-independent in the interaction picture:
(12) Ho(t) = — ifin(a'(0)b*(0) — a(0) b(0)) .

It is convenient to define C, -operators

(13) Ci=—(@=x?),

-

2

which satisfy canonical commutation relations
(14) [0., 041 =1,

while all other commutators vanish. In terms of the (_-operators, the two modes
decouple, namely

. 7
(15) HP (1) = 4’—25(0+0+—010*~0«0_+ ctaty.
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The decoupling allows the previous analysis to go through in the present case with the
result that in obvious notations

(16) (b)) =fdzy+ Cy-Plys, y-)ye, v-Do,0_0,0.{y+> -} »
where [y, , y_) are right eigenstates of C,-operators and
(17) 0, =04 + =t .

From the known properties (1) of new coherent states we can draw the following
conclusions on radiation fields arising from two-photon transitions:

1) Since the new coherent states do not lead to factorization of usual correlation
functions, one may expect nonzero coincidence photon-counting effects. Our calcula-
tions (1% on G*z,, %,, #,, z,) show that one may expect positive as well as negative
correlation counting rates. It would be extremely interesting to have direet experi-
mental verification of this effect since neither thermal nor laser radiation give negative
correlation counting.

2) The photon statistics is given by

(18) (N({#)y = |x|*(cosh?xi - sinh?st) — (a? 4 &*?) ginh »¢ cosh xt + sinh?xl,

(19) AN?(st) = |o|? cosh 4uct + |o|2(a + o*2) sinh 4sct + § sinh? 2ut .

Thus the photon distribution is neither Bose-Einstein nor Poisson.

3) The quantum uneertainties in canonial momenta and co-ordinate which may
be looked upon as the H and E fields of a two-photon oscillator are given by

f
Ap2(t) = 3 |cos wit exp [xt] 4 4 sin wt exp [— =t]|2,

(20) 5
Agi(t) = 3 |cos wt exp [— xt] + 4 sin wt exp [x£]]?,

while the fields themselves oscillate as

p(t) = p{0) eos wt exp [— xt] — wq(0) sin w? exp [xt],

(21) p(0) .
q(t) = q(0) cos wi exp [»t] + — sin wi exp [— »£] .
w

4) From the above equations it is clear that parametric or two-photon ampli-
fication fundamentally alters the quantum correlations and statistics of the initial-

(*) E. Y. C. Lu and M. E. SMITHERS: in preparation.
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radiation field. It appears to offer the practical means by whieh new coherent states
can be generated and controlled and allow possible new tests of predictions of quantum
mechanics of the electromagnetic field.

Finally, we remark that this is but one example of the use of generalized coherent
state representation to represent a wider class of quantum states as suggested in ref. (7).
1t is known (>#) that in the present ease the radiation fields possess Gaussian character-
istic functions. In general, generalized coherent state representation allows the use
of positive definite weight functions to represent all states with Gaussian character-
istic funections.



