
Statistical Papers 46, 117-128 (2005) 

Notes 

Statistical Papers 
�9 Springer-Verlag 2005 

On the distribution and expectation of success runs in 
nonhomogeneous  Markov dependent trials 

Serkan Eryilmaz 

Department of Mathematics, Izmir University of Economics. 35330, Balqova, Izmir, 
Turkey 

Received: August 13, 2002; revised version: June 7, 2003 

The number of success runs for nonhomogeneous markov dependent trials are 
represented as the sum of Bernoulli trials and the expected value of runs are obtained 
by using this representation. The distribution and bounds for the distribution of the 
longest run are derived for markov dependent trials. 
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1. Introduction 

Runs are important in applied probability and statistics/inference. They 
are used in many areas, such as hypothesis testing, system reliability, quality 
control. There have been various publications dealing with the distribution the- 
ory of runs. Early discussions for runs appeared in the works of Mood (1940), 
Levene and Wolfowitz (1944), Wolfowitz (1944), Dobrushin (1953). New results 
on runs have been derived by many authors including Philippou and Makri 
(1986), Fu and Koutras (1994), Koutras and Alexandrou (1995), Han and Aki 
(1999). Recent investigations are due to Stefanov (2000), Chadjiconstantini- 
dis and Koutras (2001) . In a sequence of  markov dependent trials success 
runs are discussed in the works of Schwager (1983), Hirano and Aki (1993), Mo- 
hanty (1994), Antzoulakos (1999), Antzoulakos and Chadjiconstantinidis (2001), 
Vaggelatou (2003). For the longest success run and its applications, we refer 
to Philippou and Makri (1985), Philippou (1986), Makri and Philippou (1994), 
Makri and Philippou (1996), Lou (1996). 

There are various definitions of success runs. In the present paper, we con- 
sider the number of success runs of size exactly "k", the number of success runs 
of size greater than or equal to "k" and the longest success run for markov 
dependent trials. Markov dependent trials appear in a large number of natural, 
physical, biological and economic phenomena. Denote by Sn(k) and G,~(k) the 
number of success runs of size exactly "k" and the number of success runs of 
size greater than or equal to "k" respectively, in n trials. Let Ln be the length 
of the longest success run in n trials. For illustration, consider the sequence 
1110010011. Then $10(1) = 1, $10(3) = 1, Gx0(1) = 3, G10(2) = 2, L10 = 3. 
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Fu and Koutras (1994) investigated the distribution of runs in a sequence 
of Bernoulli trials by using Markov chain imbedding technique. Lou (1996) has 
used to same technique to find the exact joint and conditional distributions of 
the success runs and the longest success run given t h e  number of successes. 
Antzoulakos and Chadjiconstantinidis (2001) considered the number of success 
runs for homogeneous markov dependent trials. Erytlmaz and Tiittincii (2002) 
studied the success run model based on record indicators of independent and 
identically distributed random variables. Recently, Vaggelatou (2003) presents 
asymptotic results for the longest run distribution in a multi state markov chain. 

The present paper is organized as follows. In the second section we define a 
useful Markov chain for our investigations which denotes the length of the suc- 
cess run at the end of the nth step and obtain its one dimensional distribution. 
In the third section we represent the number of success runs for nonhomoge- 
neous markov dependent trials as the sum of dependent Bernoulli trials having 
different success probabilities. By using this representation we obtain the ex- 
pected values of Sn (k) and G,~ (k) for nonhomogeneous markov dependent trials. 
In the fourth section we study the distribution of the longest success run and 
in the last section we give a numerical example to illustrate the findings of the 
paper. Our approach of finding expectation of success runs and the distribution 
of the longest run departs from the Markov chain imbedding technique. In the 
present paper, success rmls are represented as the sum of deperldent Bernoulli 
indicators and the longest run is expressed as the maximum of sample whose 
members are subject to a markov chain condition. 

2. P r e l i m i n a r y  results  

Let {~n, n _k 1} be a nonhomogeneous two-state Markov chain with transi- 
tion probabilities: 

p( '~ )=P{~ ,~=j l~ ,~_x=i }  n > 2 ,  i , j  = 0 , 1  ij ' -- 

and initial probabilities pj = P {~I : J} ,J ~--- 0,1. 

Denote by rh~ the length of the success run at the end of the nth step. It 
can be easily verified that r/, is nonhomogeneous Markov chain with transition 
probabilities: 

p { r M = i [ ~ n _ l = i - 1 } = p { ~ , , = l [ ~ n _ l = l } = - p ~  ) , 2 <  i < n ;  n>_2 

p { n  = O l ~ , _ l = i } = P { ~ , = O l 4 , _ l = l } = p ~ )  , l < i < n ;  n > 2  
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) , 2 

e l171. _l = o }  = P l l r  = O }  =p(o  ) , n >_ 2. 

In the following lemma the one dimensional distribution of ~]n is obtained. 

LEMMA 2.1. It is true that for n k 1, 

l a(n) , k = 0 

-•+l)a(n- k) p , k 1,2, . . . ,n  P { ~  = k} = P = - 1 
~=1 

~r~ 1 ~(n-~+l) 
P l  1 1  Y l l  , k --'-- n 

i - -1  

where I I r  1 , a ( j ) =  P {(j  = 0 }  and 

(2.1) 

a(j)=(p(oJo)-P~Jo))a(j-1)+P~Jo ) j > 2 ,  a(1)=po. (2.2) 

PROOF. For k = 0, P{~]n = 0} = P{fn = 0}. For k = 1,2, . . . ,n  - 1 and 
k = n the probability of the event {7/n = k} is represented respectively by, 

P {~/n = k} = P {~n = 1, ~ - 1  = 1, ..., ( , - k + l  = 1, ~ - k  = 0} 

and 

P {7/,~ = n} = P {~,, = 1,(,~_ i = 1,...,Q = I } .  

The proof follows by the markovian property of { ~ , n  > 1}. The recurrence 
relation given in (2.2) is obtained by applying the total probability law[:] 

If {~n, n >_ 1} is a homogeneous two-state Markov chain, i.e. PiJ-Cn) = Pq the 
one dimensional distribution of the length of the success run is 

{ b ( n )  , k = 0  

polp flb(n-k) , 
plpl~ -1 , k = n 

(2.3) 

where b(j) = P {(j  = 0} and 

b( j ) - (Poo-P lo )b ( j -1 )=p~o  j > _ 2 ,  b ( 1 ) = p o .  (2.4) 

Solving (2.4) and using it in (2.3) we obtain the following corollary. 
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COROLLARY 2.1. I f  {~n,n > 1} is a homogeneous two-state Markov chain, 
i.e. _(n) Pit : Pij then 

[.,,(.,,,, - . , . . ~ , . - '  _L p,o('-(poo-p,o) "-' ] 
K " ~ ' '  "~"~ - 1-poo+p,o )j 

1 ~--k--I = k - - ,  r , ,  _ ~ n - k - - ,  - -  P I O ( - ( P o o - - p l o )  ) ]  
ProP,1 [Potpoo - elo) -r ,-poo+mo J 

P'Pl~- ' 

, k = O  

,k = 1 , 2 , . . . , n -  1 

~ k = n ,  

3. E x p e c t e d  va lues  o f  S,~(k) and G~(k) 

It is possible to establish the number of success runs for nonhomogeneous 
markov trials in the following way. 

Define the following random variables: 

1 , u s = k a n d ~ / j + , = 0  
X~k= 0 , otherwise 

k > 1; j = k, . . . ,n  ; P { 7 , + ,  = 0}  = 1 

and 

j-=-k 

1 , ~ / j > k a n d ~ j + l = 0  
YJk= 0 , otherwise 

k > l ;  j = k , . . . , n ;  P{~?n+l = 0 }  = 1  

tt 

j = k  

It is evident that  Sn (k) is the number of success runs of size exactly "k" 
and G~(k) is the number of success runs of size greater than or equal to "k". 
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The random variables S~(k) and G.(k) take values O, 1, ..., [~-~] + 1, where [x] 

denotes the integer part of x. 

Xjk and Yj~'s correspond to the dependent Bernoulli trials with success 
probabilities: 

p(J+Op r = k} k, n -  1 
10 i~J , J . . . .  , 

P {Xjk = 1} = 
P{V,  = k} , j = n  

and 

p { y j k = l } = /  p~Jo+l)P {~j >__ k} , j = k , . . . , n - 1  

> k} , j = n .  

Hence S,~(k) and C,(k)  are the sum of dependent Bernoulli trials having 
different success probabilities. By using this representation the expected values 
of S,~(k) and G,~(k) are 

I ~--1 . ,~0+1) Y ~ l o  P { r l j = k } + P { ~ , ~ = k }  j=k 
E(Sn(k)) = 

n--1 ~(n-i-t-1) 
Pl 1-[ yll  

i = l  

, l < k < n - 1  

, k = n  

and 

n--I "'+I" 

j=k 
E(Gn(k)) = 

n-1 ~(n_~+ D 
Pl I-I ~'11 

i=I 

>k}- t -P{r l ,~>k}  , l < k < n - 1  

, k = n  

where P {~j = k} is given by 2.1. It is easy to write the expected values for 

homogeneous markov trials taking p~) = p~j and using ~ instead of V~- 

4. The  d i s t r ibu t ion  of  the  longest  success run  

In this section we derive the distribution of the longest success run Ln. 
Bounds for the distribution of the longest run are also given. For this pur- 
pose, we firstly establish the following lemma since it is helpful for our further 
investigations. 
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LEMMA 4.1. It is true that for n >_ 2, 

P(,7._, < k , , .  < k} 

p~o~)P{,7._l = o} 

k - 2  

n - - I  

l - p ,  rI pIV ~§ 
5=1 

, k = l  

, k = 2 , 3 , . . . , n - 1  

, k - - - - n  

PROOF. For k = 1 

v{,._~ <k,,~ <k}=e{,._,=o,,.=o} 

observe next that  for k -- 2, 3, ..., n - 1 

k - 1  

= P ( , . -1  = o , , .  =o} + ~ P {,._1 = ~ , , .  =o}  
j = l .  

k - 1  

+ P  {r/._ z - - 0 , ~ .  = 1} + E P ( r/~-1 = j - 1 , ~  = j}  
j----2 

k - 2  

= P{r /n_  z = 0 }  + E P{y'~-z = J} +P~o )P{~n-z = k -  1} 
j----1 

and for k = n 

P { ~ - l < k , ~ < k } = P { ~ < n }  

n--1 

= 1 - p l  I I  A -5§ 
5----1 
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THEOREM 4.1. It is true that, for k = 1,2, .. . ,n - 1 

P {L,~ < k} 

} = E / P0?k  = ik} P{~Im=imlT?m-1=im-1}  
ij(j----k,...,n)=O k m----k+l 

and for k = n 

n - 1  
Yl . ( , - i+1)  

P {Ln < k} = 1 - P l  l / ~ . l l  �9 
i = l  

PROOF. One can write for the probability of the event {L ,  < k} for 
k = 1 , 2 , . . . , n -  1 

P{L  < k} 

= P{z/k < k,7/k+l < k , . . . ,~ ,  < k} 

k--I k--I  k--I 

ik=O ik.I. 1 -~0 ~T,=O 

k - 1  k - 1  k - 1  

= E E "'" E P{ ~n-'~-inl'r]n-1 =in-1}P{'qn-l '~n-11'n-2=in-2} X 
ik=O ik+l=O in=O 

and for k = n 

x . . .P  {7/k+1 = ik+l [ 7/k = ik} P {~k = ik) 

P { L ,  < n} = 1 -  P { L ,  > n} 

= 1 - P { L ,  = n} 

= 1 -  P {~, = 1,~,_1 = 1,...,~1 = 1 }  

H ~(n-i+a) 
= 1 - Pl Vll ' 

~----I 
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According to the theorem given above the distribution of the longest run is 
characterized by the transition probabilities and the one dimensional distribu- 
tion of the length of the success run. The complexity of the exact distribution of 
Ln may prevent its direct use for large values of n. Hence we investigate bounds 
for the probability P {Ln < k}. Bounds which are obtained in this paper are 
based on following probabilities: 

o1(i, ) := P > k} 

02(i,k) := P{r/i >_ k,'qi+ 1 > k}. 

THEOREM 4.2. For 1 < k < n, the following inequalities hold: 

m a x  0 , 1 -  Ol(i,k)+ 02(i,k) < P { L , ~ < k } <  m i n(1 -O l ( i , k ) ) .  
- -  - -  k ~ i ( n  

i ~ k  - - 

PROOF. By using the same representation given in Theorem 4.1, one can 
write 

where Ai - {r h < k}. For the lower bound by using Worsley's variant of a 
Bonferroni type inequality we obtain 

P A, _>1-  P{A~} + P{AiAi+I} .  
i ~ - k  i = k  

The upper bound is obtained by using the following inequality: 

P Ai < rain (P{Ai}). 
- k<i<n 

[] 

An easier representation for the probability 02(i, k) is given as follows: 

02(i,k) = 1 - P {Vi < k } -  P {~h+l < k} + P {~i < k, , ,+l  < k} 

where P {Yi < k, ~?i+1 < k} is given by Lemma 4.1. Denote by l(n, k) and u(n, k) 
the lower and upper bound for the probability P {L, < k} respectively. By 
considering Lemma 4.1 in Theorem 4.2 the explicit formulas for l(n, k) and 
u(n, k) are 
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l(n, k l = m a x  0 , 1 -  1 -  ~ P { v i  = j }  
~=t, j=0 

and 

k_1 )) +Z 1-O-pl;+'))Pt',=k-1}-~P{',+, =j} 
i = k  j = 0  

k - 1  

u(n, k) = min (~-'~. P {~h = J}) 
k<i<n 

- -  j = O  

l < k < n .  

Since the exact computation is easy for k = 1 and k = n it is needless to 
use inequalities in these cases. It is easy to rewrite the theorems given above 
for homogeneous markov trials taking -(") Pij = Pij and using ~n h instead of %. 

Theorem 4.1 may be fruitful for small values of n. However, bounds given 
in Theorem 4.2 give good approximation for some values of n. 

5. Numer i ca l  example  

Denote by ~n the quality of the nth item produced by a production system 
with ~,~ = 0 meaning "Defective" and ~,~ = 1 meaning "Good". Suppose that 
~,~ evolves as a Markov chain with transition probabilities: 

p { 4  = 1 1 4 , ~ _ 1 = 1 } = p ~ , ~ ) = 1  p{~  = O l ~ , _ l = l } = p ~ ; ) =  1 1 
n ' n 

1 
P {~. = 01 e._l =0} =;~0o ) = P{~.  11~._1 o} =~('I I 

, ---- = /-'01 = 1 n 2  

n > 2 , w i t h p o  P { ~ I = 0 } =  1 _ = ~ , P l  = P { ~ I  = 1 }  = �89 

i) What is the expected value of producing "Good" items of size exactly "2" 
at the end of the tenth stage? 
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g 
V'p(j+l)p r 

ES10(2) = A_, lo (~j = 2} + P {~10 = 2} = 0.658 
j = 2  

ii) What  can be said about the probability of the event {Slo(2) >_ 2}? 

By using Markov inequality, 

P {$1o(2) > 2} < ES10(2) 
- - 2 = 0.329. 

iii) What  is the expected value of producing "Good" items of size greater 
than or equal to "2" at the end of the tenth stage? 

9 

EGlo(2)  = ~-~p~Jo+DP {~?j _> 2} + P {7/10 >_ 2} =0 .833 .  
j----2 

iv) What  is the probability that  the length of the longest success run will be 
equal to one at the end of third stage? 

P {L3 = 1} = P {L3 < 2} - P {L3 < 1} = 0.625 - 0.014 = 0.611. 

In addition to the foregoing numerical example, in Table 1 some numerics for 
the expected values of S,~(k), Gn(k), in Table 2 and Table 3 exact probabilities 
and bounds for P {Ln < k} are given respectively. 

n k 
' 3  2 

10 4 
10 5 
15 5 
20 3 
30 3 
30 4 
50 3 
50 8 
60 3 
60 6 

ES,(k) EG~(k )  
0.29167 0.37500 
0.02859 0.03467 
0.00515 0.00608 
0.00529 0.00624 
0.16212 0.19880 
0.16989 0.20693 
0.03074 0.03704 
0.17627 0.21349 
1.38246x10 -5 
0.17789 
8.28845x10 -4 

1.54964x10 -5 
0.21514 
9.57917 x 10 -4 

Table 1. Some numerics for ES,,(k) and EG,~(k). 
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n 

5 
5 
5 
5 
5 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

Table 2. Exact 

n k 
3 2 
10 4 
10 5 
15 5 
20 3 
30 3 
30 4 
50 3 
50 8 
60 3 
60 6 

Table 

k 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
probabilities 

P {Ln < k} 
3.472x10 -~ 
0.48698 
0.86875 
0.97292 
O.99583 
3.797xi0 - I t  

0.34472 
0.82882 
0.96540 
0.99391 
0.99906 
1.00000 
1.00000 
1.00000 
1.00000 

for P {L~ < k}. 

l(n,k) u(n,k) 
0.62500 0.75000 
0.96533 0.97917 
0.99391 0.99583 
0.99375 0.99583 
0.80120 0.91667 
0.79307 0.91667 
0.96296 0.97917 
0.78651 0.91667 
0.99998 0.99999 
0.78486 0.91667 
0.99904 0.99931 

3. Bounds for P {L~ < k}. 
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