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Abstract 

Reversed preservation properties of some negative aging conceptions are devel- 

oped for the parallel and series system which are composed of independent and 

identical elements. If the system is of NWU(2) (IMRL, NWUC) properties 

then the elements is also of NWU(2) (IMRL, NWUC) properties. Reversed 

preservation properties of the right spread order and the total time on test 

transform order under the taking of maxima and minima are investigated re- 

spectively, applications in moments of NBUE ordered populations is presented 

as well. 

Key  Words IMRL; NWUC; NWU(2); Parallel system; RS order; Series 

system; TTT transform order 
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1 I n t r o d u c t i o n  and  Pre l im inar i e s  

Nonparametric aging classes of life distributions have been found to be quite useful in 

maintenance policy and system reliability analysis. Several extensions of IFR and NBU, 

for example, DMRL (decreasing mean residual life), NBU(2) (new better than used in 

second stochastic dominance) and NBUC (new better than used in convex ordering) etc., 

have been proposed and surveyed in recent decades. Many authors have paid their at- 

tention to investigate behavior of aging properties in coherent structure, parallel (series) 

system, k-out of-n system, convolution, mixture and renewal process. For more details, 

readers can see Barlow and Proschan (1981), Langberg et al (1980), Hendi et al (1993), 

Chen (1994), Cai and Wu (1997), Belzunce et al (1999), Li et al (2000), Li and Kochar 

(2001), Franco et el (2001), Belzunce et al (2001), Li and Zuo (2002), Franco et al (2003) 

etc. 

We firstly give an overview of some related criteria of stochastic comparison and the 

concerned aging conceptions. 
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Assume X and Y be two non-negative random variables, representing equipment lives 

with distributions F and G, denote their survival functions by -F = 1 - F and G = 1 - G, 

set F -1 and G -1 as their right continuous inverses, i.e., F-l(p)  -= inf{x : F(x) > p}, 

G-~(p) = inf{x : G(x) >_ p}. Let Xt = X - t iN  > t be the residual life at age t > 0 of 

the random life X, denote its distribution function and survival function by Ft and Ft. 

De f in i t i on  1.1 (a) Y is said to be larger than X in the increasing convex order 

(denoted by X <_icx Y) if, for all t > 0, 

(b) Y is said to be larger than X in tim increasing concave order (denoted by X _<icy Y) 

if, for all t _> 0, 

(e) Y is said to be larger than X in the right spread order (denoted by X _<RS Y) if, 

for a l l 0 < p <  1, 

s /i ~ G( t x. o~_1(,) IF(x)dx ~_ -1(,) 

(d) Y is said to be larger than X in the total t ime on test transform order (denoted 

by X ~ttt Y)  if, for all 0 < p < 1, 

< 8(x)dx. 
_ [ a - l ( , )  

dO J0  

For a comprehensive discussion on the above stochastic orders please see Shaked and 

Shanthikumar (1994), Shaked and Shanthikumar (1998), Fernandez-Ponce, Kochar and 

Mu~oz-Pdrez (1998) and Kochar, Li and Shaked (2002). 

D e f i n i t i o n  1.2 (a) X is IFR (DFR) if Xt is decreasing (increasing) in t > 0 in 

stochastic order. 

(b) X is DMRL (IMRL) if EXt is decreasing (increasing) in t > 0. 

(c) X is NBU (NWU) if Xt _<~t (> , t )X  for all t > 0. 

(d) X is NBU(2) (NWU(2)) if Xt <_icy (>ic,)X for all t >_ 0. 

(e) X is NBUC (NWUC) if Xt <_~ (>zc,)X for all t _> 0. 

(f) X is NBUE (NWUE) if EXt <_ (>_)EX for all t >_ 0. 



68 

For more details about NBU(2), DMRL and NBUC aging properties see Deshpande 

et al (1986) and Cao and Wang (1991, 1992). The following chain of implications can be 

easily established, 

IFR ~ DMRL ~ NBUC (NBU(2)) ~ NBUE. 

It can be easily verified that, for any integer n _> 1, 

min{Xl , . . . ,  X~} is IFR (DFR, NBU, NWU) ~ X is also IFR (DFR, NBU, NWU). 

The following two partial orderings of random lives, which will be involved in sequel, 

are often used to measure the degree of IFRA and NBUE. 

Defini t ion 1.3 (a) Y is said to be larger than X in the star-shaped order (denoted 

by X _<, Y) if G-1F(x) is star-shaped with respect to x _> 0. 

(b) Y is said to be larger than X in the NBUE order (denoted by X <_NBUE Y) if, for 

all 1 > p > 0, 

['(x)dx -l(p) 
--l(p) < 

E X  - E Y  

It is shown in Kochar and Wiens (1987) that 

X ~ .  }r ~ X ~NBUE ~7. 

For more on these two orders please refer to Barlow and Proschan (1981), Kochar and 

Wiens (1987). 

In recent decades, many authors have devoted themselves to investigating preservation 

properties of some positive aging conceptions which can be regarded as extensions of IFR 

and NBU. For examples, Klefsj5 (1985) showed that a parallel system of i.i.d. IFRA(IFR) 

units is IFRA(IFR); Abouammoh and EI-Neweihi (1986) showed that a parallel system 

of i.i.d. DMRL (NBUE) units is also DMRL (NBUE); Hendi et al (1993) proved that 

a parallel system of i.i.d. NBUC units is also NBUC; Franco et al (2001) proved that a 

series system of independent NBU(2) units is also NBU(2), it was found there furthermore 

that IFR(2) is preserved also by the formation of parallel systems of i.i.d, units; Recently, 

Belzunce et al (2003) have shown that the IFR(2) class is equivalent to the IFR class for 
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continuous distributions, the discrete case is trivial. Li and Kochar (2001) got simultane- 

ously the preservation property of NBU(2) class. Cai and Wu (1997), Li et al (2000) and 

Pellerey and Petakos (2002) obtained the above preservation property of NBUC under 

the formation of parallel systems of independent units. 

In this note, we will make a discussion on the reversed preservation property of some 

negative aging conceptions and some stochastic orders. In section 2, it is proved that, if a 

parallel (series) system of i.i.d, units is NWU(2) (NWUC, IMRL), then its units are also 

NWU(2) (NWUC, IMRL). In section 3, we firstly investigate some moments inequalities 

of two NBUE ordered populations, afterward, the reversed preservation properties of the 

right spread order and the total time on test transform order under the parallel system 

and the series system are surveyed respectively, some applications are developed as well. 

Throughout this note, we discuss nonnegative variables with common left end point 0 

of their supports, the term increasing is used for monotone nondecreasing, and expecta- 

tions are always assumed to be finite when used. 

2 Reversed preservation properties of some negative 

aging classes 

Before stating our main conclusions, we firstly introduce the following two lemmas which 

will be frequently used in sequel. 

L e m m a  2.1 (Pellerey and Petakos, 2002) For any positive integer n and t > 0, it 

holds that 

(max{X1, . . . ,  A'n})t ~st max{(X, ) t , . . . ,  (Xn)t}, (1) 

where X1, . . . ,  X~ are i.i.d, non-negative random variables. 

L e m m a  2.2 (Barlow and Proschan, 1981) Assume that W(x) is a Lebesgue-Stieltjes 

measure, not necessarily positive. 

(a) If h(x) is nonnegative and increasing, and 

.f~/t dW(x) _> O, for all t ~ O, 
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then f ~  h(x)dW(x) >_ O. 

(b) If h(x) is nonnegative and decreasing and 

fo t dW(x) >_ O, all t _> 0, for 

then f~  h(x)dW(x) > O. 

Our first main result presents the reversed preservation property of NWU(2) class of 

life distributions. 

T h e o r e m  2.1 Assume that X1 , . . . ,  X~ are i.i.d, copies of X. For any fixed integer 

n > 1, if max{X1,..., Xn} is NWU(2), then X is also NWU(2). 

P r o o f  max{X1, . . . ,  Xn} is NWU(2), it holds that,  for any t _> 0, 

(max{Xh . .  X~}) t >_i~,, max{X1, . . . ,Xn} .  

By (1), we have, for any t _> 0, 

max{(X1)t, . . 

That  is, for any t > 0 and x _> O, 

Equivalently, 

z 

> 

, (X,)t} >_icy max{X1, . . . ,  Xn}. 

f0 ~ [1 - Ftn(y)] dy > fo x [1 - Fn(y)] dy; 

r]oX [F~(Y) _ r~"(y)] d~ 

f X 

iF(y) Ft(y)] Fn-2(y)Ft(y) + F F "-2 F n-1 1o - [F"-I (Y)  + + " '  (Y) t (y) + t (y)] dy 

O. 

Notice that  the function 

[F"-I(x)  + Fn-2(x)Ft(x) +. . .  + F(x)F:-2(x) + Ftn-'(x)] -1 

is nonnegative and decreasing, it follows from Lemma 2.2 (b) that,  for all x _> 0 and t _> 0, 

/ :  /0 x [p~(x) - p(x)] dx = I t (y)  - F~(y)] ~y > 0 
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Thus, it holds that Xt >_~,~ X ,  which asserting that X is also of NWU(2) property. 

Theorem 2.2 in the following provides similar properties of IMRL and NWUC, it can 

be proved in a similar manner. 

Theorem 2.2 Assume that X1,. .- ,  Xn are i.i.d, copies of X. For any integer n _> 1, 

(i) if min{X1,.. . ,  Xn} is NWUC, then X is also NWUC; 

(ii) if min{Xt, . . . ,  X~} is IMRL (DMRL), then X is also IMRL (DMRL). 

P roo f  (i) min{X1,... ,  X~} is NWUC, it holds that, for any t > 0, 

(min{X1 . . . .  , X,~})t >-icx min{X1 . . . .  , Xn}.  

By the fact that 

(min{X1,..., Xn})t  st min{(X,)t , . . . ,  (Xn)t} (2) 

we have, for any t _> 0, 

min{(X1)t,..., (Xn)t} _>icx min{X1,.. . ,  Xn}.  

That is, for any t _> 0 and x >_ 0, 

Equivalently, 

= jfx ~176 [Ft(Y)- F(Y)] [fn-i(y)q_ ~n-2(y)~t(y ) q_... q_ /~(y)~tn-2(y) q_ lt~tn-1 (y)] dy 

> 0. 

Notice that the function 

[gn-l(x) ~- fn-2(x) f t (z  ) q-., .  q- l~(X)/~tn--2(X) -4- ftn-l(x)] -1 

is nonnegative and increasing, it follows from Lemma 2.2 (a) that, for all x > 0 and t "_-__ 0, 

Thus, Xt _>ic~ X, and hence X is also of NWUC property. 

(ii) According to Cao and Wang (1992), X is IMRL(DMRL) if and only if, for all 

t > s > 0, Xt >_icx (~_icx)Xs, the desired result can be proved by the fact (2) and Lemma 

2.2 (a) in a similar manner. 
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3 Reversed preservation properties of the RS order 

and the T T T  transform order 

Suppose X~, ., X~ and }J),. . . ,  }'~ are i.i.d, copies of X and Y, respectively. Let 

V, = m a x { X , , . . . ,  X ,}  - m i n { X , , . . . ,  Xn}, 

W,, = max{ l~ , . . . ,  !%} - min{}~, . . . ,  Yn}, 

Bartoszewicz (1998) obtain the following inequalities under the assumption that  X~ _<, Yi, 

i = 1 , . . . ,  n, and EX,  E Y  be finite, 

E[max{X1, . .  
E X  

E[min{X1,. .  
E X  

'Xn}] < E[lfflaX{Yl'""]Tn}] (3) 
- E Y  ' 

, X~}] > E[min{ l~ , . . . ,  Y~}] (4) 
- E Y  ' 

Ev. EWn 
- -  < - -  ( 5 )  
E X -  E Y "  

We will derive in this section these inequalities under a milder assumption that Xi ~NBUE 

](~, i = 1 , . . . ,  n. Furthermore, it holds also that  

Var[max{X1,.. . ,  X~}] < Var[max{Yl, . . . ,  Yn}] (6) 
E2X - E2y 

Now, we give proofs for our main results. 

T h e o r e m  3.1 Let X i ~_NBUE ~i, i = 1 , . . . , n .  Then, inequalities (3), (4), (5) and 

(6) hold. 

P r o o f  It is easy to verify that 

X Y Y X 
X ~NBUE Y ~ ~ ~-RS ~-~ ~ ~ ~ttt EX" 

According to Theorem 5.1 of Kochar, Li and Shaked (2002), the right spread order is 

preserved under the maxima, and the total time on test transform order is preserved 

under the minima. That  is, 

(X~ <_Rs I~ i = l , . . . , n ) ~ m a x { X ~ , . . . , X n }  <_Rs max{Yb. . . ,Y~} ,  (7) 
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and 

(Xi _~ut ~'~ i = 1 , . . . ,  n) ~ min{X1 , . . . ,  Xn} <_ttt min{Y~ . . . .  , Y~}. (8) 

By (7) and (S), we have 

max{X1 . . . .  , Xn} <_RS 
E X  

and 

max{Y1, . . . ,  Yn} 

E Y  

rain{I] . . . .  , ~ }  ra in{X1, . . . ,  Xn} 
<_ttt 

E Y  E X  

Notice the fact that  X <_RS Y implies both E X  <_ E Y  and V a r X  < V a r Y ,  inequalities 

(3) and (6) follows directly, and the inequality (4) follows also from the fact that  X >_ttt Y 

implies E X  > E Y .  

Inequality (5) follows immediately from (3) and (4). 

T h e o r e m  3.2 LetXi<<_RsYi, i = l  . . . .  ,n. Then, for a l l 0 < p < l ,  
+cr  +oo 

S;-,(,, " S; <:.(.)] (9) 
P r o o f  The survival functions of the maxima of n i.i.d, copies of X and Y are, 

respectively, 

F . : . ( x )  = 1 - F " ( ~ ) ,  

Gn:n(X) = 1 - Gn(x). 

The survival functions of the minima of n i.i.d, copies of X and Y are, respectively, 

_Pj:~(x) = (1 - F(x) )  n, 

G,:, ,(~) = (1 - a ( ~ ) )  n. 

The right spread order X <_RS Y asserts that  

] + ~  ~(x)d(a-~F(~)  - ~) > O, t > O. 

Since the function 1 + F(x )  + . . .  + F "-1 (x) - (1 - F(x ) )  '~-1 is increasing and positive for 

all x >_ 0, it follows from Lemma 2.2 (a), for all t >_ 0, 

= / + ~  F ( x )  [1 + r ( x )  + . . .  + r ~ - l ( ~ )  - (1 - r ( ~ ) )  n-l]  d ( a - ~ r ( x )  - ~) 

> 0. 
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That is to say, 

-t-oo +oo 
Si_l(. ) [Fn:n(X)- X~l:n(X)] dx ~ Si-,(.)[an:n(X)- al:n(X)] dx, 

for a l l 0 < p < l .  

Remark  If X <_NBUE Y, then X I E X  ~--RS Y / E Y ,  putting p --+ 0 in corresponding 

(9) will give rise to (5). 

Now, let us turn to the reversed preservation properties of these two stochastic order- 

ings. 

Theorem 3.3 For any integer n > 0, 

(i) If rain{X1,..., Xn} _~/r min{}~,...,  Yn}, then X -~ns Y. 

(ii) If max{X1,.. . ,  X~} <_ttt max{}~,... ,  Yn}, then X <_ttt Y. 

P r o o f  (i) min{X1,... ,  X~} _<ns min{Yl,.. . ,  Yn} implies that, for all 0 < p < 1, 

oo $,:,~(x)dx < (z)dx. 
~(p) 

This is equivalent to, for all t ._> 0, 

/ ~  p~ o(~)~ (G~I~,:o(~)_ ~) > o. 

Notice the fact that 

and 

we have, for all t _> 0, 

ki:~(x) =F~(x) 

-1 Gl:nFl:n(X ) -- G-IF(x), 

f~F '~(x)d(G-1F(x)  - x) >_ O. 

By the increasingness of (/~"-1(x))-1 and Lemma 2.2 (a), it holds that, for all t > 0, 

/t~ p(x)d (c-iF(x)- x) ~ 0, 

which is equivalent to, for all 0 < p < 1, 

li l i  ~ oo $(x)dx ~ G(x)dx. 
-l(p) -,(p) 
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Therefore, X < RS Y. 

(ii) max{X1, . . . ,  Xn} <_ttt m a x { } ] , . . . ,  Y~} states that, for all 0 < p < 1, 

f _1 /a2~(,) Fn:n(P) Yn:n(Z)dx ~ an:n(x)d38. 
dO dO 

This is equivalent to, for all t > 0, 

s F~:o(~)d (aX:'~Fo:o(~)- x) > o. 

Since 

and 

we have, for all t ___ O, 

By the decreasingness of 

~ :n(x)  = 1 - F'~(x) 

Gn:lnFn:n(x) = G - 1 F ( m ) ,  

f 0 t ( 1 -  Fn(x))d(G-1F(a)-  x) >__ O. 

( F ( x ) + . . . + F n - I ( x ) )  -1 

and Lemma 2.2 (b), it follows that, for all t > 0, 

4 >- o, 

which is equivalent to, for all 0 < p < 1, 

f F-I(p) F(x)dx < _ f a-l(p) G(x)dx. 
.10 JO 

So, X <_t. Y. 

As an application, the following Corollary 3.4 presents conclusions about the NBUE 

ordering. 

C o r o l l a r y  3.4 

(i) if 

For any positive integer n, 

ra in{X1, . . . ,  X.} min{Y~ .... , z~} 
~RS EX EY 
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then X _<~b~ Y. 

(ii) if 

then X ~nbue Y" 

P r o o f  Notice that 

max{X1,. . . ,  X~} max{Y1,..., Yn} 
~ttt EX EY 

X Y X Y 
E---X ~RS ~ ~ Z ~nbue Y ~ ~-~ ~ttt E)~, 

the proof can be easily followed from Theorem 3.3. 
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