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B I F U R C A T I O N  IN THE N E I G H B O U R H O O D  OF 
A N O N - I S O L A T E D  S I N G U L A R  POINT 

BY 

M. S H E A R E R  

ABSTRACT 

The Lyapunov-Schmidt method for bifurcation problems has, until recently, 
been applied only to operator equations whose singular points are isolated in 
the solution set of the equation. For bifurcation at a multiple eigenvalue 
involving several parameters, however, singular points are often non-isolated. 
In this paper, the case of intersecting curves of singular points is considered. 
Under  natural hypotheses on these curves, and assuming suitable transversality 
conditions on the first order nonlinearity of the operator, it is shown that the 
solution set of the equation may be completely determined locally in terms of 
the solutions of associated finite dimensional polynomial equations. 

I. Introduction 

Let E and Y be real Banach spaces. In this paper,  we discuss the nature of the 

set of small solutions of a class of opera tor  equations of the form 

(1.1) G(u) = O, u E E 

where G:  E--*  Y is a mapping of class C" for some n - 3 ,  G ( 0 ) = 0  and 

DG(0) :  E ~ Y is a Fredholm opera tor  with index m => 2. 

Since DG(u) is assumed continuous in u, there exists a neighbourhood U of 

zero in E such that DG(u) is a Fredholm opera tor  of index m for all u ~ U [6]. 

Suppose u E U is a solution of (1.1) and DG(u) is onto Y. Then,  by the implicit 

function theorem, the solution set of (1.1) is locally (i.e. near  u) C" homeomor-  

phic to an open ball in R". 

From the point of view of bi[urcation theory, it is important  to investigate the 

nature of the solution set of equation (1.1) in the neighbourhood of a point 

u E U such that G(u)= 0 and DG(u) is not onto Y. Such points are called 

singular. Henceforth  we shall suppose u = 0 is a singular point. Note  that E must 

now be at least three-dimensional.  
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The set of small solutions of (1.1) may be visualised as consisting of an 

m-dimensional C" manifold, on which DG(u)has range Y, together with a set S 

of singular points. The simplest possible case, when S f3 W = {0} for some 

neighbourhood W of zero in E, has been discussed thoroughly by Magnus 

[9-11]. In this case, the singular point u = 0 is called isolated. 
Magnus' analysis is of particular interest in bifurcation problems involving one 

parameter.  Such problems may be formulated as an equation of the form (1.1) 

with m --1 ([9], [14]). 

Now, the range of DG(O) is a subspace of Y with codimension/3 _-> 1. If/3 = 1 

and m _-> 2 then the singular point u = 0 cannot be expected to be isolated in 

general. If/3 _-> 2 and m _>- 2 then the case when u -- 0 is an isolated singular point 

must be regarded as exceptional. Since bifurcation problems involving several 

parameters correspond to the case m _- 2, it is important to consider classes of 

equation (1.1) such tha t  u = 0 is a non-isolated singular point. 

To further motivate this last statement, consider the usual formulation of 

bifurcation problems involving several parameters. Let X be a real Banach 

space and let E = RP+lx X where p _-> 1. Write G(u) as G(A,/z ,x)  for u = 

( A , p . , x ) E R •  p •  Suppose G ( A , 0 , 0 ) = 0  for each A E R ,  where 0 E R  p, 

0 E X are the zeroes of R p, X respectively. Gx(0,0, 0): X---~ Y is assumed to be 

a Fredholm operator  with index zero, null space N ~  {0} and range R. 

It is common to assume, f o r p  -- 1, that G,, (0, 0, 0 ) ~  R (e.g. [3, 4, 7, 8, 13]). In 

this case, DG(0):  E --~ Y has index two (i.e. m = 2) so that it is reasonable to 

assume that the singular point u = 0 ((A, /.t, x ) -- (0, 0, 0)) is isolated, provided 

that N has dimension one or two. In fact, the knowledge of a line {(3., 0, 0): )t E 

R} of trivial solutions considerably helps the analysis, and Magnus' transversality 

conditions may be modified in order to retain and exploit the significance of the 

parameter space, as in [4]. However,  when dim N => 3 the assumption of an 

isolated singular point at zero is no longer acceptable in a theory attempting any 

degree of generality. It is worth noting that if N has dimension one, then 

DG(O,O, O) is onto Y. 

Another  situation of interest arises when p = 1 and G(A,/z, 0 ) =  0 for all 

(A, /z)E R 2. In this case, G~(0,0, 0) = 0 so that DG(0):  E--* Y again has index 

two (m = 2). If N has dimension one (/3 = 1), it is conceivable that the singular 

point )t = /z  =0 ,  x = 0 is isolated. However,  this will only be the case if 

AG, x (0, 0, 0) + ~G~x (0, 0, 0) maps N into R for all (A, ~ )  E R2; otherwise there 

exists a unique curve of singular points in R 2 x {0} through zero in E. This fact 

follows easily from the analysis of Crandall and Rabinowitz [5] for bifurcation 

from simple eigenvalues (see [15] for details). 
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If N has dimension two, it is reasonable to expect two curves of singular points 

in R 2 x {0} passing through zero. These curves may be coincident. This situation 

is discussed for two examples by Mallet-Paret [12]. Examples of non-isolated 

singular points occurring as secondary bifurcation points are discussed by Bauer, 

Keller and Riess [1]. 

In this paper we suppose the set S of singular points near u = 0 to consist of 

distinct curves (each of class C") each passing through zero. Let C be one of 

these curves and suppose C is parameterised by w: ( - 1 , 1 ) ~ E  such that 

w(0) = 0 and w'(0) ~ 0 (see (HI) of section two). Let X be a subspace of E such 

that E = X @ span{w'(0)}. We might attempt Magnus' analysis on the equation 

(1.2) G ( w ( a ) + X ) = O ,  x E X  

separately for each a ~ 0, and then try to piece the "slices" of solutions together 

to obtain the full picture in E. Clearly, we first need to characterise the 

null-space of D G ( w ( a ) )  for each a ~  0. Hypothesis (H2) enables us to do this 

(see Lemma 2.4). The next step is to generalise Magnus' non-degeneracy 

condition to apply along C. This generalisation reduces to a single non- 

degeneracy condition at zero and the piecing together of the slices of solutions 

follows naturally, giving cone-shaped sets of solutions of (1.1) near C. Finally, we 

show how the two definitions of non-degeneracy can completely describe the set 

of small solutions of (1.1). 

Having obtained preliminary results in section two, the analysis proceeds by 

analogy with that of [11]. The difference is that each result is one step removed 

from the corresponding result in [11] since we shall be considering the structure 

of solutions of (1.1) near a given curve of singular points, whereas the results in 

[11] are for the whole set of small solutions of (1.1). 

2. Preliminary results 

Let N(A), R ( A )  denote respectively the null set and range of a linear 

operator A. The notation we shall use for Frechet derivatives is that of [11]. Set 

V = N(G'(O)), R = R(G'(O)). Let Z CE, YoC Y be complementary subspaces 

of V and R respectively, and let P: Y---> Yo be the projection given by 

P(f  + y) = y for [ E R, y E Yo. Let k be the largest integer such that 2 =< k = n 

and 

(2.1) G~ j=O, ] = l , . . . , k - 1  for all v E V .  

Let C be a curve in E satisfying 
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(H1) C = {w(s) :  lo t [<  1} where w: ( -  1, 1 ) - * E  is of class C ~ for some p >- k 

such that w (0)= 0, w ' (0)~  0, G( C) = {0} and R ( G'(x )) ~ Y for each x E C. We 

shall always suppose p >= n. 

LEMMA 2.1. Let C satisfy (H1). Then 

(a) w ~  j = l , . . . , k - 1 ,  

(b) G'(0)wtk)(0)+ G(~)(0)(w'(0)) k = 0, 

(c) PG'k)(O)(w'(O)) k = O. 

PROOF. By (H1) 

(2.2) G ( w ( s ) )  = 0 for I s [ < l .  

Differentiate (2.2) with respect to s and set s = 0 to get G ' (0)w ' (0)=  0. This 

proves (a) for ] = 1. 

If k = 2 we have proved (a), so suppose k _- 3 and that we have proved (a) for 

] = 1 , . . . ,  m - 1 for some m =< k - 1. Set f ( s )  = G ( w ( s ) ) .  Then ftm)(0) is given 

by 

(2.3) f'm)(0)= m [ ~ ~ a,~G~ . . . w('P(0), 
j=l 1,1=,~ 

where r = (rl , . . . ,  rs), J r I = rl + . . .  + r, and a,j = (r1! �9 �9 �9 rj !j !)-~. Since m ~ k - I 

and w~ ~ V for j = 1 ,- . . ,  m - 1, (2.1) and (2.3) imply f( ')(0) = G'(0)w(")(0). 

But f ( " ) (0 )=0  by (2.2). This proves (a) for ] = 1 , - . . , m ,  and so for j = 

1 , - . . , k  - 1 .  

To prove (b), note that f(k)(o) is given by (2.3) with m = k. Thus by (a) and (2.2) 

0 =/(k)(0) = G'(0)w (k)(0) + G(k)(0)(W '(0)) k, 

which proves (b) and so (c). 

Set v0 = w'(0) and define BE : V---) Y by Bk(v )=  (1/(k - 1)!)G(E)(O)v~-IV. Set 

Vo = N(PBk)  and let Xo be a subspace of V such that Vo(~Xo = V. Set 

Ro = B~ (Xo). Then Ro t"l R = {0} so let Y~ C Y be a complementary subspace of 

Ro (~ R. Since Y~ G Ro is complementary to R, we may suppose Yo = I"1 �9 Ro. 

Define P~: Y - - )Y~  by P I ( / +  y ) =  y i f f E R o t ~ R  and y E Y,. 

Clearly BE is a linear homeomorphism between Xo and Ro. Now set 

f ( s )  = G ' ( w ( s ) )  for Is  [ < 1. From (2.1) and Lemma 2.1(a) it is easy to show that 

fo)(O)v = 0, j = 0, 1 , . . . ,  k - 2 for all v E V, and f(k- ' (0)v = BkV for v ~ V. 

The results 2.2 to 2.4 below are perturbation results for the family {f(s) :  

Is  [ < 1} of linear operators from E to Y. These and similar results appear in 

[15]. 
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LEMMA 2.2. Suppose (H1) is satisfied. Then there exists 8 > 0  such that 

dim N ( G ' ( w ( a ) )  <= dim Vo for all et, 0 < l a I < 8. 

To extend the method of [11], we require the following hypothesi~ on C: 

(H2) There exists ~ > 0  such that, for l a l <  ~, dimN(G'(w(a)))>= dim Vo. 

A subset C of E satisfying (H1), (H2) is called an arc of singularities of (1.1). 

If C is an arc of singularities of (1.1) and Vo is defined as above, we shall say Vo 

corresponds to the arc of singularities C. 

COROLLARY 2.3. If  C is an arc of singularities of (1.1) then there exists e > 0  

such that for 0 < [ a I < e, dim N ( G ' ( w  (a)))  = dim Vo and codim R (G'(w (a)))  = 

dim Y1. 

For r > 0 let L denote the open interval ( -  r, r) and let Ir denote  L - {0}. 

LEMMA 2.4. I f  C is an arc of singularities of (1.1) then there exists r > 0 and a 

mapping T: L -'~ B(E,  E )  such that 

(1) T is of class C" on f~, and of class C "-k on L, 

(2) T(a)  is an isomorphism between Vo and N(G'(w(ot)))  for each ot E I~, 

(3) T(O)x = x for each x ~ E, 

(4) T(a )  has the form, for v ~ Vo, x E X o ( ~ Z ,  

T(a) (v  + x)  = v + x + L ( a ) v  + ak-~M(a)v,  

where L: L ~ B(Vo, Xo), M: L ~ B(Vo, Z )  are of class C" on [, and of class 

C n-~ on L, L(0) is the zero operator and M(O)v is given by 

G'(O)M(O)v + (1/(k - 1)!)Gt~'(0)v~ 'v = 0. 

The degree of degeneracy of G ( x )  along C needs to be assessed, as (2.1) 

assesses the degree of degeneracy of G(x)  at x = 0. Let s be the largest integer 

with the following properties: (a) s _<- k, (b) there exists ~ > 0 such that for a E I,, 

(2.4) G~ j = 0, j = 1 , ' " , s -  1 for all v E N(G' (w(a) ) ) .  

Note that 2_-< s _-< k and that in general s will be two. However,  there is no 

simplification in assuming s = 2. 

LEMMA 2.5. Suppose C is an arc of singularities of (1.1) and that s > 3. Then 

(2.5) Gtk)(O)vko-SVJ = O, j = 2 , . . . ,  s -- 1 for all v ~ Vo. 

PROOF. For j -- 2,.  �9 s - 1 consider the Taylor expansion around a = 0 of 

the expression 
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G~ + L ( a ) v  + a k - ' M ( a ) v )  s. 

The first k - j  terms are included in the form 

k 

~ ~'~ a,q_,aPO(q)(O)w(',)(O).., w%-,)(0)(v + L ( a ) v )  j, 
q~ j  p=q--j ]r]=p 

ri>=l 

where r = (rl , . . . ,  rq j), Irl = rl + - . -  + rq_j and a,q_j is the real number given in 

the proof of Lemma 2.1. 

Now consider the coefficient of a p for p =< k - j  - 1. Since r~ _-> 1 we have 

q - j _ - < p _ - < k - j - 1  so that q _ - < k - 1  and r , = < k - 1  ( i = l , . . . , q - j ) .  Since 

L ( a )  maps Vo into V, Lemma 2.1 and (2.1) imply that this coefficient is zero. For 

p = k - j  the only contribution to the coefficient of a p in the summation is, by 

the same argument, GCk)(O)v~-S(v + L ( a ) v )  j. Thus, for 2 _-j _-< s - 1, and for all 

v E  Vo, 

0 = a i - k o ~ ( w  ( a ) ) ( T ( a ) v )  j --~ (1/(k - j)!)O~*)(O)v~-i# as a ~ 0. 

This completes the proof. 

It is well known (see, for instance, [3, 4, 7-13]) that the investigation of small 

solutions of equation (1.1) may be reduced (using the Liapunov-Schmidt 

method) to a discussion of the small zeroes of an operator  (~: V ~  Yo of the 

form (~ (v) = PG~k~(O)v ~ + o(1[ v [[k). Accordingly, various forms of the following 

definition are frequently used in order to establish the existence of small zeroes 

of (~ (and so of G)  using the implicit function theorem. 

A solution w ~ V of the equation 

(2.6) PG~)(O)w k = 0  w E V w ~ 0  

is called non-degenerate if the map 4~(w): V---~ Yo: v ~ PGtk)(O)wk-lV is onto 

Yo. If 4~(w) is not onto Yo, then w is called a degenerate solution of (2.6). 

Note that if Vo corresponds to an arc of singularities then v0 is a degenerate 

solution of (2.6) and 4~(Vo) = (k - 1)!PBk. 

In [11] it is shown that each non-degenerate solution of (2.6) directs a manifold 

M of solutions of (1.1) with the property that G'(x )  is onto Y for each 

x E M -  {0}. The statement "v  directs M "  means that M has the shape of a 

double cone with vertex at zero and axis span {v}. 

Suppose r o e  V is a degenerate solution of (2.6) and define Vo, Y, and 

P1: Y ~  Y~ as though v0 corresponded to an arc of singularities. Suppose in 

addition that (2.5) holds for some s _-> 2 (s =< k). Let V~ be a subspace of V such 

that V, Q span{vo} = Vo and set I7 = V, (~ Xo, X = ~' (~ Z. 
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A solution vl E V1 of the equation 

(2.7) eiGck)(O)v~-'v" = O, v E VI, v #  0 

is called non-degenerate if the map O(v~): V~---~ Y~: v ~ PIGtk)(O)vko-'V~-~V is 

onto Y~. If r is not onto Y~, then v~ is called a degenerate solution of (2.7). If 

every solution of (2.7) is non-degenerate, then r o e  V is called a quasi- 

degenerate solution of (2.6). 

Note that if m -< 1 then dim V~ =< dim Y1, so that every solution of (2.7) is 

degenerate. Since we shall only be concerned with non-degenerate solutions of 

(2.7), we suppose m _---2, as in section one. 

Let F(v )  = eG~k)(O)(vo+ v) k for v E 17'. Using Magnus' argument ([11]) for F, 

we see that each non-degenerate solution v~ of (2.7) directs a manifold M(vO C (z 

of small zeroes of F with the property that F'(v)  is onto Y0 for each 

v ~ M(vO - {0}. But then v0 + v E V is a non-degenerate solution of (2.6) and so 

directs a manifold of small solutions of (1.1). However, with this analysis, we find 

little more information about the structure of small solutions of (1.1) than if we 

had studied only non-degenerate solutions of (2.6) from the beginning. 

Moreover, even if Vo is a quasi-degenerate solution of (2.6), this is not enough 

alone to guarantee that the above analysis will catch all small solutions of (1.1) 

near the ray span {vo}. 

Now suppose that vo corresponds to an arc of singularities. We define the 

following sets of solutions of (I.1). Let v E E and p > 0. Set 

S(v, p) = {~(v +x): ( ~ , x ) e  Rx E,I,~ I < p, ll, [l< p}n o-'(0), 

~(Vo, p) = {w(~) + ~T(~)x: (~, x) ~ R x X,I~ I < P, IIx II < P} n G-'(0), 

19(Vo, p)  = ( w ( a  ) + a f lT (a  )(v + x): 

(,~,~,x)~R2x x, lo~l< p,l~l < p, ll,ll< p}n o-'(o) 

(S and b are defined only for p < r). 

We shall obtain solutions of (1.1) from non-degenerate solutions of (2.7) as 

follows. We first establish the form of small solutions of (1.1) near an arc of 

singularities C (see Lemmas 2.7, 2.8) and the differentiability properties of a 

mapping to which we shall apply the implicit function theorem (Lemma 2.6). It is 

then an easy matter to show the existence of a manifold of solutions of (1.1) 

directed by v0 for each non-degenerate solution of (2.7) (Theorem 3.2). The 

analysis is similar to the discussion above, except that stronger differentiability 

properties of the solutions are obtained than is possible for the more general 
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case, and we require only one step. The difficult part is to show how completely 

the two definitions of non-degeneracy describe the set of small solutions of (1.1). 

This analysis occupies most of section three. 

For the rest of this section, we suppose that Vo ~ E corresponds to an arc of 

singularities, with w: ( -  1, 1)---~ E given by (HI). 

LEMMA 2.6. Let F: L x R x V~ x Xo x Z -~ Y be the mapping defined by 

F(a,/3, v, x, z)  = a-k/3-SG(w(a) + a/3T(a)v + ct/3~x + a ~/3"z) if a/3~'O, 

-s 1~" G,k)(0)(Vo+ + "x)k + G,(O)(/3M(O)v+ lw ,k ) (O) ) }  F(0,13, v, x, z)  =/3 t ~  /3v /3 

+ G'(0)z i/ /3~ 0, 

s - k  
ot 

F(a, O, v, x, z)  = 7 G" ' (w(a  ))(T(a )v ) s + G ' (w(a  ))z 

+ a l -kG' (w(a))x  i/ o~0, 

1 Gtk)(O)v~_,v, + 1 1)! Gtk)(O)v~-lx + G'(O)z. F(O, O, v, x, z)  = (k - s)!s! (k - 

Then F is of class C ~ in the region defined by a/3 ~ O, of class C ~-" in the region 

defined by a ~ O, of class C "-k everywhere, and of class C ~ with respect to v, x, z 

everywhere. 

PROOF. From the definition of k and s, we may observe that F has the 

desired properties except possibly at a =/3 = 0. (See [9] for details.) The Taylor 

expansion of G(x + y) around x may be written in the form 

k 

G ( x  + y) = ~ (1//!)GO~(x)y ' + g(x;  y)y k, 
j=o 

where g(x ; y)  is of class C "-k in y for each x and g(x ; 0) = 0. Since G is of class 

C ~, GO)(x) is of class C "-~ with respect to x for each j = 1 , . . . ,  k. Thus g(x ; y)  is 

of class C "-~ in (x, y). 

Set r(ot,/3, v, x, z)  = T(ot)v +/3~-~x + ak-~/3~-Iz and substitute x = w(a),  y = 

a/3r into the above expansion: 

k 

O ( w  (~ ) + ,~/3r(,~, /3, v, x, z )) = ~ O/J !)G~ (~ ))('~/3r( a, /3, v, x, z)y 
j=l  

+ a ~/3 kg(w (a) ;  a/3r)(r(a,/3, v, x, z)) k. 

Let [(a,/3, v, x, z), h(a,/3, v, x, z)  denote respectively the first term, and a-k/3 -" 
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times the second term in the expansion above. Then h is of class C "-k at 

c~ =/3 = 0. By (2.4), we may observe that f(a,/3, v, x, z)  is a polynomial in /3 

divisible by /3'. Furthermore,  f is of class C" in a, and by (2.1) 

D~[(O,/3, v, x, z)  = 0 for j = 1 , . - . ,  k - 1. Thus, the function H :  R 2 x V1 • Xo x 

Z---> Y given by 

H(a,/3, v, x, z ) = a -k/3-,f(ct, ~, v, x, z) (ct ~ 0), 

H(O,/3, v , x , z )=  /3-SD~)f(O,/3, v ,x , z )  

is of class C "-k at a =/3 =0 .  Since F =  h + H  and F(a,/3, v ,x , z )  is clearly of 

class C" with respect to (v, x, z)  at a =/3 = 0, the proof is complete. 

Let /~ denote the space R • V, • Xo • Z with zero 0. 

LEMMA 2.7. There exists ~ > 0  and positive constants A1, A2 such that if 

u ~ S ( v o ,  8) for 8<=~ then u = w ( a ) + a ( T ( a ) v + x  +z )  with ( a , v , x , z ) E E  

satisfying 

(a) Ilzll<-_All,~l~-'(llxll+llvll'), 
(b) [I x II --< A2 II v I1'. 

Furthermore, given e > O, there exists 8 > 0 (8 <= ~ ) such that if u E S ( vo, 8) as 

above, then 

(c) ( ~ _ l ) , . c ' ~ ' ( O ) v ~ - ' x + ~ a ' ( O ) Z + ( k _ s ) ! s ! C ' ~ ' ( O ) v ~ - ' v  �9 ~ l ~ l ~ [ [ v l [  ". 

PROOF. Let Fk,: V ~  Y be the symmetric s-linear operator  defined by 

F~,v" -- (1 / ( (k  - s ) ! s  !))G'~(0)v~-'v'. 
From the proofs of Lemmas 2.5, 2.6 it is straightforward to use the Taylor 

expansion of G ( w ( a ) + y )  ( y E E )  around y = 0  followed by the Taylor 

expansions of G~ around a = 0 (/' = 1 , . . . ,  k)  to obtain an expansion (for 

a E I,) of the following form: 

G(w(a)  + a(T(ct)v + x + z)) = aG'(O)z + af,(a, v, x, z)z  

(2.8) + a kBkx + a kf2(a,v,x,z)x + akFk, v" 

+ ~ %(~,  v, x, z )v ' .  

Here,  f~: E--->B(E, Y), i = 1,2 and f3: E--*B' (E ,  Y)  (the bounded s-linear 

operators) are continuous, and each is the zero operator  at 0. 

Since G'(0): Z---*R and Bk: Xo--->Ro have bounded inverses, there exist 

K~ > 0 (i = 1, 2) such that II G'(0)z II --- K,II z [I for z E z and II Bkx II --> K211 x II for 

x ~ X o .  Choose ~ > 0  so that lY,(~,v,x,z)ll<K,/2 (i=1,2) for I,~[<~, 



372 M. S H E A R E R  Israel J. Math. 

II v + x + z II < ~. From (2.8), A, may be chosen to satisfy (a), and substituting (a) 

into (2.8), we see that A2 may be chosen to satisfy (b). 

Now choose 6 > 0 (8 =< ~) so that l a I < 8, II v + x + z II < ~ imply 

A~(A2 + 1)llf~(a, v, x, z)l I + A~llf~(~, v, x, z)ll + IIA(~, v, x, z)ll < E. 

Then, from (a), (b) and (2.8), it is immediate that (c) holds for this choice of 8, 

and the proof is complete. 

LEMMA 2.8. Let v~ E V, be a solution of (2.7) and let U be a subspace of V~ 

such that V~ = U (~ span{v~}. Then given e > O, there exists 8 > 0 such that 

u E 15(v~, 8) implies u = w ( a ) +  a[3T(a)(v~ + v )+  a[3~(Xo + x ) +  a k[3"(Zo + z)  

where ( a, [3, v, x, z )  E R • R • U x Xo • Z, l a 1, 113 I, [I v 1[, [[ x II, II z l[ are each less 

than e ; xo E Xo and Zo E Z are defined uniquely by 

(2.9) a ' ( ~ 1 7 6  ~176176176 1-~)!~f ~176 =o .  

PROOF. The proof is in two parts. First we show that, given eo>0 ,  there 

exists 8 > 0 such that u E / )  (v~, 8) implies u = w ( a ) + a[3 ( T(  a )( v~ + v) + x + z)  

with (a,/3, v, x, z ) �9 R ~ x U x Xo x Z, la  I, I/3 I, II v II, II x II, II z II each less than eo. 

Suppose u � 9  8). Then u = w(a)  + T(a)ab(v~ + x') where 

(a,b,x')�9215 lal, Ibl, IIx'll are each less than 8. Let Pu, Po, Pz be 

projections of X onto U, Xo, Z respectively, and let f, be a continuous linear 

functional on X, such that y � 9  implies y = f t ( y ) v , +  Puy +Poy +Pzy. Set 

a = a ,  / 3=b( t+ f~ (x ' ) ) ,  v=( l+f~(x ' ) ) -~Pux ' ,  x= ( l+ f~ (x ' ) ) - :Pox ' ,  z =  

(l + f~(x'))-~Pzx '. Then u = w(a)+a[3(T(a) (v~  + v )+  x + z). Now choose 

8 > 0 small enough that IIA(x')ll < ~ i f  tlx'll < 8 and so that 

8 max{3/2,211Pu II, 211Po II, 211Pz II} < eo. 

Then u E D(vl ,  8) has the desired form. 

We can now complete the proof. From Lemma 2.7 (c) we see that given e '  > 0, 

there exists 8' > 0 such that if u = w(a )  + a[3(T(a)(v~ + v) + x + z )  E D(v l ,  8') 

then 

Thus 

11~'[3B~x + ~[3o' (0)z  + ~'[3"F,~(v~ + o)' tl -< ~'1 ~ I ~ 113 I" II v, + v I1". 

II ~ k- 'Bk (x - [3S- 'Xo)+ G ' ( O ) ( z  - ~ k - ' [ 3 S - ' z o ) +  ~ k - ' [ 3 " - ' ( F ~ s ( v ,  + v)" - Fk,v ;)11 

(2.10) 
__ ~,1,~ 1~-'113 I,-,llv, + v II , . 
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Now 

Ilrk, (v,  + v)" - rk, v;ll ~ IIr~, II O( l l  v, + ~ II, I1~, II)11 ~ II, 

where Q(a, b) = ' ~ ' - '  k-,§ z.,=o a a is a homogeneous  polynomial  of degree s - 1. Let  

K,,  K2 be the positive constants defined in the proof of L e m m a  2.7. Then,  f rom 

(2.10) 

K,[Iz - a  k-'[3"-'Zoll<-]alk-'l[31"-'llI-Pl[(e'llv, + vii" 

+ II Fk, II O (11 ~, + v II, 11 v, II)11 v I1), 

since (I - P)B~x = 0 for all x E Xo, and 

r211 x - t3'-'xoll  = I t3 I'-'ll P - P ,  II(e '11 v, + v I1" + II F~, II O (11 '~, + v I1, II v, II)ll ~ II), 

since PG'(O)z = PIG'(O)z = 0 for all z E Z. 

Now choose e '  > 0 so that III - P II II v, ll'e' < (e ]4)K, and II P - P, II II o, ll'e' < 

(e/4)K2, and let 6 ' > 0  be chosen as above. Choose Co>0  so that Co< e and if 

II v II < e0 then IIFk, IIO(ll v, + o II, II v, ll)ll v II < (e /2)g ,  (i = 1, 2) and II v, + v II" < 

211 viii'. Finally choose 6 > 0 as in the first part of the proof, for this choice of e0, 

and so that 8 < 8 ' .  Then u E l S ( v ,  6) implies u E D ( v , , 6 ' )  and u =  

w(a)+al3(T(a)(v,+v)+~ +:r with (v, ~ e) e U• I,~l, It3l, Ilvll each 

less than e, 

1[~-/3"- 'Xoll</3"- 'e  and I l e - , , * - ' l s ' - ' z o l l < l ~ l ~ - ' l ~ l ' - ' e .  

Set x = / 3 - ' + ' ~ - X o  and z = a-k+ ' /3- '+ ' .~-Zo.  Then Ilxll< e, I l z l l<e  and u -- 

w(a)  + a~T(a)(v ,  + v) + aC]'(Xo + x) + ot k/3" (Zo + z).  

LEMMA 2.9. Given e > 0  there exists 6 > 0  such that S(vo, 6)Cg(vo, e). 

PROOV. First observe f rom L e m m a  2.4 that T(a )  maps X to X, is cont inuous 

in a E L, and T(O)x = x for each x E X. Therefore,  there exists e '  > 0 such that 

if tot 1< e '  then II T(a)x  It = ~llx II for all x E X. Thus, it is sufficient to show that 

given e '  > 0, there exists 6 > 0 such that each u ~. S(vo, 6) may be written in the 

form u = w (a)  + ax with I s I < e '  and II x II < e' .  Then u = 

w (a) + aT(a ) [  T(ot)]-~x and II[T(a)]-'x II =< 2 II x II < 2e '. Choosing e '  < e/2, we 

have u E S(vo, e). 

Let  f :  E---~R be a cont inuous linear functional satisfying f(vo)= 1, f ( x ) =  0 

for each x E X .  Consider  the map 4,: L ~ R  given by 4 , ( a ) = f ( w ( a ) ) .  4, is 

continuously differentiable, 4 ,(0)= 0 and 4, ' (0)= 1. Thus 4' has a cont inuous 

inverse 4 '- '  on an interval I~ ( r / > 0 )  and 4'-~(0)= 0. Choose 6 > 0  so that 

36/2 < 77, 14,-1(a)l < e' for l a l  < 38/2 and If(v)l  < �89 for v E E, II v II < 8. Suppose 
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u E S ( v o ,  8), so that u = a ( V o + V )  with [ a l < 8  and Ilvll<8. Let 

a ( l + f ( v ) ) .  Then I,~'1<38/2 so set s r = 4,-1(a'). Then I~l<e ' .  Since 

,,(Vo + v) = w(~ ) + ~{~' Vo- w (4, - ' ( , , ' ) )  + ~(v  - f(V )Vo)}16-'(~') 

we need only show that 8 > 0 may be chosen small enough that 

l[ avo-  w(6-1(a))H < (e ' /2)16- '(a)[  if l a [ <  38/2 (2.11) 

and 

(2.12) la  lily - f (v)vol l  < (t~'12)l ~b-l(a(1 +f(v) ) ) l  if [a J < 8, llvll < 8. 

Now w(~)=  ~Vo + ~t(~:) where t: L--> E is continuous and t(0)= 0. Thus, if 

= ~b-l(a), then a = ~ + ~f(t(~)) and so 

avo - w( qb-'( a )) = ~b-'(a){(f ~ t o c~-')(a )vo - (t o ~b-')(a)}. 

Choose 8 > 0  so that ](foto4a-~)(a)tllvoll<e'/4 and f l to4,- ' (a)l l<~' /4 for 

la1<38/2. Then we have proved (2.11). 

To prove (2.12), note that 

(1 + f (v ) )a  = 6-~(a(1 + f(v))){1 + (f o, t o 6- ' ) (a(1 + f(v)))}. 

Thus, if l a l < &  Ilvll<8, then lal<2(l+e'/allvoll)16-'(a(l+f(v)))[. Now 

choose 8 > 0  as above and so that Ilv - f (V)Voll< ~'llvolll(allvoll+ E')i f  Ilvll< 8. 
With this choice of 8 > 0, (2.12) holds, and the proof of the lemma is complete. 

3. The main results 

THEO~ZM 3.1 (Magnus [11]). Let woe  V be a non-degenerate solution of 

(2.6) and let W be a subspace of V such that span{wo}@ W = N(ck(wo)). Then 

there exists r > 0 and a function g from A, = {(a, w) E R x W: l a 1< r, II w II < r} 

into E such that g (0, O) = 0 and G (g (A,)) = {0}. Furthermore, g is of class C n-~ on 

A,, and of class C" on ii,, = {(a, w) E A,: a ~ 0}, and there exists p > 0 such that 

S(wo, p ) C g ( A , ) .  

If 0 <  e =< r, let tr(wo, e) denote the set g(,4E). 

As shown earlier, if vo ~ E corresponds to an arc C of singularities, as defined 

by (H1), (H2), then v0 ~ V and v0 is a degenerate solution of (2.6). In this case, 

Theorem 3.1 does not apply, but the following theorem establishes that each 

non-degenerate solution of (2.7) yields a set of solutions of (1.1) near C. 

THEOREM 3.2. Suppose vo E E corresponds to an arc of singularities, and that 

vl E V~ is a non-degenerate solution of (2.7). Let Uo, W be subspaces of VI such 
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that W (~ span{v1} = N(O(v,))  and N(tp(vl) ) (~ Uo = V,. Then there exists r > 0 

and a function h from the ball B, = {(or, fl, w)  E R 2 x W: [ a I < r, I fl I < r, II w II < r} 

into E such that 

(a) h ( 0 , 0 , 0 ) =  0, 

(b) G(h(a, /3,  w ) = O  for each (a,/3, w ) ~ B , ,  

(c) h is of class C "-k on B,, of class C"- '  on/~, = {(a, fl, w) E B, : /3 ~ 0} and of 

class C" on B ', = {(a,/3, w ) E B,: a/3 # 0}, 

(d) there exists p > 0  such that [ ) ( v~ ,p )Ch(B , ) .  

Finally, h has an explicit form as follows: 

h(ot,/3, w) = w ( a )  4- af lT(a)(Vl  4- w 4-/.~ (a,/3, w) )+  or/3" (Xo -t- 3~ (or,/3, w)) 

+ a fl'(zo+ w)), 

where Xo E Xo, Zo E Z are given by (2.9), and ~, ~, ~ are/unctions from B, into 

Uo, X0, Z respectively such that f~ (0, 0, 0) = ~ (0, 0, 0) = ~ (0, 0, 0) = 0. t~, ~, ~ are of 

class C "-~ on B,, C ~-" on B, and of class C ~ on B;. 

PROOF. Let F:  R 2 x V1 x Xo x Z---> Y be the function defined in Lemma 2.6. 

Then F(0, 0, v~, Xo, Zo) = 0 and the Frechet derivative of F with respect to (v, x, z)  

at the point (0,0, V,  Xo, zo) is the linear mapping H :  V~ x Xo x Z ~  Y given 

by H(v,  x, z )  = sF~,vT-~v + Bkx + G'(O)z. By definition of Uo, Xo, Z, H is a linear 

homeomorphism between [So x Xo x Z and Y. An application to F of the 

implicit function theorem, as stated in [11], proves all the conclusions of the 

theorem except (d), noting that if (or, [3, w ) E B, and o#3 = 0, then h (~,/3, w) E C 

so that G(h(a, /3,  w))  = O. 

To prove (d) note that, by the implicit function theorem (and continuity), there 

exists h > 0 such that II a (ct,/3, w)ll, II 2 (t~,/3, w )11, IIe (ct,/3, w)II are each less than A 

for all ( a , ~ , w ) E B , ,  and so that if F ( a , ~ , v ~ + w + U ,  Xo+X, Z o + Z ) = O  with 

(a, fl, w ) E B , ,  u E U o ,  x ~ X o ,  z E Z  each with norm less than A, then 

u = t~(a,/3, w), x = s w) and z = i (a , /3 ,  w). Set e = min{h, r} and choose 

p > 0  less than 8 as in Lemma 2.8 so that each y E / ) ( v ~ , p )  may be 

written as y = w ( a ) +  a/3T(a)(~t + w + u ) +  a[3"(xo+ x ) +  a~[3"(zo+ z )  with 

(a,/3, w, u, x, z ) E R z x W x Uo x X0 x Z, each with norm less than e. Then either 

a / 3 = 0  or F(a,/3, v ~ + w + U ,  Xo+X, Zo+Z)=O,  so that y E h ( B , ) .  Thus 

l~(v~, p ) C  h(B, )  and the proof is complete. 

For 0 < e < r let B '  denote the set 

and define r(vl ,  e ) =  h(B',). Clearly, for each p > 0  there exists e > 0  (e = r) 
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such that r(vl, e) C S(vo, p), and, for each e > 0 (e _-< r), there exists ~ > 0 such 

that 19(vi, ~) C z(v,, e) U C. 

Now theorem 7 of [11] states that if every solution of (2.6) is non-degenerate 

then there exists 3, > 0 such that the set of solutions of (1.1) with norm less than 3' 

lies in the set U tr(Wo, r), where the union is over a finite number of solutions 

woe  V of (2.6) and r = r(wo) is given in Theorem 3.1. 

Since v0 E V in Theorem 3.2 is a degenerate solution of (2.6) this result no 

longer applies, but we shall show that a corresponding result holds. That is, if 

every solution of (2.7) is non-degenerate, then there exists p = p(Vo)>0 such 

that S(vo, p)C U ~'(vl, r), where the union is over a finite number of solutions 

vl E V1 of (2.7) and r = r(vO is given in Theorem 3.2. 

The following theorem, for non-degenerate solutions of (2.7), is the analogue 

of theorems 2-5 of [11], for non-degenerate solutions of (2.6). Let J(v0)= 

{v E v , :  PlG'k~(O)vg- 'v" = o, llvll = 1}. 

THEOREM 3.3. (i) The mapping f given by 

f(~,/3, w , u , x , z ) =  h(a,/3, w ) +  u + x + z 

is a homeomorphism of B'r X Uo X Xo X Z onto an open subset of E. 

(ii) There exists e > 0  such that, for each x E z(vl, e), G'(x)  has range Y; 

N(G' (x ) )  is complementary to Uo ~ Xo <~ Z in E and linearly homeomorphic to 

N (t~ (vO) ~ span{vo}. 

(iii) There exists e > 0 such that r(vl, e) is an open subset of the metric space 
O-1(0). 

(iv) Let I be a subset of J(vo) consisting of non-degenerate solutions of (2.7). For 

each v E L let r(v, r) be the set of solutions of (1.1) given by Theorem 3.2, and 

choose e = e ( v ) > 0  as in (ii), (iii) above. Then the set M = Uo~,r(v, e(v)) is a 

submanifold of E of class C". 

PROOF. The proof is a straightforward generalisation of the proof of corre- 

sponding results in [11]. 

(i) Let S denote the set of elements of the form w(a)+ct /3T(a)(v l+ w)+ 

u + x + z with 0 < l a I < r, 0 < I/3 1 < r  and II w II < r. Then S is open and R (f) C S. 

Suppose y = w(a')  + a' /3 'T(a ')(vl + w') + u' + x' + z'  E S. Then 

f(a,/3, w, u, x, z) = y is solved uniquely by 

o~=ot', /3=/3 ' ,  w = w ' ,  

u = u '  - a ' / 3 ' a  ( a ' , / 3 ' ,  w 3 ,  
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x = x ' -  ~'(13')'(Xo + ~(,~',/3' ,  w ' ) ) -  ,~ ' /3 'L(~ ' )a  (,~',/3', w'),  

z = z ' -  (a  ')~ (/3 ')' (Zo + e (a ' , / 3 ' ,  w ' ) ) -  a'(/3')~M(a')a(a ',/3', w'). 

These equations define the inverse of f which is clearly of class C". 

(ii) For (a,/3, w ) E B ,  set O(tx,/3, w ) = v ~ + w + ~ ( a , / 3 ,  w) and define map- 

pings J(a,/3, w): Uo---> Y and K(a,/3, w): Xo---> Y by 

J(a,/3, w)u = a-k+~[3-'§ w))u if a/3~O, 

~ - - s + l  

J(0,/3, w )u = (k - 1)! G rE)(0) (v0 + t3 (0,/3, w ) +/3" (Xo + 2 (0,/3, w )))k-, u 

if /3#0 ,  

- k + s  

a G~'(w(a))(T(a)f)(a,O,w)) '-~u if a # O ,  J (a ,  0, w)u = (s - 1)! 

1 
J(O,O, w)u = (k - s)!(s - 1)! Gtk)(0)V~ W))'-lu' 

K(a,/3, w)x = a-k+~G'(h(a,/3, w))x if a g O ,  

1 
K (0,/3, w )x = ( k - 1)! G r v0 + t3 (0,/3, w ) +/3" (Xo + ~ (0,/3, w )))E-~x. 

Then K and J depend continuously on (a,/3, w ) E  B,, and for (a,/3, w ) ~  B',, 

G'(h(a,/3, w))(u + x + z)  = G'(h(a,/3, w))z 
(3.1) 

+ ak- ' f l ' - 'J(a, /3,  w)u + ctk-'K(ct, [3, w)x. 

Now the map u+x+z--->G'(O)z+J(O,O,O)u+K(O,O,O)x is a linear 

homeomorphism between Uo Q Xo G Z and Y. Thus, there exists e > 0 such 

that the map u + x.+ z ~ G'(h(a,/3, w))z + J(a,/3, w)u + K(a,  [3, w)x is also a 

linear homeomorphism between Uo r Xo ~ Z and Y for each (a,/3, w) E B,. By 

composing this mapping with the invertible map (u, x, z )--> (ct ~-~/3 "-~u, a H x ,  z)  

from Uo • XoX Z into itself for each (a,/3), a /3r  0 we obtain (3.1), and this 

proves (ii). 

(iii) Let e > 0 be as in (ii) and suppose there exists a sequence {y,} C G-~(0) -  

r(v~, e) such that y.---> y E r ( v ,  e)  as n---> ~. Since y ~ ROt), we may suppose 

that y. 6 R ( f ) f o r  each n. Let ~, = ( a . , / 3 . , w . , u . , x , , z , ) E B ' , x  U o •  be 

such that y. = f(~.), a . /3 .g  0, and at least one of Ilu. II, Ilx= II, IIz. II is non-zero 

(since y . f~r(v~,e)) .  Then or. ---> or, /3.--->/3, w.---> w, u.--->O, x.--->O and z.--->O, 

where y = [(a,/3, w,O,O,O) = h(a,/3, w). Let H(~:) = G(f(~))  for 
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~ B', x Uo x Xo x Zo. Then  H is cont inuously differentiable,  and given 8 > 0, 

the following holds for  all sufficiently large n" 

II n ( # . ) -  n ( a . , / 3 . ,  w., 0,0,  0 ) -  OH(a,/3, w, 0,0,  0) .  (0, 0, 0, u., x., z . ) l  I 

8 (11 u.  II + II x.  tl + II z.  II). 

Since H ( ~ . )  = H(a. ,  [3., w. ,0 ,0 ,0 )  = 0 for  each n, and 

DH(a,  [3, w , 0 , 0 , 0 ) .  (0,0, u., x., z . )  = G'(h(a, [3, w))(u. + x. + z.), we have 

II G'(y)(u. + x. + z.)ll ---- 8 (II u. II + II x. II + II z. II). 

But this contradicts  (ii) if we choose 8 > 0 small enough.  

(iv) By (iii), M is an open  subset of G-I(0)  and, by (ii), for  each x E M, G;(x) 

is on to  Y and N(G'(x) )  possess a complementa ry  subspace in E. T he  result now 

follows f rom s tandard differential  topology.  

LEMMA 3.4. Let vo correspond to an arc C of singularities. 

(a) I f  Xo ~ 0 and 19 (xo, e) - C is non-empty for all e > 0, then Xo E VI and 

xoltlxoll ~ J(vo). 
(b) I f  J(vo) is empty then there exists p > 0  such that S(vo, p)C C. 

(c) I f  J(vo) is non-empty, then given e > O, there exists 8 > 0 such that if 

x E S(vo, 6) then x E 19(vl, e) for some vl E J(vo). 

PROOF. (a) There  exist sequences  {(a,, /3, )} C R z, { x , } C X  such that 

a . / 3 .~  O, a .  -->0, /3.--->0, x . - * O  as n - - - ~ ,  and 

G ( w ( a . ) +  a .T(a . ) (Vo  +/3.(xo + x.)))  = 0. 

Set Xo = Wo + yo, x. = w, + y, with w, E V,, y, E Xo • Z for i > 0. By L e m m a  

2"7 (a), (b), there  exist constants  c, > 0, c2 > 0 such that 

11/3.(yo + y.)ll ~ c,[a.  [k-lll/3.(Wo + w.)l I" + c2ll/3.(Wo+ w.)ll" 

for  all sufficiently large n. Thus  

Ilyo + y. II =< (c , /a .  1~-'+ c2)1/3.1"-'11Wo + w. l[ =. 

Let n ~ ~. Since s _-> 2, we have yo = 0. 

Now let y, = u. + z,  with u, E Xo, z,  E Z. By L e m m a  2.7 (c), given e > 0 

tl/3.a ~Bku. + a./3,G'(O)z. + a k/3,,Fk, (Wo + w,)" II ----< e l a .  I ~ 113. l" II wo + w. I/" 

for  all sufficiently large n. Since a,/3, ~ 0, 

lI P,Fk,(wo + w.)" tI ~ elIP, llll wo + w. 11". 
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Now let n --~ oo. Then IIPlG(k'(O)v~-'wg II < (k - s)!s!ellPlll II Toll" and s i n c e  e is 

arbitrary, wo/ll Toll e J ( vo). 
(b) By Lemma 3.2 and Lemma 2.7 (c), given e > 0 there exists 8 > 0 such 

that u E S(vo, 8 ) -  C implies u = w ( a ) +  otT(a)(v + y) with a E R, 

v E V1-{0}, y E X o @ Z  and IIP,Fk,(v/llvfl)'Jl<e. Let A = { v  E VI: Ilvll = 1}. 

Then A is a compact metric space. By lemma 4 (a) of [11], there exists 3'~ > 0 such 

that IIP, E~,o'II>3" for all y E A .  Hence, there exists 3 , > 0  such that 

S(v0, 3,)CC. By Lemma 3.2, there exists p > 0  such that S(vo, p )CS(vo ,  3,). 

(c) By lemma 4(b) of [11], given e >0 ,  there exists 3, > 0  such that if 

u E 'S(vo, 3 , ) -  C, u = w ( a ) + a T ( a ) ( v  + y), a E R, v E V1, y E X o @ Z ,  then 

II o II # 0 and II o/11 v II- v, If < �89 for some v~ E J(vo). Now use Lemma 2.7 (a), (b) 

to choose 3, > 0 as above, less than e and so that II o II < e, II y II < e II o 11/2. 
Then 

u = w ( a ) + T ( a ) a l l v l l ( v , + v / l l v l l - v , + y / l l v l l ) ) ,  Ilvll< e 

and IIv/llvll-v,+y/llollll<e. Thus u ~ ( v l ,  e). Clearly S(Vo, 3 , ) O C C  

/5(vl, e). By Lemma 3.2, there exists 8 > 0 such that S(vo, 8) C S(v0, 3,), and the 

proof is complete. 

THEOREM 3.5. Suppose Vo ~ V is a quasi-degenerate solution of (2.6) cortes 

ponding to an arc C of singularities. Then there exist ~ > O, a finite subset 

{vl, " " , vN} of J(vo) and a corresponding set {r(vl, e l ) , ' " ,  r(vN, e~)} such that 

N 

S(vo, O C  U ~ ( v , , e , ) u c .  
i z l  

PROOF. For each v E J(vo) choose e ( v ) > 0  so that ~'(v, e (v ) )  satisfies the 

conclusion of Theorem 3.3 (iii) and let p ( v ) > O  be such that 

L)(v, p(v) )  C 1"(v, e(v) )  O C. For each v E J(v0), let K ( v )  be the set {w E J(vo): 

II v - w II < �89 Since J(vo) is compact, there exist vl , . . . ,  v~ in J(vo) such that 

J(vo) = K(vO U . . .  u K(v,,,). 

Set e, = e ( v , )  and e = �89 1 =< i =< N}. By Lemma 3.4 (c), there exists 

so>0 such that if x E S ( v o , ~ )  then x E 1 5 ( v , e )  for some v EJ(vo) .  Thus 

x = w ( a ) + a [ 3 T ( a ) ( v  + x ' )  with l a l ,  1/31, IIx'll less than e. But v EK(v~)  for 

some i = l , . . . , N ,  so that x~15(v , ,e+�89 Thus x E 1 9 ( v , , p ( v , ) ) C  

z(v,, e(v,))U C, which completes the proof. 

Under the conditions of Theorem 3.5, let II(v0) denote the set UT~ z(v,, e~) u 

C. Let J denote the set of solutions of (2.6) with unit norm. Note that if Vo E V 

corresponds to an arc of singularities C, then Vo/llvolleJ and Vo/llvoll also 

corresponds to C. 
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THEOREM 3.6. Suppose every solution of (2.6) is either non-degenerate or 

quasi-degenerate, and corresponds to an arc of singularities. Then there exist finite 

subsets { w l , ' " ,  wp}, { u l , ' " ,  Uq} of J consisting of non-degenerate and quasi- 

degenerate elements respectively, together with corresponding sets tr(w,, e~) (e, > 0), 

i = 1 , . . . ,  p and H(u,), i = 1 , . . . ,  q such that the set I~ = 

U~=l or(Wi, el) U Uiq=lI](ul) has the following property: 

There exists y > 0  such that if x E E ,  G ( x ) = 0  and Ilxlt< y, then x E l l .  

PROOF. If V is a non-degenerate element of J, choose e (v), ~(v) greater than 

zero as in [11], so that S(v, ~(v)) C o,(v, e(v)) .  If v is a quasi-degenerate element 

of J, choose ~r(v)> 0 as in Theorem 3.5 so that S(v, ~(v))CII(v).  For v E J, let 

L ( v )  be the set {w e J : l l v  - wll<�89 Then there exist v~, . . . ,vM in J such 

that J = L(v~) 13. . .  U L(vM). 

Set e = �89 1 =<i =< M}. By Theorem 6 (c) of [I1], there exists y > 0  

such that if x E E, G ( x )  = 0 and IIx I1< 7, then x E S(v, e) for some v E J. Thus 

x = a (v + x') with l a t < e, II x ql < But  v E L (v,) some i = 1 ,.- -, M, and 

the remainder of the proof is identical to that of the previous theorem. 

Concluding remarks 

In order to set bifurcation problems in the form (1.1), with G satisfying (2.1) 

for some k, and so that PGCk)(0) possesses non-degenerate zeroes, it is often 

necessary to rescale the parameter space (see for instance [9], [14]). Further- 

more, in order to obtain the condition (2.4) together with non-degenerate 

solutions of (2.7), it may be necessary to further rescale separately for each curve 

of singularities. This does not affect Theorems 3.2 or 3.5, but Theorem 3.6 needs 

modification to cope with the general situation. However, in applications, the 

number of curves of singularities is invariably finite and both the rescaling and 

the modification of Theorem 3.6 required is obvious. An abstract formulation of 

rescaling for the case of an isolated singular point is described in [10]. 

Non-isolated singular points and degenerate solutions of (2.6) can occur as a 

result of a variety of types of degeneracy in G. The recent paper of Buchner, 

Marsden and Schecter [2] considers a class of such degeneracies with k = 2, and 

presents a generalised non-degeneracy condition (called pretty general position) 

defined with respect to known degenerate directions for G, under which the 

existence of curves of singular points of (1.1) through zero is established. 
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