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ABSTRACT 

A cardinal spline analog of the Markov theorem is given. It is applied to derive 
the necessary conditions for a function to be the limit of its cardinal spline 
interpolents as their degree trends to infinity. Sufficient conditions for this to 
happen are given in [8]. 

1. Introduction 

DEFINITION 1. We will define three classes ~9~ 5 v*, and .~'n whose elements are 

cardinal  spline functions or, simply, cardinal splines. 

Let  n be a non-negative integer and let 6an = {S(x)} denote  the class o f  functions 

f ( x )  f rom R to C satisfying the condit ions:  

(i) S(x) e C n- ~(R), and (ii) the restriction of  S(x) to every interval [v, v + 1) 

(v = 0, ___ 1,-.-) is an element of  nn. (Here n~ denotes the class of  polynomials  o f  

degree not  exceeding n.) 

We also define the classes 

and f ina l~  

y *  = {s(~); s(x + �89 ~ ~e }, 

5a n if  n is odd  

6 a* if n is even. 

F o r  purposes  of  this paper  we restate a fundamenta l  theorem of  Subbot in  [9] 

as Theorem 2. 
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THEOREM 2. ([9].) I f  (yv) is a bounded bi-infinite sequence of  numbers 

(v = O, +_ 1,...), then there exists a unique S , (x )e  ffa, which is bounded on R 

such that 

(1) S.(v) = Yv for all v. 

For extensions of Theorem 2 to sequences and splines of power growth see [5] 

and [7, Lec. 4]. 

If f (x) is a bounded function defined on R, then Theorem 2 implies that there is 

a unique bounded spline S,(x) that interpolates f ( x )  at all the integers. The 

question arises: which conditions insure that the interpolant S,(x) will converge 

tof(x) as n approaches infinity? In this direction the following sufficient condi- 

tions are known. 

THEOREM 3. ([8].) I f  

(2) f ( x )  = f~,, e~"Xda(u), 

where 

(3) a(u) is of bounded variation, with a ( -  lr + O) - a ( -  zr) = o~(zc) - ~t(rc - 0), 

then for the interpolants of odd degree we have 

(4) lim S2m_t(X ) = f ( x )  uniformly on R. 
m---~ O0 

One of the main contributions of the present note is to derive the following 

necessary conditions for the validity of (4). 

THEOREM 4. I f  

(5) f ( x )  is bounded on R 

and if (4) holds, then 

(6) f ( x )  is the restriction to R of an entire function f ( z )  of exponential 
type < n. 

(A proof of Theorem 4 is given in Section 4.) From (5) and (6) it follows (by a 

theorem of Boas [1, p. 107]) that f ( x )  admits a representation of the form 

( 7 )  f(x) = l ira  f~. e~"Xd~n(u) locally uniformly, 
n - q .  oo  

where each ct,(u) is of bounded variation on [ -  re, re]. 
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The closing of  the gap between the sufficient conditions (2), (3), and the necessary 

conditions (5), (6) is an open problem. 

At this point we restate the theorem of the brothers Markov as Theorem 5 

where we use the sup-norm for the interval [ -  1, 1]. 

THEOREM 5. I f  P(x)~ r and I1 v 11 z a, then 

IIP(')ll = T~(')(1) for v = 1,2, . . . ,n.  

For the best proof of Theorem 5 and references see [3]. 

The main tool in our proof  of  Theorem 4 is an analog of  Theorem 5 for cardinal 

splines. A few preliminary remarks are in order. If  we apply Theorem 2 to the 

special sequence y,  = ( -  1) *, then the solution S,(x) is the so-called Euler spline 

8.(x). This is a special cardinal spline that is uniquely characterized by the 

conditions 

(8) g.(v) = ( -  1)" for all v, II e. I1~ = 1, g.(x)~ s~.. 
It is called the Euler spline because its polynomial components are of  the form 

a E , ( x -  b), where E,(x) is the classical Euler polynomial. Among its many 

properties (see [6, sects. /, 2, 3]) we mention the relations 

(9) 11'.("11 = { I*'', (o)l if v is even 

I e''~ (�89 1 if v is odd, (v < n). 

Here and below we use the sup-norm on R. 

The analog of  the Markov theorem we give as Theorem 6. 

i f  

S(x) eS~., and II S [I < 1, 

THEOREM 6. 

(10) 

then 

(11) tl s,' ,  II =< II*~'" II i o r ,  = 1, 2 , . . . , , .  
As N.(x) satisfies the conditions (10), by (8), we see that the bounds in (11) can 

not be improved. A comparison with Theorem 5 shows that the role of the Cheby- 

shev polynomial T,(x) is here taken over by the Euler spline 8.(x). (A proof  of  

Theorem 6 is given in Section 3.) 

2. A few auxilliary tools 

We need the so-called B-splines which seem indispensable in a study of cardinal 

splines. 
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DEFINITION 7. If Ql(x )  denotes the characteristic function of  the interval 

[0, 1], we define Q.(x )  as the n-fold convolution of Q t ( x )  with itself: Q.(x) 

= QI*QI* "'" * Q~(x). Explicitly we find that 

~--- - -  - -  r ) +  , (12) Q,,(x) (n - 1)' 
�9 r = O  

where x+ = max(0,x).  Q . (x )>  0 in (0.n), and Q,,(x) = 0 elsewhere. 

The function Q.(x) is the forward B-spline which is well known because of the 

identity 

:? (13) A"f(0) = . ( x ) f ( " ) ( x )  dx .  

From (12) it is seen that Q . ( x ) e  5" ._  x. It is often convenient to shift the origin to 

the point x = �89 and to define 

(14) M . ( x )  = Q. (x  + �89 

this being an even function of x such that 

(15) M . ( x )  = 0 if x < - �89 or if x > �89 

Notice also that M . ( x ) ~  ff~._~ for n = 1,2, .... 

A number of  integral relations hold. among which we need 

_~ Q , ( x  - r )Qq(x  - t ) d x  = Qp+q(r - t +  p), 

where p and q are natural numbers, while r and t are real (see [4, p. 177]). In 

particular, using (14), we find that 

f? ( 1) (16) . ( x  - i )Q  I x - j  n -- -~ d x  = m , +  l( i  - j ) .  

Observe that M.+ l(v) is an even sequence whose terms are different from zero 

(in fact positive) as long as - �89 + 1) < v < �89 + 1), by (15). Of  importance for 

us is the rational function 

F(z )  = ~, M . +  I(v)z  v. 
v 

Setting z = e ~u, we find that 

~.+a(u) = F(e  v" ) 

is a cosine polynomial such that 

(17) ~b.+l(u ) > 0 for all real u, ~.+1(0) = 1, 
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( 2 )  "+1 (-- l) t'- 1) (n+i) 
and min r = r  = 2 ]~ 

4 ,=I ( 2 r -  1) "+1 

It follows from (17) that the reciprocal of F(z) admits a Laurent exp msion 

(18) 1IF(z) = ~ og, z v on ]z[ = 1, 
- - O 0  

which is identical with the Fourier series 

oo 

(19) 1/r ) = y~ coveiV,, where co v = co_v. 
- - O 0  

Of particular importance for us is the fact that 

(20) ( - 1 )~w,  > 0 for all v. 

Finally, observe that (19) and (20) show that 

(21) ~ [co~[ = ] ~ ( - l f o  v = 1/O,+x(n ). 
- - C O  

For these results we refer to [4, Sects. 1, 2]. They appear again in [7, Lec. 3, 4]. 

In fact the above coefficients o~v allow us to express the fundamental function 

L,(x) of cardinal spline interpolation in .57" in the fo rn  

L.(x) = ~ o)vM.+l(x-v  ). 

The unique solution S.(x) satisfying the condition (1) is then expressible in the 

form 

S,,(x) = ~ y v L . ( x -  v). 

3 Proof of Theorem 6 

Let us assume that (10)holds and let us first establish (11) for v = n, hence 

that 

(22) II s'"' II z II*.'"'ll. 
If we apply Theorem 5 to each polynomial component of  S(x) in its respective 

unit interval, we find that 

(23) l[ S'"' l[ < T,t"'(1)= 2"- 'n! .  

Therefore S(")(x) is a bounded step-function with discontinuities at the points 

j + �89 - 1), for integer j. We may therefore write 
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(24) S(")(x) = ~. c j Q t ( x - j  n - l )  
j =  -oo 2 ' 

where cj is the value of S(")(x) in the interval (j + �89 - 1), j + �89 + 1)). Using 

(13), (24), and (16), we may write 

and finally 

(25) 

f? A"S(i) = ,(x - i)S(")(x) dx 

( "') 
= ~. cj n(X-i)  Ql x - j  ~ dx, 

J 

A"S(i) = ~ M . + x ( i - j ) c j  for all i. 
j ~  mOO 

By (23), (c j) is a bounded sequence. If we regard the sequence convolution (25) as 

a bounded linear transformation of the space B of bounded sequences into itself 

then it follows from (17) and (18), that (25) admits an inverse given by 

(26) ci = ,~ r for all i, 
j ~  moo 

(see [4, 5]), which gives the only bounded solution of the system (25). To estimate 

ci from (26), observe that 

(:) A"S(j) = ( -  I ) " •  ( -  1)' S(j + r). 

Since [I S l[ ~ 1, this gives 

IA"S0) I 

and, using (26), we obtain that 

Ic, l<=2" 

Finally, (21) allows us to write 

Y~ It oil for all i. 
J 

(27) II s'"'ll = sup l c, 1 <= 2"/q~.+,@). 

Notice that the Euler spline ~.(x) also satisfies the assumptions (10) of 

Theorem 6. Applying the above to g.(x), rather than S(x), we may write 

(28) ~")(x) = Y~ ~j Q, (x - j  n - l ]  
y \ 2- / '  
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and, as above, we obtain that 

(29) Yi = Z OJi-jAn~n(j). 
J 

Israel J. Math., 

However, by (8), 
(n) A",Y,(j) = ( -  1)" ~L (--  1)" (--  1) s+r = (--  1)"+S2 ", 

1 = 0  r 

and substituting into (29) we obtain 

?i = ]~ ~  1) "+j2" = ( -  1) "+i2" X ( -  1)i-Jo~i-j = ( -  1)"+/2" ]~ ]co, l, 
j j i 

and finally, by (21), that 

(30) e, = ( -  0"+~2"/r 

Hence, by (28) and (30), we get 

(31) ll~<:,ll = ,up le, l = 2 . / 0 . + , ( , ) .  
t 

Now (27) and (31) show that (22) indeed holds. 

In order to complete a proof of Theorem 6 we appeal to a theorem of  

Kolomogorov [2] (for further references see [6]) which remains valid for functions 

from R to C. We restate it as Theorem 7. 

THEOREM 7. ([2].) I f  f (x)  is a function havin9 a bounded nth derivative, 

and is such that 

then 

II/II < 1 II/,.>11 < II ~.'"'11 

IIs"' II----11".">11 fo r  v = 1 , 2 , . . . , n -  1. 

Applying this to our spline S(x), we see that (22) implies the validity of the 

remaining inequalities (11). 

4. Proof of Theorem 4 

If in (2) we let ct(x) = 0 in ( -  re, re), while ~ ( -  re) = - �89 ct(n) = �89 then the 

conditions (3) are satisfied, and we find that (2) shows th~tt f (x)  = cos ~x. The 

cardinal spline $2"- l (x)  is, of  course, identical with 82.,-l(x). By Theorem 3 

we conclude that 

(32) lim g2m- l(x) = cos rex. 
m - ~ o o  

However, this would be circular reasoning, since (32) is used in the proof of  
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Theorem 3 as given in I-8]. A direct proof of (32) which will give us much more is 

provided by the Fourier series expansion 

(33) g~(x) = ~ (2r - 1)-n-1 cos (2r - 1)nx / ~ (2r - 1)-n- 1. 
r = l  r = l  

This immediately shows that ~ (x )  = cos rex + 0(3 -~) as n ---} oo. 

Moreover, differentiation of (33) v times shows, by crude estimates, that for all 

real x 

( 1 1  ) 
]8(~V)(x)[<rc* 1 + ~ - + ~ + . - .  if only v < n .  

As the sum of the series = ~_ ~2 < 2, we conclude that 

I1 ~:~' II < 2~" if v < n. 

Let us now assume that f ( x )  satisfies the assumptions of Theorem 4. This 

means that f ( x )  is bounded and that for odd values of n 

(34) lim S~(x)= f ( x )  uniformly on R. 
n ---} OO 

This implies that for an appropriate M 

(35) II snlI < M for all odd n. 

Moreover, in view of Theorem 6 and (35) we conclude that 

(36) II s~ v, II < 2Mzc* if v < n. 

The relations (34) and (36) allow us to draw some strong conclusions. We claim 

that f ( x )  e C ~176 that 

(37) lira S~*)(x)= f(~)(x) locally uniformly on R, for all v, 
n---~ oo  

finally, that and 

(38) liT <~, II ~ 2Mz~" for all v. 

follow by familiar elementary reasoning. By (36), for All these statements 

v = 1, S'~(x) are equi-bounded, and by (36), for v = 2, they are also equi-uniformly 

continuous since they satisfy the same Lipschitz condition. By the Arzel~t-Ascoli 

theorem, we can extract from (n) a subsequence (n') such that lira S'n,(x) = g(x) as 

n' approaches infinity, locally uniformly on R. But then 

K fo" g(t) dt = lira S',,(t) dt = lim (S~,(x) - S~,(O)) = f ( x )  - f(O), 
n t - ,e  QO 



102 F.B.  RICHARDS AND I. J. SCHOENBERG Israel J. Math., 

by (34). It follows that f ( x )  e C 1 and that 9(x)  = f ' ( x )  for all x. This determines 

O(x) uniquely, and shows that the sequence S~(x) was convergent in the first place. 

We can repeat this reasoning on the higher derivatives, and by induction, (37) 

and (38) are established. 

The inequalities (38) now show that f ( x )  is the restriction to R of  the entire 

funct ion 

(%) 

f ( z )  = ~, f ( ' ) (O)z ' / v ! .  
0 

Moreover,  by (38), we obtain thatlf(z) [ __< 2Me "lzl . There fore f (z )  is o f  exponential  

type < n, and this concludes our  proof.  
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