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AUTOMORPHISM BASES FOR DEGREES 
OF UNSOLVABILITY* 

BY 

CARL G. JOCKUSCH, JR. AND DAVID B. POSNER 

ABSTRACT 

A set of degrees of unsolvabi l i ty  is said to generate the degrees if every degree is 
in the closure of the set under the lattice operations on degrees. (Of course the 
inf operat ion  is only partially defined.) It is shown that every set of degrees 
which is comeager or of measure one generates the degrees and that the set of 
minimal  degrees generates the degrees. (Thus any automorphism of degrees is 
determined by its action on, for example, the minimal degrees.) Also the 
degrees below 0' which have the same jump as any given degree below 0' and 
those which cup any given nonzero degree _-_ 0' to 0' are shown to generate the 
degrees below 0'. 

w Introduction 

Let 9 be the set of all degrees of unsolvability. A set M C_ 9 is said to generate 
9 if 9 is the closure of M under the l.u.b, operation U and the partial g.l.b. 
operation 1'3. It will be shown that every set M C 9 which is comeager or of 
measure 1 generates 9.  Also the set of minimal degrees generates 9.  Let 
9 ( ~ i  0') denote the set of degrees ~i 0'. It is also shown that if b is any fixed 
degree in 9 ( ~ 0 ' ) ,  then { c ~ i 0 ' : c ' =  b'} generates 9 ( ~ 0 ' ) ,  as does {c~i0': 
c U b = 0'} provided that b ~ 0 .  In a future paper Posner will show that the 
minimal degrees below 0' generate ~ (:a 0'). 

A set M of degrees is called an automorphism base for ~ if any two order 
automorphisms of 9 which agree on M are identical. (Automorphism bases for 
the inclusion lattice of r.e. sets were studied by R. Shore [18]. M. Lerman [8] 

investigated automorphism bases for r.e. degrees and suggested to the authors 

the study of such bases for degrees in general.) It is obvious that every set of 
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degrees which generates ~ must be an automorphism base for ~, and thus our 

results provide many examples of automorphism bases for ~. However it is not 

known whether there exist nontrivial automorphisms of ~ and thus it may be 

that every set of degrees is an automorphism base for ~. Turning this around, it 

seems conceivable that results on automorphism bases could be useful in 

showing that there do not exist nontrivial automorphisms of ~, say by showing 

that every automorphism of ~ must agree with the identity on some automor- 

phism base. For instance, it is shown in [1, 10, 11] that every automorphism of 

must be the identity on some cone ~ ( ~ a) and so to prove the nonexistence of 

nontrivial automorphisms of ~ it would suffice to show that every cone is an 

automorphism base. In the current paper we combine our results on generating 

sets with the result that there is a fixed cone on which all automorphisms of 

are the identity [1] to show that for almost every degree a (in the sense of 

measure or category) the cone ~ ( ~ a) is an automorphism base. Since all cones 

are closed under O, n (when defined), and the jump operation, this yields 

examples of automorphism bases which fail to generate the degrees under O, n 

and jump. 

Our notation and terminology are standard. Unless otherwise specified, we 

use letters such as a, e, n for natural numbers, A, E, N for sets of natural 

numbers, a, b, e for degrees, lower case Greek letters for strings, and script 

letters for higher type objects such as sets of degrees. Of course to = {0, 1, 2 , . . .  } 

and 2 ~ is the power set of to. The join and symmetric difference operation on 

subsets of to are defined by 

A ~ ) B = { 2 n : n E A } U { 2 n + I : n E B }  and A A B = ( A - B ) U ( B - A ) .  

The join operation is extended to strings in a natural way. The notations ~ ,  (A) 

and {e} A are each used for the eth function partial recursive in A. We write 

deg(A) for the degree of A. If a is a degree, then 

~(~ia)={b:b~ia} and ~(~a)={b:b~a}. 

We thank M. Lerman for a number of very helpful mathematical and 

expository suggestions. 

w Measure and category 

Let 2 ~ have its usual product measure/z and its usual product topology. These 

induce notions of measure and category for (certain) sets ~t of degrees in the 

usual way, i.e., by identitying ,d C ~ with {A :deg(A) • ~t} C_ 2". The first 
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theorem of this section immediately implies that any set of degrees of measure 1 

generates 9 and hence is an automorphism base for 9. Theorem 2.4 is the 

analogous result for category. Further such results for modified notions of 

category are obtained in w167 and 4. 

THEOREM 2.1. I f  ~ C_ 9 has measure 1, then every degree b is of the form 

(a~ U a2) N (a3 U a4), where each ai is in ~ .  

PROOF. Let any degree b be fixed. We define a natural measure /4 on 

9 ( / g  b) as follows. If c~ C_ 9 (  ~ b), then /~,(c~) =/.~({a : b U a E c~}). 

LEMMA 2.2. I f  ~ C 9 and l~(M) = 1, then ~b(M*) = 1, where ~ *  is the set of 

degrees ig b of the form a~ O a2 , with a~ , a2 E ~ .  

PROOF. For any sets A, B C_ to 

(1) B ~ A  --=TA ~ ( A  AB) .  

(This follows easily from the fact that ~ induces the l.u.b, operation on degrees 

and that A A ( A A B ) = B . ) I f  c~ _C2~', let ~ A B = { C A B : C E C ~ } .  If c~ is 

measurable, then pL(B A c~)= ~(c~). (This may be easily verified directly but 

also follows from the fact that ~ is Haar measure, and hence translation 

invariant, on the topological group (2", A).) Indeed we were led to Theorem 2.1 

by J. Shoenfield's observation that Theorem 2.4 was analogous to some results 

for topological groups.) Applying this with c~ the set of reals whose degree is in 
and B a fixed set of degree b we deduce, using the finite additivity of ~, that 

for almost every set A _C to, both A and A A B are in ,~f. The lemma now 

follows from (1). 

LEMMA 2.3 (Stillwell [20]). I f  c ~  b, then ~b({d : g  f'l d = b}) = 1. 

Theorem 2.1 is now immediate from the two lemmas. Applying Lemma 2.2 

choose any degree c ~ ~r By Lemmas 2.2 and 2.3 and the finite additivity of ~, 

there exists d E ~ *  with c 13 d = b. 

THEOREM 2.4. I f  ~f C_ ~ and ~f is comeager, then every degree b may be 

expressed as (al O a2) n (a3 O a4), with each ~ E ~r 

PRoof. The proof of Theorem 2.1 yields this result mutatis mutandis. An 

effective version of this result will be given in Theorem 4.4. 

COROLLARY 2.5. l f  .~ is the class of degrees a such that a ~'~ = a LIO ~'~ for all 

n < oJ and no degree b gg a is a minimal degree, then every degree b is of the form 

(al U a2) f'l (a3 U a4), with each a~ E ~ .  
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PROOF. This may be deduced from either Theorem 2.1 or Theorem 2.4 since 

is comeager and has measure 1 [5, 13, 20, 21]. 

COROLLARY 2.6. There is a degree a > 0  such that 9 ( ~ a )  is an automor- 

phism base. In fact the set of all such degrees is comeager and of measure 1. 

PROOf. We first show that for any fixed degree e, the set of degrees a such 

that 9 ( ~ e ) U g ( ~ a )  generates 9 is of measure 1. For any degree b, 

{a :b = (b O e)r (b U a )} is of measure 1, by Lemma 2.3. It follows by Funini's 

theorem that, for almost every degree a, the equation b = (b U e ) r l  (b U a) 

holds for almost every degree b. Fix any degree a such that the equation just 

mentioned holds for our fixed e and for almost every b. Then ~ (  ~ r U ~ (  ~ a) 

generates a set of degrees of measure I and hence, by Theorem 2.1, generates 9. 

Now choose r to be a degree so that every automorphism of (9, ~ ) is pointwise 

fixed on 9 (  �9 r (By [1] one may take e to be any degree, such as the degree O 

of Kleene's ~, which is above all degrees of hyperarithmetic sets.) Thus for 

almost every degree a, 9 ( ~  a) is an automorphism base. 

The proof for category is similar. Indeed the argument shows that 9 (  ~i r U 

9 (  ~ a) generates 9 whenever a contains a set which is 1-generic relative to e. 

(The notion of 1-genericity, here relativized in the obvious way, is defined just 

before the statement of Corollary 4.16, and properties of 1-generic sets are 

discussed in [5].) Since for any degree e there exists a set of degree < r which is 

1-generic relative to e, it follows that there is a nonzero degree a < 0 '  such that 

9 (  ~ a) is an automorphism base. A more refined bound on such an a may be 

obtained by choosing e, and then a, to have hyperjump recursive in 0. There is a 
degree e above all degrees of hyperarithmetic sets and having hyperjump 

recursive in O because the sets with hyperjump recursive in ~ form a basis for E~. 

This basis theorem together with a proof using ~11 forcing, i.e. Gandy forcing, 

were pointed out to Jockusch by S. Simpson. 
In [11] it is shown that every automorphism of 9 which fixes 0' also fixed every 

degree i~ 0 (3~. Thus repeating the previous argument with r = 0 (3~ and a < 0 (4) 

1-generic relative to c, we obtain a degree a > 0  such that a t4~=0 ~4~ and 

9(=> a)U{0'} is an automorphism base. In particular, for this a, ~ ( i ~ a )  is a 

basis for jump preserving automorphisms, for which Richter's result [15] suffices. 
(To see that a(4)=O (4), choose a ~ O  (4) 1-generic relative to 0 (3~ and use the 

4-genericity of a to conclude that a ")= a U 0 (4)= 0(4).) 

If a, b are nonzero degrees such that @ ( ~ a ) U  ~ ( ~  b) generates 9,  it is 

obviously necessary that a, b form a minimal pair. We do not know whether it is 

also sufficient. 
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w Minimal degrees 

Our next goal is to show that the set of minimal degrees generates 9. This 

answers a question raised in correspondence by M. Lerman. 

THEOREM 3.1. For every degree b there are minimal degrees al, a2, a3, a4 such 

that b = (a~ U a2) rl (a3 U a,). 

PROOF. The proof combines Lachlan's construction [7] of a minimal degree 

using recursive coinfinite conditions, a simple coding method for making a set of 

the given degree b recursive in the join of two constructed sets of minimal 

degree, and a (non-r.e.) minimal pair construction. (Lachlan's construction is 

used rather than some other minimal degree construction because it is compati- 

ble with the coding method.) Lachlan's construction may be viewed as a category 

argument (with respect to the system of recursive trees corresponding to 

recursive coinfinite conditions) in the sense of [21]. This generalized category 

point of view is useful in the proof at hand because it simplifies technical details, 

yields added generality, and brings out the analogy between Theorems 2.1 and 

3.1. Since two different notions of comeager arise in the proof we define a 

generalized version of this notion essentially as in [21]. 

Let X be a compact Hausdoflt space, and let 5e be a nonempty family of 

nonempty closed subsets of X. A set Y C_ X is called b~-dense if for each F0 E b a 
there exists FI (~ .~ such that F~ C_ F0 n Y. A set Y _C X is called ~-comeager if 

Y contains the intersection of some countable family of bD-dense subsets of X. 

As in the Baire category theorem, one easily shows that every 6e-comeager set is 

nonempty. (If Y, is 5e-dense for each e, choose closed sets F0, F1," �9 �9 inductively 

with FoE b ~ and F~+I C F~ 0 Y,, F~+I E 6e for all e. Then O~F, C n~ lie and A,F, 

is nonempty since X is compact.) 

We shall apply this notion first to the family of closed subsets of 2" defined by 

recursive coinfinite conditions. Let ~ be the family of all such conditions, i.e., of 

all pairs (P, N) where P, N are disjoint recursive subsets of to with P U N 

coinfinite. For each condition (P, N ) E  ~,  let )r N) be the family of all sets 

A C to such that P C_ A and N n A = ~ .  (Thus P represents positive informa- 

tion and N represents negative information.) Clearly X(P, N) is a nonempty 

closed subset of 2 ~ (in its usual topology). We abuse notation by writing ~ for 

the family of all such closed sets X(P, N), for (P, N ) E  ~. 

We remark that conditions in ~ define the same neighborhoods in 2" as 

uniform recursive trees T such that for all strings tr, the strings T(tr * 0), T(tr * 1) 

differ on exactly one argument. Such trees are called 1-trees by Lachlan [7]. 
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Given (P, N) E ~,  let a0, a t , ' "  be the elements of the complement of P U N in 

increasing order. The 1-tree T corresponding to (P, N) is such that, for every 

string or, ] T(tr)] = alol and, for i < alol, T( tr)( i )  is 1 if i E P, 0 if i E N, and or(j) if 

i - - a ,  tj <1,,I). Using this equivalent formulation of ~ in terms of 1-trees, 

Lachlan [7] showed that the family of all sets of minimal degree is ~-comeager 

(by showing that, for each e, the family of sets A such that ~ ,  (A) is nontotal, 

recursive, or Turing equivalent to A is ~-dense). Thus it suffices to prove the 

following lemma. 

LEMMA 3.2. I f  b, c are any degrees with b~i c and M is any ~t-comeager subset 

of 2% then there are degrees at, a2 such that b = (at t3 a2) f'l c and each a~ contains 

a set in M. 

To prove the theorem from the lemma, let M be the family of all sets of 

minimal degree. Apply the lemma with c any degree above the given degree b to 

obtain minimal degrees a3, a4 with bl ia3  t.I a4. Apply the lemma again with 

e = a3 U a4 to obtain minimal degrees at, a2 with b = (al LI a2) f'l (a3 LI a4). 

PROOF OF LEMMA 3.2. It will be shown that the family ~ of pairs (A~, A2) 

M x ,d which satisfy the lemma with deg(A~) = a~ is ~:-comeager for a certain 

family ~ of nonempty closed subsets of 2 ~ x 2% and thus is nonempty. The 

family ~ will depend on B, where B is a fixed set of degree b. The key step is 

picking a coding procedure for ensuring B _-<rAt @ A2 which is compatible with 

the requirements At,  A2 E M. 

The coding method we use is due to M. Lerman [9] and is simpler than our 
original method. We require that the symmetric difference of A~ and A2 

(denoted A1/XA2) be infinite and that, for all n, 

(1) n E B r a .  E A1 

where a0, al," �9 �9 are the elements of At/XA2 instrictly increasing order. We now 

choose a family ~: of closed subsets of T' x T' so that the family @ of pairs 

(A~, A2) with At A A2 is infinite and (1) true for all n is 2T-comeager. Specifically 

let ~ be the family of all sets N(T,)x~C'(T2) where each T~ is itself a pair 

(Pj,/%) E ~ and each condition (2)-(4) holds: 

(2) P, U N, = P2 U N2, 

(3) P1 A P2 is finite, 

(4) If a 0 , "  -, ak-1 are the elements of Pt A P2 in strictly increasing order, 

then condition (1) holds for all n < k. 
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As before we abuse notation by writing ~ for both the family of closed subsets 

of 2 ~ x 2  ~ defined above and the corresponding set of pairs (TI, T2)E~" 
satisfying (2)-(4). If Tj = (P~, N )  E 9~, we write T2 _D T1 if Ps _D P~ and Ns _D N~ 

(i.e., if N(T2)C N(T1)). Similarly if (TI, T~')_D (T1, T2) if T~ _D T, and T~'D Ts, 
i.e., if Y(T~) x .N'(T~') C_ N(T,) x N(Ts). 

We now show that ~, and hence the family of pairs (A1,A2) with 

B --<TA~ E)A2, is ~:-comeager. To prove this it obviously suffices to show that 

for each n, the family of pairs (A~, As) with J A~ A Az J > n and (1) holding with a, 

the (n + 1)st element of A1A As is ~-dense. Let n E to and (T~, 7"2) E ~: be 

given. Suppose Z = (P,,N~) for i = 1,2. Let ao,..',a~-~ be the elements of 

PzAPs in strictly increasing order. Choose numbers ak ,"  ",ak+m in strictly 

increasing order, all exceeding ak-~ and none in the coinfinite set P, O N~. Let 

P~=P~U{ak+,:O<--i<=n and k + i E B } .  Let P~=PsU{ak+,:O<-_i<-_n and 

k + i E B } .  For i =1 ,2 ,  let N~=N~ O{x<=a~+.:x~P~}. For i =1,2 ,  let T~= 

(P~, N~). Observe that PI A P~' = {ao, ' - ' ,  ak+.} and every number less than or 

equal to ak§ is in P~ U NI. Thus if (A~, As) ~ .Ar(TI) x N(T~'), then P~ A P~' is an 

initial segment of A1 A A2. Using these observations the reader may easily show 

that (T~, T~)E ~: and that (1) holds for the given n of every pair (A~,A2)E 
N(T~) x N(T;) .  Since (TI, T;) _D (Tt, T2), the proof that the set of pairs (A~, A2) 

with B _-<rA~ ~DA2 is ~:-comeager is complete. 

The following lemma will be used to show that ~t x M is ~-comeager from the 

assumption that .d is ~-comeager. 

LEMMA 3.3. I[ (T~, 7"2) ~ ~;, T~ ~ ~ and T~ D_ 1"1, then there exists T; ~ 9~ 
with T'~ ~_ 7"2 and (Ti, T'2) ~ ~F. 

PROOf. Suppose T~ = (P~, N~) and TI = (P[, NI). Let P;  = Ps U (P~ - N2) and 

N; = N2 O (NI-Ps).  P~,N; are disjoint because Ps, N2 and P~,N~ are each 

disjoint. Furthermore P;  U N~' = P~ U N~ since Ps O N~ = P~ U N~ _C PI U N[. In 

particular P;  U N~' is coinfinite since P~ U N~ is. (It is at this point that (2) in the 

definition of ~: is particularly crucial since without it we would have no way to 

show that P~' O N '  is coinfinite.) Thus T~' ~ ~,  where T~' = ~P' N 'x 2, s~. We claim 2 

P ' A P ' - P I A P s .  Given a number n, if n~P~UN~=P2UNs  then now that ~ 2 -  
P[,P~ agree on n (i.e., n ~ P I  r n ~ P ; ) .  Therefore n belongs to neither 

P, APs nor PIAP; .  Now assume n ~PI  UNI = PzUNz. Since T~_D T~ and 

P~,N~ are disjoint for i = 1,2, P~ and P~ agree on n. Therefore P~AP; and 
P, AP2 - P~ APs, clauses (3) and (4) in P~ A Ps agree on n in this case also. Since ' ' - 

the definitions of ~: carry over immediately from (T~, Tz) to (T~, T~') and so 
(T[, T~') ~ ~. Clearly (T~, T~) D (Tt, Tz) so the lemma is proved. 
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It follows at once from Lemma 3.3 that if 2~ is an Q-dense subset of 2", then 

x 2 '~ is an ~:-dense subset of 2 ~ • 2 ~. Let M be ~-comeager, so M _D n~ ~ 

where each ~ is Q-dense. Then 

x 2  ~ _ ~ ( n , ~ , )  x 2  ~ = n, x2 ), 

so M x 2 ~ is ~-comeager since each ~i x 2 ~ is ~:-dense. By a similar argument 

(or symmetry), 2 ~ x M is ~:-comeager. Therefore (M x 2 ~) n (2" x M) = M x ~t 

is ~:-comeager. 

Recall that 03 is the class of pairs (Az, A2) such that A~ A A2 is infinite and (1) 

holds for all n. The following lemma shows that the "minimal pair" conditions 

for satisfying b = (a~ U a2) I"1 e are ~:-dense in 03. 

LE~IA 3.4. Let [ be any [unction not recursive in B, and let e be a number. 

Then the complement (in 2" x 2  ~) o[ 03n{(A1,A2):~Pe(A;GA2)=[} is g;- 
dense, where 03 is the subset o[ 2 ~ x 2 ̀o defined above. 

PROOF. Suppose (T,, T2) ~ ~ is given. We must construct (T[, T~) E ~: with 

(T[, T;) D (T1, T2) such that no pair (A~, A2) in 03 O (N(T~) x N(T~')) satisfies 

�9 ,(At OA2)=jr .  For any pair (T~, T~)~ ~ x ~ with T ;=  (P;,N~) we write 

�9 ,((T~, T~'); x) = y if ~ , (P[  t~) P;; x) = y and furthermore all numbers whose 

' N '  nonmembership in P~ ~) P2 is used in the computation are in N~ ~) 2. Thus if 

dp,((T~,T~);x)=y, then ~ , ( (A~ ,A2) ;x )=y  for every pair (At, A2) in 

i f (T[)  x )r Hence if there is a pair (T[, T~') in ~: and a number x such that 

(T~, T~)D (T~, T2) and dPe((T[, T~'); x) is defined and different from [(x), then 

any such pair has the desired properties mentioned above. Thus assume there is 
no such pair. We now claim that for any pair (A~, A~) in 03 O ()r x if(T2)) 

with ~,(A~ ~])A2) total, ~,(A~ ~])A2) is recursive in B. (Thus (T~, T2) itself may 

serve as the desired (T[, T'~)D(T~, T2).) The proof of the claim is the usual 

"nonsplitting" case from the minimal pair construction except that strings are 

replaced by pairs from ~ and 2 ~ is replaced by 03. To prove the claim, assume 

that (A~, A2) is such a pair and an argument x is given. Search recursively in B 

for four finite sets D~, D2, G,  F2 such that (T[, T~)~ ~ and ~,((T[,  T; ) ;x)  is 

defined, where T~ = (P~ U D~, N, U G) for i = 1,2. Such a search may be carried 

out recursively in B because S is recursive in B, where S is the set of quintuples 

(D~,D2, G, F2, x) such that the above conditions hold. Furthermore, such a 

quintuple must exist for each x by our hypothesis on (A,, A2). (Specifically, let m 

be larger than max(P~ A P2) and also larger than any number whose membership 

or nonmembership in A~ or A2 is used to compute ~ (A~ ~ A2; x). For i = 1, 2, 

let Di ={u < m  :u ~A,}  and E ={u < m  : u~A,} .  Let T~= (P~ UD,,N~ UG).  
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It must be shown that (T~, T~)E ~:. Here the main point is that P'~ AP~' is an 

initial segment of A,/X A2 so (4) holds of (T~, T~) because (1) holds of A1 @ A2. 

Clearly qb,((TI, T~); x) is defined so the desired quintuple (D~, D2, F1,/72, x) 

exists.) Finally the value of ~,((T~, T;) ;x)  must be f(x) for any such pair 

(T~, T~') since otherwise we would be in the trivial case which was previously 

ruled out. Thus f is recursive in B, contrary to hypothesis. 

Since ~d is ~:-comeager and only countably many functions are recursive in C, 

it follows from Lemma 3.4 that the set of pairs (At, A2) whose degrees al, a2 

satisfy c f'l (a, O a2) = b is ~-comeager for each e_~ b. Thus this set of pairs must 

intersect the ~:-comeager set `d x `d so the proof of Lemma 3.2 (and hence of 

Theorem 3.1) is complete. 

We now remark on how the machinery used to prove Theorem 3.1 may be 

used to extend it to some subclasses of the minimal degrees. A degree a is called 

hyperimmune-free if every function of degree ~i a is (everywhere) majorized by 

some recursive function. The construction of a nonzero hyperimmune-free 
degree may be easily adapted to recursive coinfinite conditions, so the family of 

hyperimmune-free minimal degrees is ~-comeager. It then follows from Lemma 

3.2 and the discussion after it that this family generates 9. Now let `d0 be the 

family of hyperimmune-free minimal degrees which contain a bi-immune set, i.e. 

a set A with no infinite r.e. set contained in A or fi~. In [2] the question was 

raised whether `do is nonempty. In correspondence, S. G. Simpson observed 

that `do is in fact ~-comeager. (Given a set A, let A(A) = {n :l{i E A :i < n}J is 

even}. Then for any infinite set W, { A : W ~ A ( A )  and W ~ t o - A ( A ) }  is 

~-dense. Since A(A)---rA for all A, it follows that {A : (3B)[B - r A  and B 

bi-immune]} is ~-comeager.) Since ,do is ~-comeager, it then follows as before 

that `do generates 9. 
It is not known whether Theorem 3.1 can be proved using the original minimal 

degree construction of Spector [19] or its modern variants using arbitrary 

recursive perfect trees (e.g., [17]). More precisely, it is not known whether the 

degrees of every ~-comeager family of sets generate tile degrees when ~ is the 

family of closed sets defined by admissible triples [19, 16] or by recursive perfect 

trees [17]. 

w Degrees below 0' 

THEOREM 4.1. Let b be any fixed degree in 9 (  ~0'). Then { c ~ 0 ' : c ' =  b'} 

generates 9 ( gi 0'). 

PROOF. The proof makes use of some definitions and results from [6]. For 
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each n -> 1 let GH, be the class of degrees a such that a t"~= (a U0') t'J and let 

GL, be the class of degrees a such that a t"~= (a O 0') t"-l~. The restrictions of 

these classes to ~ (~i 0') are the "high" and " low" classes Ho consisting of all 

degrees a~i0 '  satisfying a~"~=0 C"+u and L, consisting of all degrees a ~ 0 '  

satisfying a ~"~ = 0 ~"~. 

By corollary 8 of [6], if a_~0' and a ~ L2 then there exist degrees b, c in L, 

such that a = b U c. Thus, since L, C L2, L~_ generates @(~0 ' ) .  

By theorem 2 of [6], if a ~ GL2 then for any c_~ a U 0' such that e is r.e. in a, 

there exists a degree b ~ a  such that b ' =  c. The proof of this result is easily 

modified to show that under the same hypotheses there exists a minimal pair of 

degrees b,, b2 such that b; = b '  = c. (This is accomplished by simply "throwing 

in" the standard requirements for the construction of a minimal pair via 

e-splittings and modifying the proof of theorem 2 of [6] accordingly.) Note that if 

d ~ L2 then d" = 0% so 0' is not in L~ (L2 relativized to d). Thus we can relativize 

the result above to d to obtain: 

(*) Let d be an element of L2 and let c be ~ d' and r.e. in 0'. Then there exist 

degrees bl and b2 ~ 0 '  such that d = bl CI b2 and e = b] = b'~. 

In particular, taking c to be 0" it follows that every degree in L2 is the g.l.b, of 

a pair of degrees in H~. Thus since L2 generates ~ (~i 0'), H1 generates ~ (~i 0'). 

Further, since no H, degree is in L2 and (as previously remarked) every non-L2 

degree below 0' is the l.u.b, of a pair of L1 degrees, we conclude that L, 

generates @ ( ~i 0'). 

Finally, let b be any fixed degree in ~ ( ~i 0'). Then since b' ~ O' and b' is r.e. in 

0' we may apply (*) with c = b' to conclude that every degree d in L1 is the g.l.b. 

of a pair of degrees in ~(_~0')  having jump b'. Thus {c_~0': c' = b'} generates 

L~ and so generates ~ ( ~ 0 ' ) .  

We next wish to obtain an analogue of Theorem 2.4 for 9 ( ~ i  0'). For any 

string tr, let .Ac(tr) denote the set of all B in 2 '~ such that B D tr, and for any set of 

strings D let N ( D )  be the union over all or in D of .At(a). (Obviously aV(D) is 

open in the usual topology on 2~.) We say that D is dense if N ( D )  is dense in the 

usual topology. Following Yates [21], we say that a set M C_ 2" is a-comeager, 

where a is a fixed degree, if there is a uniformly a-recursive sequence of dense 

sets of strings {D~} such that M _~ N,N(D~). (Equivalently, M is a-comeager if 

player II has an a-recursive winning strategy in the Banach-Mazur game for M.) 

This definition is extended to sets M C_ 2 '~ x 2% 2 ~ x 2 ~ • 2% etc. in the obvious 

way. 

It is clear that the intersection of finitely many a-comeager sets is a-comeager. 



160 C.G. JOCKUSCH, JR. AND D. B. POSNER Israel J. Math. 

In addition, an analysis of the proofs of the Baire Category Theorem and the 

Kuratowski-Ulam Theorem (see [12]) yields the following two propositions. 

(The first is a special case of the "Generalized Baire Category Theorem" of 

[211.) 

PROPOSITION 4.2. Suppose M C_ 2 ~ is a-comeager. Then there is a B E M such 

that the degree of B is ~ a. 

PROPOSITION 4.3. Suppose M C_2 ~ x 2  ~ is a-comeager. Then a-comeager 

many cross sections of M are a-comeager. 

The following is an etiectivization of Theorem 2.4. 

THEOREM 4.4. Suppose M is a-comeager. Then for any degree b there exist 

a,, a2, a3, a4 in M t') ~ (  ~ (a U b')) such that b = (a~ O a2) n (a3 O a,). 

PRooF. Let b be fixed. 

LEMMA. {r ::la~, a2 E M such that c U b = a~ U a2} is (a U b )-comeager. 

PROOF. Observe that if B E b then B A M is (b U a)-comeager. The remain- 

der of the proof then follows as in the proof of the corresponding lemma in the 

proof of Theorem 2.4. 

LEMMA. {(C, d):  b = (c U b) f'l (d U b)} is b'-comeager. 

PROOF. Let B E b and for each e = (e0, el) let D, be the set of all pairs of 

strings (tr, ~') such that 
(1) {eo} 8~" and {el} Be" are incompatible, or 

(2) 'r 8 _D o, {eo} B*v and {eo} s~s are compatible, or 
(3) 3x <- lhO'), V y  ~_ % {e~} s*" is undefined at x. The D, are easily seen to be 

dense and uniformly recursive in b'. Further, if (C, D ) E  N(De) then 

(1) {eo} B*c is incompatible with {ei} B*~ or 

(2) {eo} B*c is either nontotal or recursive in B, or 

(3) {e,} B*D is undefined at some x. 

Thus if (C, D)  E N ,N(D, )  then b = (deg(C) U b) n (deg(D) U b). 

Now let M~ = {c : c U b = a~ U a2 for some a,, a2 E M} and let M: = {c : {d : b = 

(c U b) n (d U b)} is b'-comeager}. By the preceding two lemmas and Proposi- 

tion 4.3, M~ and M2 are (b 'U  a)-comeager. Thus, by Proposition 4.2, there is a 

degree c E M, N M2 such that c ~  b' U a. Since c E M2, {d : b = (c U b) CI (d U b)} 

is (b 'Ua)-comeager  and so there is a d E M t f 3  ~ ( ~ ( a  Ub') )  such that b = 

( c O b ) N ( d U b ) .  Since c, d E M , ,  there are a~,a2,a3,a4E,d such that c = 
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al U a2 and d = a3 l,J 114. We  thus have al, a2, a3, a4 ~ ,~ n ~ (  ~ ( a  U b ' ) )  such that  

b = (a U a2) 13 (a3 O a4) as required. 

A set of degrees M C_ 5~(~i0') is said to be comeager in ~ (  ~ 0') if M = 

M* n ~ (  ~ 0') for some 0'-comeager set of degrees M*. By Proposition 4.2, if 

is comeager in ~ (~ i0 ' )  then M is nonempty. We in fact have the following 

analogue to Theorem 2.4. 

THEOREM 4.5. Suppose ~ is eomeager in @ ( ~ 0'). Then ~ generates ~ ( ~_ 0'). 

PROOF. By Theorem 4.1 it will suffice to show that ~t generates L~. Let ~t* 

be a 0'-comeager set of degrees such that ~ = sO* n ~ ( ~ 0 ' )  and let b be any 

degree in L,. By Theorem 4.4, there exist aj, a2, a3, a4 E ~t* n ~ ( ~  (0' u b')) 

such that b = (a~ Ua2) 13 (a3 LI a4). Since b' = 0', at, a2, a3, a4 are ~ 0 '  and so in ~t. 

We give several corollaries to Theorem 4.5. If tr is a string we say that {e}~ 

is strongly undefined if {e}*(x) is undefined for all ~/_~ tr. A set B is called 

1-generic if for each e there is a string tr C_ B such that {e}~(e) is defined or 

strongly undefined. 

COROLLARY 4.6. The set of degrees b ~_ O' such that b contains a 1-generic set 
generates ~ ( ~ 0'). 

PROOF. For each e let De be the set of all strings tr such that {e}~(e) is 

defined or strongly undefined. The D, are easily seen to be dense and uniformly 

recursive in 0'. Thus the class of 1-generic sets is 0'-comeager and so the corollary 

is immediate by Theorem 4.5. 

COROLLARY 4.7. For any nonrecursive degree as;O ', { b : a ~ b }  generates 
~ (  ~0"). 

PROOF. Suppose 0 < a < 0'. Let A E a and for each e let De be the set of all 

strings tr such that {e} ~ is incompatible with A or V3', 8 D tr, {e} ~ and {e} 8 are 

compatible. The D~ are dense and, since a ~ 0 ' ,  uniformly recursive in 0'. 

Further, if B E N(D~) then either {e} B is incompatible with A or if {e} B is total it 

is recursive. Thus {e}8~ A. Hence, if B E AeN(D,)  then A ;gTB, and so the 

class of all B such that a ;g deg(B) is 0'-comeager. The corollary now follows by 

Theorem 4.5. 

COROLLARY 4.8. Suppose a E L2. Then {b : b 13 a = 0} generates ~(~iO'). 

PRooF. Since a �9 0' and a" = 0", the class of sets recursive in a is uniformly 

recursive in Ig [3, theorem 1 relativized to a]. Let {A~} be a 0'-recursive 

enumeration of the sets recursive in a. For each e and i let D<,.~> be defined as in 
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the proof of Corollary 4.7 with Aj in place of A. We again have that the D<,.,> are 

dense and, since {A~} is recursive in 0', the D<,.i> are uniformly recursive in 0'. 

Also, if B EW(D<~.~) then either {e}B~Ai  or A~ is recursive. Thus, if B E 

A<e.,>N(D<,,~>) then deg(B) t ' l a  = 0. Hence, the set of degrees below 0' which 

form a minimal pair with a is comeager in ~ (~ i0 ' )  and so, by Theorem 4.5, 

generates ~ ( ~i 0'). 
In a future paper Posner will show that for any degree a < 0 '  {b~i0': b t'l a = 

0} generates @( ~ 0'). In fact it will be shown that the set of minimal degrees 

b E  0' which form a minimal pair with a generates ~ ( ~  0'). 

COROLLARY 4.9. There exists a pair of nonrecursive degrees e, d ~i O' such that 

{a ~ 0': a ~- c or a ~_ d} generates ~ ( ~ 0'). In fact, the set of such pairs is comeager 

in 

PROOF. We first show that the set of triples (b ,c ,d)  such that b = 

( b L I c ) A ( b  Lid) is 0'-comeager. For each i,] let D<w be the set of triples 

(/3, 31, 3) such that 
(1) {i} ~e~ is incompatible with {j}~e,, or 

(2) Wr, :, _~ T, Va D/3 {i} ~e~ is compatible with {i} ~e', or 

(3) 3x < lh(5), V~r -> 3, 'Ca _D/3, {j},e~ is undefined at x. 

The reader may easily verify that the D<,.~> are dense and uniformly recursive in 

0'. Further, if (/3, C, D)  EN(D,,~>) then 
(1) {i} ~ec is incompatible with {j}Beo, or 

(2) {i} Bec is partial recursive in B, or 

(3) {]},eo is undefined at some argument. 

Thus, if (B, C, D ) E  A<~.I>W(D<~.~>) then 

deg(B) = (deg(B) O deg(C)) f'l (deg(B) t..I deg(D)) 

and so 

{ (b ,c ,d ) :b  = (b U c ) n ( b  Ud)} 

is 0'-comeager, as claimed. 

Now, applying Proposition 4.3 to the set of triples defined above we see that 

{(c, d):  {b : b = (b O c) rl (b U d)} is 0'-comeager} is 0'-comeager. Thus, the set of 

such pairs (c,d)  where c,d~_O' is comeager in ~ ( ~ 0 ' ) .  For any such pair, 

{a~ 0 ' : a  ~ e or a_~ d} generates a set which is comeager in ~ ( ~ 0 ' )  and so, by 

Theorem 4.5, generates all of ~ ( ~  0'). 

THEOREM 4.10. Suppose 0 < b ~-- 0'. Then the set of c < O' such that c 13 b = O' 

generates ~ ( ~_ 0'). 
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PROOF. The  proofs  of  Corollaries 4.6 and 4.7 show that  L, and { d < 0 ' : d ~  b} 

are comeage r  in 9 ( ~ i 0 ' ) .  (Here  we have used the wel l -known result that  

1-generic degrees  are in GLI,  see [4].) The  intersection of these sets is again 

comeage r  in 9 ( ~ 0 ' )  so, by T h e o r e m  4.5, it will suffice to show that  { e < 0 ' :  

c tJ b = 0'} genera tes  { d < 0 ' :  d '  = 0' and b;~ d}. 

Suppose d ' =  0' and b;~ d. We will show that there exist e, and c2 such that  

d = el t'l c2 and e l  U b = C 2 U b : 0t. Since b ~  d, we have d <  d U b ~ 0 ' .  Thus,  

since d '  = 0', the results of  [14] may be relativized to  d to ob ta in  Cl, c2 ~ d such 

that c , f ' l c 2 = d  and c l O ( b U d ) = c 2 U ( b O d ) = O  '. Since Cl, C2 are ~ d ,  

ci U (b O d)  = cl U b and c2 O (b O d)  = c2 O b. Thus,  c~ and c2 have the desired 

propert ies  and so the proof  of T h e o r e m  4.10 is complete .  

In the above  proof,  cl and c2 can be  taken to be degrees having jump  0'. Thus  

if 0 < b < 0 ' ,  {c ' - iO ' :c '=O'  and c O b  = 0 ' }  generates  9 ( - ' i 0 ' ) .  Further ,  if 

0 < b <  0' and b" = 0" then the set of degrees  which are complemen ta ry  to b in 

9 ( ~ 0 ' ) ,  i.e., c such that  c U b = 0' and c N b = 0', generates  9 ( ~  0'). 
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