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UNCOUNTABLE ADMISSIBLES II: 
COMPACTNESS 

BY 

SY D. F R I E D M A N  

ABSTRACT 

Assume  V = L. Let K be a cardinal and for X C K, n < to let a .  (X)  denote  the 
least ordinal a such that L~ [X] is ~ .  admissible. In our earlier paper 
Uncountable admissibles I: forcing, we characterized those ordinals of the form 
a .  (X) when K is regular. This paper  treats the singular case using Barwise 
compactness,  an effective version of Jensen ' s  covering lemma and/3-recurs ion  
theory. 

We begin by reviewing some terminology from our preceding paper, 

Uncountable admissibles I. Assume V = L and let K be a cardinal. For any 

X C K let c~(X) be the least ordinal c~ greater than K such that Lo [X] is 

admissible. In case K is regular this class of ordinals was characterized in 

Uncountable admissibles L The present paper treats the singular case. As 

expected, the cases where K has countable versus uncountable cofinality are 

quite different; the latter makes heavy use of /3-recursion theory (mainly the 

results of Friedman [4]) while the former relies on generalizations of the 

Barwise Compactness Theorem. A by-product of this work is a characterization 

of those Lo's which are Barwise compact with "ordinal omitting" in L (assuming 

a is not a limit L-cardinal). 

If A is an admissible set then let O(A)  = A tq ORD. Suppose T( < , . .  �9 ) is a 

theory in the fragment ~A of ~| determined by A (as in Barwise [1]). We say 

that T realizes the ordinal/3 if for every model M of T, <M is a linear ordering 

whose well-founded part has order-type greater than/3. If A is countable then 

O(A)  is the least ordinal not realized by an A - R E  theory (i.e., a theory ~, over 

A ). Then A is Barwise compact with ordinal omitting if A is Barwise compact 

(an A - R E  theory has a model if every subtheory which is a member of A has a 
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model) and in addition O(A)  is the least ordinal not realized by an A - R E  

theory. 

The relevance of these concepts to the present problem is this: If L~ is Barwise 

compact with ordinal omitting then a = a(X) for some X C_ K (where K = L-  

Cardinality (a)). For consider the L~-RE theory T ( < , E , a ) a ~ L o  with the 

following axioms: 

(a) KP + " V  -- L, tx~[X] for some X C_ ir 

(b) Vx (x E a r Vb~ox = b), for each a E L~, 

(c) < is the well-ordering of the ordinals. 

Then To _C T has a model whenever To is a-finite (i.e., whenever To ~ L~). Thus 

by hypothesis T has a model M where the well founded part of <'~ has order 

type a. But then L~ [X] is admissible for each X E M N 2 ~. Thus if we choose X 

so that M ~ " V =  L~cx)[X]" then a = a(X). 
Assume V = L. In w we show that L~ is Barwise compact with ordinal 

omitting provided the following conditions are met: 

(i) r = cardinality (a)  has cofinality to, 

(ii) there is a 1-1 function f :  L~ --> L~ which is tame; i.e., f-~[x] E L~ for each 

xEL~,  
(iii) if there is a largest a-cardinal then it has cofinality to. 

The proof is a Henkin construction modelled after Green [6]. Special care must 

be taken to deal with the facts that there might be no cofinal function from to 

into K inside L~ and K might not be the greatest a-cardinal. Conversely, if 

K = cardinality (a)  has cofinality to and a = a(X) for some X C K, we show that 

conditions (i), (ii), (iii) are met. The proof heavily involves the fine structure of L 

as in section two of Uncountable admissibles L In the terminology of that paper, 

condition (ii) in this case is equivalent to: pi, p; both have cofinality to for each i. 

As it is easily shown that L~ is not Barwise compact with ordinal omitting when 

K = (greatest L-cardinal < a )  has uncountable cofinality, this gives a complete 

characterization of this property (assuming a is not a limit L-cardinal). 

The case where K = cardinality (a)  is singular of uncountable cofinality is 

treated in w Here we must use the ideas developed in Friedman [4]. We 

recall some terminology from that paper. For each ordinal/3, S~ is the/3 th level 

of Jensen's S-hierarchy for L (see Jensen [7]). For limit/3, S0 N ORD =/3 and 

S0+~ f'l 2s~ = all subsets of S~ first-order definable over (S~, E ). Then for any 

limit/3 the A. projectum of/3, 8rip~3, is the least 3' such that there is a A, (S~, E ) 

injection of So onto ~. Jensen showed that if A is a bounded subset of 8rip~3 and 

A is A, (S~, E ) then A E So (see Devlin [2]). 
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The following definition comes from Friedman [4]: D C ~np/3 is a A. Master 

Code [or [3 if D is A. (S~, E ) and for any A C_ 8rip~3: 

A is~,,(SB.p~,D)~--~A i s~ .  (S~, E) .  

There exists a A. Master Code for /3  if and only if 8rip~3, tr(n - 1)p/3 have the 

same cofinality relative to E.  (S~, E ) functions ((rmp/3 = Em projectum of /3) .  

The relevance of A. Master Codes to the problem at hand is this: If D C K is a 

A. Master Code for /3 then a ( D ) > / 3 .  Moreover  it is shown in Friedman [4] 

that if K = X~ then for any X C K, X v C has the same K-degree as some A. 

Master Code D C K, where C = complete ~ set for (L., E ). Thus we see that if 

a is admissible and has cardinality N~, then for any X C_ 1~., either a (X) > a or 

X is a member  of L~. So a = a ( X )  for some X C_ N., if and only if a =/3  § for 

some /3 such that L.  I=/3 has cardinality N~,. 

In this paper we extend the above result from Friedman [4] to other singular 

cardinals of uncountable cofinality. Say that X _C K is hyperregular if (L., X )  is 

admissible. Then we show in Theorem 5 that any nonhyperregular X C_ K has the 

same K-degree as some A. Master Code. Thus if a is admissible of cardinality K 

and K is singular of uncountable cofinality in L~ then we come to the same 

conclusion as we did in the case K = ~,o,: a = a (X) for some X if and only if 

a =/3 + for some /3 such that L~ ~/3 has cardinality K. 

Finally we must treat the case where K is singular of uncountable cofinality but 

L~ I= K is regular. If there is a tame function from L~ 1-1 into L. we show that 

the methods of section one , in  Uncountable admissibles I apply. Thus if in 

addition there is no largest a-cardinal or the largest a-cardinal has a-cofinality K 

then there is an X C K, a (X) = a. The converse follows much as in section two of 

that paper using the fact that a ( X ) >  a whenever X _C K is nonhyperregular.  

Moreover  the existence of such a tame function is equivalent to: p,, p] have 

cofinality equal to cofinality (x)  for each i. 

Our  full characterization of ordinals of the form a (X) in L is described by the 

following: 

THEOREM. Suppose a is admissible of cardinality K and K < Or. 

(a) a = a ( X )  for some X C_ r if and only if there is a tame function f:  L~ 1-1> L~ 
and in addition if A = greatest a-cardinal (should it exist): 

r regular --* cofinality (A) = K, 

K singular of cofinality to--*cofinality (A)=to ,  

K singular of eofinality > to, K regular in L~ --* L~-cofinality (A) _-_ K, 

K singular of cofinality > to in L~ -o  A = K and a is a successor admissible. 



132 SY D. FRIEDMAN Israel J. Math. 

(b) There is a tame function f: L~ , K i[ and only if p~, p'~ have cofinality 
equal to cofinality ( r )  for each i. 

In w we consider ~.  admissibility, n > 1. When K is either regular or singular 

of uncountable cofinality then the above results generalize in a straightforward 

manner. However an unexpected phenomenon occurs when r is singular of 

cofinality to in L~. Then we use Silver's proof of Jensen's Covering Lemma 

(Silver [9]) to show: If a is ~,  admissible relative to X C_ K, n > 1, then X ~ L~. 

Thus the situation for E. admissibility, n > 1, when r has cofinality to in La is 

more like the case where r is singular of uncountable cofinality in L~. This result 

also implies the existence of an L~ which is ~2 compact with ordinal omitting and 

a theory T ~2 over L~ such that T ~_ K P  + Diagram (L~), T has a model but the 

standard part of each model of T is E2 inadmissible. 

01. Countable eofinality 

Throughout this section assume V = L and that r is a singular cardinal of 

cofinality to. Also let a be an admissible ordinal of cardinality r. We begin by 

developing a sufficient condition for L, to be Barwise compact with ordinal 

omitting. This condition permits one to perform a Henkin construction in the 

style of Green [6]. This construction takes place in to steps; at each step decisions 

are made about fewer than K sentences from L~. The fact that A < K implies 
2 ~ E L~ is of crucial importance. Moreover the collection of sentences consi- 
dered at each stage should be a-finite (i.e., a member of L~). Thus we arrive at 

the first additional condition that we wish to impose on La: 

(ii) there is a function f: L, 1.1 L~ such that f-~[x] E L,  for each x E LK (f is 
tame). 

The other condition that we need will become apparent after a more detailed 

description of the construction is given. 

Now let T be a ~1 theory over La. Thus T is a collection of sentences in the 

fragment of ~| determined by L~, where ~ is some a-recursive language. (A 

complete discussion of fragments of .~| can be found in Barwise [1].) Suppose 

that every To C_ T such that To E La has a model. We wish to show that T has a 

model, thus establishing the Barwise compactness of L~. 

A set of L~-sentences S is consistent if no contradiction can be derived from S 

via an a-finite proof in the usual system for logic on Lo (which can be found in 
Barwise [1]). Our given theory T is consistent as otherwise some a-finite To C_ T 

is inconsistent and hence has no model. In fact we know that T remains 

consistent upon the addition of any number of valid sentences. This fact is of use 
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in this context as there exist valid sentences which are not derivable from the 

usual axioms and rules for logic on L~. 

To prove the existence of a model of T it suffices to construct S _D T where S 

is a collection of sentences in a possibly larger a-recursive language ~ with the 

following properties: 

(a) for each 4~ E ~,  4~ E S *-> - d ~  S, 
(b) for each V ~  E ~, V ~  E S ~ ~b ~ S for some ~b E ~,  

(c) for each 3x#p(x) E .~, 3xdp(x) E S ,~, ok(c) E S for some constant c. 

For then one can construct a (canonical) model M of S out of equivalence 

classes of terms. Clauses (a), (b), (c) facilitate the inductive proof that for ~b ~ ~,  

.~ = the language of S is obtained as follows: Let Lz--language of T 

augmented by a new constant c~ for each 4~ in the language of T. Then ~,+1 = ~ ,  

augmented by a new constant c ~ for each ~ in Lr Le = U ,  ~, .  The constants c 

are used in satisfying (c). 

As K has cofinality to and there is a tame injection of L~ into r, we can write 

the collection of all L~-sentences (in the language .~) as the union of an 

to-sequence ~o C ~,  C_-.. of a-finite collections of sentences of a-cardinality < 

K. (Thus ~ .  =/-"[K.]  where K0 < K1 < . . .  is cofinal in K.) Also arrange that no 

constant c~ occurs in any element of ~ . .  We build S as the union of an 

to-sequence T = To C_ T, C_.. �9 of consistent sets of sentences. We arrange that 

for each ~b E ~ .  either ~b E T.+1 or -d~ E T.+I. Moreover for each n if 3xdp(x) E 

7". then 4~(c~) E T.+~. Thus (a), (c) will be satisfied. Dealing with condition (b) is 

the major problem. The difficulty is this: We wish to choose a disjunct to put into 

T.+I for each disjunction V ~  T. n ~ . .  But this must be done so that T.+, is 

consistent. There are a large number of possible ways of choosing these 

disjuncts. An argument is needed to show that one of these ways is both a-finite 

and consistent with T.. 

Instead we do not choose a unique disjunct for each disjunction in T. n . .  

but instead argue that for an appropriate ordinal it there is a partition of T. N ~ .  

into to pieces Po, P , , " "  such that T. remains consistent upon the addition of 

each of the following sentences: 

V A v( n 
x m E L  A v q ~ E P  m 

c a r d ( x ~ )  < K 

This asserts that we have narrowed down the possible choices for a disjunct from 

the disjunctions in P. to a collection of possibilities in L~ of size less than i<. For 

this to be conceivable L~ must obey the following condition: 



134 SY D. FRIEDMAN Israel J. Math. 

(*) For each X E La there is A < a such that X = X0 U Xt U.  �9 �9 where Xs 

has cardinality less than K and Xm E L, for each m. 

We later show that this can be obtained as a consequence of conditions (i), (if), 

and: 

(iii) If there is a largest a-cardinal then it has cofinality to. 

Now assume that (*) holds. Then for any a-finite collection of sentences 

{tki.j I i E I, j E J~}, c a r d ( l ) <  r,  the following sentence is valid: 

A V ~i,j "-~ V A V A V ~i.j. 
i j Partition ra X m E L  ~ i E l  m j E J i A X  m 

(Io, Ii .-- .)  of I card(X m)<~r 

Here,  A is obtained by applying (*) to U,J, .  (Note that the above is an 

L~-sentence because 21 E L~.) Now as every a-finite To C_ T has a model and the 

above sentence is valid we know that T is consistent with all sentences of that 

form. We would like to assume that all sentences of the above form belong to T. 

Unfortunately this assumption is unjustified as we are considering a possibly non 

a - R E  collection of sentences. 

If there exists an a-recursive function g such that for all X E L,,, g ( X ) =  A 
satisfies (*) for X then the above collection can be made a - R E  by letting 

A = g ( U i z ) .  We show in Lemma 2 below that there does always exist g: L~ ~ a 

such that for all X, g(X) = A satisfies (*) for X and while g is not a-recursive, 

nevertheless (L~, g) is admissible. Then by working relative to g we can assume 

that the above sentences belong to T. (Thus T will be a - R E  relative to g, though 

possibly not a -RE . )  So for now we assume that the desired valid sentences all 

belong to T. We now use this fact to obtain the desired partition P0, P , , " "  of 

T, n q).. 

Define I = 7", n q~,, J, = q) if i = Vq), Ji = {i v - i} if i is not a disjunction. 

Then T, proves A, Vj~j,j. Thus T. also proves: 

Partition X m E L  A v q ~ E P  m 
( P o ,  P I, '" ") O1 T n n ~  n card(X m )<  K 

So for some partition (P0, PI, "" �9 ) of T, O q), the part in brackets is consistent 

with T,. Now we can also choose X,,, X, , .  �9 X, E L, so that card (X,) < K and 

consistency is still preserved by addition of the sentences A v.~p, v (q )n  Xi) for 

each i < n. For, there are only a-finitely many choices for the X,'s, i = n, and 

thus one such choice must preserve consistency. Given such a choice of 

X , , , X , , . . . , X ,  one can now choose a unique disjunct for each V ~ E  

P,, U. �9 �9 U Po as there are now only at most card(X,, U. �9 �9 U X.)  p,'UUe- < K and 
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hence a-finitely many possible choices. Thus if we apply this same procedure at 

stages m > n we will guarantee that for each V �9 E T, f'l ~ ,  there is a stage m 

and ~b E �9 such that ~b ~ Tin. Thus we have a procedure for satisfying (b). 

Condition (c) is handled easily. One simply must know that if R is a consistent 

set of sentences not involving cg for any ~b then R U {~(c~) I rlxdp(x) E R} is still 

consistent. But otherwise R t- V 3,*~,~ER-- ~b(C2) and this implies 

R F Va,,~x)E, Vx -- ~b(x) by the next lemma. 

LEmA.A 1. I[ R F V4~(c,) where r dp'--*c, does not occur in R or tb' then 

R t- V Vx4,(x). 

PROOf. By absoluteness it suffices to check this for countable admissible 

fragments. But then use the completeness theorem and the fact that 

R I = V Vx~b(x) (I = is the semantic consequence relation). -t 

For condition (a) we consider the valid sentence: 

A V ~b~.j--> V A ~i,w), 
iEl  jEJ  ] ~ j I  iE l  

where I, J, {~b,,j I i ~ I, j E J} are a-finite and I, J have cardinality < K. This is an 

a-recursive collection of sentences. Thus we can assume that all of these 

sentences belong to T. Clearly TI -A,~ . , (~b  v - ~ b ) .  So by the above T U  

{ f(~b)[ ~b E ~ ,}  is consistent for some f,f(4~) = ~b or - ~b. Thus all sentences in 

~ ,  can be simultaneously decided without damaging consistency. We of course 

are strongly using the fact that 2*- E L~. 

It should now be clear how to perform the desired Henkin construction. 

T,, = T. To define T,+~ first decide each sentence in ~ , .  This yields a consistent 

theory T',. Now let T"={dp(C~)13xdp(x)~ T'}. Then T" is consistent. Lastly 

follow the procedure outlined above to satisfy (b). This yields T.+~. Then 

S = I_l, T, obeys (a)--(c) and hence has a model. We have established the 
1-i 

Barwise compactness of L~ given cofinality g = co, :1 tame f :  L~ > K and (*). 
We show that (*) follows from the further hypothesis that the greatest 

a-cardinal, if it exists, has cofinality to. First note that each successor a-cardinal 

must have cofinality co. For if f : L~ _L~ L, is tame, K0 < K~ < ..  �9 is cofinat in K, A 

a successor a-cardinal then f-~[L,.] Iq A must be bounded in ,~ for  each n. But 

then (sup(f-~[L,.] fq A) I n E to) is a cofinal to-sequence through A. Thus (*) 

holds provided there is no largest a-cardinal. Otherwise it suffices to verify (*) 

when X =/x  = largest a-cardinal. By hypothesis/x =/Xo U p,~ U �9 �9 �9 where each 

p,~ is less than /x. Then 

/1 (/Zo ('1 f-'[L~o] ) U (/z, (1 f- '[L.,]) U ' "  
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and each p., O [-'[L., ] is an a-finite bounded subset of/z.  Thus It, N f-'[L., ] ~ L,. 
and we may take )t =/z.  

The proof of ordinal omitting for L~ simply requires the addition of one 

further step in the above construction. We are given a X~(L~) theory T in a 

language containing a binary relation symbol < and we suppose T F < is a linear 

ordering. We are interested in constructing a model M of T such that the 

well-founded part of <M has ordertype =< a. Thus we must arrange that for 

c E Field(<M), P< ( c ) =  <-predecessors  of c has o r d e r t y p e <  a or is not 

well-ordered. 

For each /3 < a let ~b~(x) be a formula of L~ which says that P<(x) has 

ordertype/3.  Such a formula is easily constructed by induction on 13 < a. Now 

perform a new Henkin construction identical to the previous at even stages but 

proceed as follows at stage 2n + 1: Consider  C = { c ~ [ i <  n, 4' E ~.}.  There  

must be a reflexive, transitive binary relation R on C such that T2. remains 

consistent upon addition of the sentences ~, = A~,,c2 (c, = c, v c~ < c2), $2 = 

A-c, Rc~(c2 < c,). Suppose there is an R-minimal c E C such that T2. U {$1, $2} O 
{ - ~b ~(c)]/3 < a } is consistent. Then choose some (new) constant of the form c 

and let T2~+~= T2. O{$~,$2}U{~d~(c~) l /3<a}U{c~,<c} .  If there is no 

R-minimal such c then let T2.+, = T2. U {$1, $2}. T2.+I is consistent in the 

former case as otherwise T2. U {$~, $2} U { ~ th~(c~) 113 </30} U {c~< c} is incon- 

sistent for some/3o < a. But this contradicts the consistency of T2. U {$,, $2} U 

{ -  c.b~(c) I/3 < /3o+ 1}. 
To see that a is not realized by S = U ,  T. (and hence is not realized by T)  

argue as follows: Suppose that the <M-predecessors of c have order type a 
i where M is a model of S. Then c is of the form c ,  for some i. But then c is 

R-minimal with the property that T2~+2 U {St, $2} U { ~ ~b~(c)l/3 < a} is consis- 

tent, where $~, $2, R are defined at stage 2i + 3  (for otherwise <M is non- 
i + l  wellfounded below c). Thus some constant c ,  denotes a <M-predecessor of c 

whose <M-predecessors do not have order typc/3  for any/3  < a. Therefore  the 

<M-predecessors of c cannot have ordertype a. 

It remains to show that if (*) holds then there is a function g: L~ --~ a such that 

(L~, g) is admissible and Vx ~ L~ :lxo, x~,-. �9 E Ls(~ ~ (x = Xo U x, U . . .  and for all 

i card(x,) < K). If there is a largest a-cardinal )to then define g(x)  = least )t > )to 

such that L~ is p.r. closed and L, ~ card(x)  _-__ Ao. Then as )to = Xo U xt U.  �9 �9 with 

x, C L~,, card(x,) < i< we see that x = h-~[Xo] U h-~[xt] U - . .  where h E Ls(~ ~ is 

an injection of x into )to. Thus g works and is a-recursive in this case. 

If there is no largest a-cardinal then we use: 
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LEMMA 2. I[ there is no largest a-cardinal and cardinality(a) = K then (L~, g) 

is admissible where g(x)  = ([x]<')  Lo = {y E L~ I Y C_ x, c a r d ( y ) <  K}. 

PROOF. We show that if )t is a regular a-cardinal greater than K then 

(L~*, g r L~*) is a ~1 elementary substructure of (L~, g). This suffices to establish 

the admissibility of (L~, g) as there are unboundedly many regular a-cardinals. 

Let th(x, y, g) be a Ao formula and x E L~+. Suppose (L~, g ) ~  4,(x, y, g) andwe  

will show that (LA+, g r L~§ ~ 3y~b(x, y, g). 
Choose a regular a-cardinal /x such that y E L,,+. Now let H be a ~ t  

elementary substructure of (L,+, g r L,,+) of a-cardinality A containing A U {x} O 
{y} and closed under: Z C H, c a r d ( Z ) <  K --~Z C H. This is possible because A 

is a regular a-cardinal. Now let Lo be the transitive collapse of H ,  7r : H-~L~.  

Then/3 < X + and (L~, g ' ) ~  ~b(x, It(y), g') where g' = 1r(g r H).  But ([L~]<') L- C 

Lo since ([H] <')'~ C H. So g' = g r L~ and we are done. -t 
To summarize, we have proved ( d ) ~  (e)---~ (a)---~ (b) in the following: 

THEOREM 3. Suppose a > K is admissible and has cardinality K, 

cofinality(K) = to. Then the following are equivalent: 

(a) L~ is Barwise compact with ordinal omitting, 

(b) a = a (X) [or some X C K, 

(C) p, p'~ have colinality to for each i and if the greatest a-cardinal exists then its 

colinality is to, 

(d) there is a tame injection L~ ~ r and if the greatest a-cardinal exists then its 

co]inality is to, 

(e) cofinality (a )  = to and for all x ~ L~ there is A < a and Xo, x~, . . . E LA such 

that x = x,,t_Jx, t J . . .  and card(x~)< K [or all i. 

The definition of p, p', can be found in Uncountable admissibles L The proof of 
(b) ~ (c) is entirely similar to the argument in section two of that paper. Thus the 

idea is to show that if p~ or p'~ has cofinality ~ to for some i then L,  [X] contains a 
well-ordering of length a whenever L~ [X] ~ K is the largest cardinal. To prove 
(c)---*(d) one constructs a series of tame injections L~---~L~, L~---*L~,. . . ,  

L~_,---~ L~ = L,. The ith such is constructed using the fact that t~, P'§ P~+~ have 
cofinality to. Then the composition of these tame injections is tame. 

PRooF oF THEOREM 3. As we remarked earlier we have already established 

( d ) ~  ( e ) ~  ( a ) ~  (b). 

(b) ~ (c): Suppose cofinality (p~) > to and let (Yi I J < A ) be a cofinal increasing 

sequence through p~. There exists a ~,, (S~,) well-ordering W of p~ of ordertype a. 

Then W N yj E S~ for each j. 
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Suppose a = a (X), X C K. Then either pi = a or L~ [X] ~ ~ has cardinality K. 

In the former case pi has cofinality co as a (X) has cofinality o~ for any X C_ K. In 

the latter case L~ [X] contains an injection [: S~ --~ x and thus f [{W fq yj IJ E 

Z}] is bounded for some unbounded Z CA since cof(A)#cof(K) .  But then 

(W N yj I J E Z)  and hence W belongs to La [X], contradicting its admissibility. 

Suppose cofinality (p[)> ~o. Let 9/i = (S'p:, A,) where A~ is a E,,_~ master code 

for/3~ (as in Uncountable admissibles I). Then there is a E~(9/,) well-ordering W 

of p, of ordertype a. Let (yj [J < A) be a cofinal increasing sequence through p~ 

and for each j < A, W j = the amount of W enumerated by stage yj, in a E~(9.1,) 

enumeration of W. Then W J E  L~ for each j as W j is p;-finite and hence 

constructed before the next p;-cardinal above p~ (if p; > a) .  This next O's-cardinal 

is=<a. 

As cofinality (a)  = ~o there is an unbounded Z C_ )t such that for some/3 < a, 

WJES~ for all j E Z .  If L ~ [ X ] ~ x  is the largest cardinal and f:  S~ ~-~)x 

belongs to L~ [X] then as before (WJ l j  ~ Z ' ) E  L~ [X] for some unbounded 

Z' C_ Z. But then W E L~ [X] so L.  [X] is inadmissible. 

Finally we must show that if A = greatest a-cardinal exists then cofinality(A) = 

o~. There is a ~,(La) function from {Y C_ A I Y E  L~} = 5r onto an unbounded 

subset of a. Namely, send any Y E 5r to the least ordinal/3 such that Y E L~. 

We now show that if cofinality ( h ) >  ~o and L~ [X] ~ x is the largest cardinal, 

then there is a furaction in L.  [X] mapping L, onto 5 e. This shows that L~ [X] is 

inadmissible. 

So suppose (yj [j < A') is a cofinal sequence through h and that f :  L~ H) x 

belongs to L~ [X]. Then for any Y ~ 5~ there is an unbounded Z C_ A' such that 

f [ {Y  ~ y~ [j ~ Z}] is bounded in r (and hence belongs to L~). The desired 

function from L~ onto 5r is defined by: If y = [ .Jf-l[x] then send x to y. 

(c)---~(d): We claim that it suffices to prove the following: 

LEMMA 4. Suppose ( S,, A ) is amenable, p is a fl-cardinal and y > p is either a 
[3-cardinal or y =/3. If  there is a E~(S~, A ) injection of L, into Lp and 7, p, [3 have 
cofinality ~o then there is a tame injection of L~ into Lp. 

The iemma can be applied as follows: Let (S , ,A)=(So, ,A,) ,  p = p i  and 

3' = P,-~. Then the lemma provides a tame injection f, from So, , into Lo,. But 

then f ,~(x)ESo, ,  for any xESo,  by tameness. So fkof~ , . . . . .  f~ is a tame 

injection of Lo into LK. 

PROOF OF LEMMA 4. Choose [3, < [3: < �9 �9 �9 p, < p2 < �9 �9 �9 and y~ < 72 < " �9 " 

converging to [3, p, y respectively and let f :  L, --~ Lp be a EI(S~, A ) injection. For 
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each n let fn be the fl-finite part of f enumerated by stage/3, in a E](S~, A)  

enumeration of graph (f). Then define g: L,-~L, by: 

g(x)=(f(x),p.) wheren=leastms.t, xEL~m, x E Dom(fm). 

For each n and each y ~ L,~, g-~[y] is a fl-finite bounded subset of Lv. Then 

g-~[y] E L~ for each n. So g is tame. q 

REMARKS. (1) There are admissible ordinals a of cardinality N~ such that L~ 

is Barwise compact but does not obey ordinal omitting. For, as Barwise 

compactness is equivalent to a reflection principle (see the discussion of strict 

II~-reflection in Barwise [1]) there is a closed unbounded collection of ordinals 

a < N~§ such that L~ is Barwise compact. But then there is such an a of 

cofinality to]. Then L~ does not obey ordinal omitting by Theorem 3(b). 

(2) There do exist admissible a of cardinality N~ such that there is a tame 

injection L~ --~ M~ but L~ is not Barwise compact. Thus the second condition in 

(d) of Theorem 3 is necessary. An example is the least nonprojectible a > N~ 

such that L~ ~ N,o, exists. Then the greatest a-cardinal has uncountable cofinality 

yet p] = a, p2 = ~L, p~ = a, p '  = a all have cofinality to. Thus there exists a tame 

injection L~ --> N~. If L~ were Barwise compact then there would be a model of 

"Diagram (L~)+XC_N~+V=L~(x)[X]+~3[3 (fl is nonprojectible and 

L~ ~ N~, exists)". But the well-founded part of such a model would have ordinal 

height a, proving a = a (X) for some X C_ Mo. This contradicts Theorem 3. 

(3) If a obeys the conditions of Theorem 3 then our proof of Barwise 

compactness from condition (d) yields an explicit axiomatization of the valid 

sentences in L~. This set of axioms consists of the usual ones embellished by the 
following: 

A V ~bi,j "-> V A ~,1(i), 
i E l  j E J  ~E. I  1 i E I  

A V @,.j~ V A V A V ~.j, 
i j E J  l Partition m XmEL~,  i E l  m j E J i n x  m 

(lo, l l , . . . ) o f  l card(xm)<~K 

where A = g ( U J i )  and g is as constructed earlier. This gives a 21(L~,g) 
complete axiomatization of the valid La-sentences. Magidor-Shelah-Stavi have 

shown that if there is no largest a-cardinal then any L~ obeying Theorem 3 is not 
2,-complete. (Otherwise g is a-recursive.) See their forthcoming paper Counta- 
bly decomposable admissible sets. Note that in Theorem 3 compactness has 

actually been established for any theory 2,(L~, g). 

(4) If x = largest (L-) cardinal < a has cofinality > to then L~ cannot be 
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Barwise compact with ordinal omitting. For otherwise there is a non-well- 

founded model M of KP + Diagram(L~)+ " r  is the largest cardinal". If c ~ M 

is a non-standard ordinal then M contains a descending sequence below c as M 

contains a bijection c *-~K and L~ is countably closed. Thus Theorem 3 

completely characterizes Barwise compactness with ordinal omitting unless a is 

a limit cardinal of L. 

(5) The equivalence of (a), (b), (e) in Theorem 3 was obtained independently 

by Magidor-Shelah-Stavi. See their upcoming paper Countably decomposable 

admissible sets. They also obtained a characterization of which L . ' s  are 

X,-complete. 

w Uncountable cofinality 

This case draws heavily on the methods of Friedman [4]. Assume V = L 

throughout and that r is a singular cardinal of uncountable cofinality. Our key 

lemma provides a characterization of the nonhyperregular K-degrees: 

THEOREM 5. A n y  nonhyperregular X C_ x has the same K-degree as a A. 

master code. 

PROOf. In Friedman [4], section two this result is established when 

r = N~,. That proof shows: If M C r is nonhyperregular and M =<KX then X has 

the same r-degree as a A. (M) master code. X C K is a A, (M) master code for/3 

if for any Y C K, Y is XI(LK, X) ifI Y is 2~, (S~ [M], M). Now if M is a A. master 

code then the Am (M) master codes _C r are just the Ap master codes Y _C r such 

that M_-<, Y. Thus to prove the theorem it suffices to show that there is a 

nonhyperregular A, master code M _C K such that M < K X  for every nonhyper- 

regular .X C_ r. 

Let/3 be the least ordinal such that for some n there is a A, (S~) function from 

an ordinal < r onto an unbounded subset of r. Also choose n to be least. 

LEMMA 6. There is a A. master code for/3. 

PROOF. Note that A, projectum (/3) = r. Also let 9.1 = (S~, A)  where O = X,-i 

projectum (/3) and A is a X.-I master code for /3. Then as in Friedman [4], 

theorem 9 it suffices to show that E, cf 9 /=  cofinality K. 

Let A = cofinality (K) and [: ;t ~ K be increasing, continuous, cofinal and 

E1(9/). If X~ cf 9~ # A then [ [ Z E Sp for some unbotmded Z C_ A. But then r is 

singular via a function in S~, contradicting the leastness of/3. q 

Let X _C x be nonhyperregular. Choose a Xl Skolem function h for 9~ and let 
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g: A --> p be increasing, cofinai, continuous and E1(9.1) with parameter p. Also for 

each A' < A, h ~' is the A' th approximation to h, obtained by restricting its E,(93) 

definition to (S,<A.~, A f'l g(A')). 

It suffices to show that for some closed unbounded C _C Range(/) :  

(*) y = A'th member  of C---> y ~  h~'[~o x (y U {p})]. 

For, as in the proof of theorem 9 (a) in Friedman [4], a A, master code for/3 is 

obtained by considering the sequence (t~, I )t' < )t ) where L,~, = transitive collapse 

of h~'[~o x (y U {p})], y as in (*). But as y is regular in L,,. (K is regular in S,<~,~) 

we see that there is a function k =<,,X such that k :)t--->K, k(A') has the same 
cardinality as t~. for all A', and k dominates A ' ~  t~, everywhere. But then 

(t~, I )t < A ) = , X  and so K-degree(X) => K-degree of some A, master code for/3. 

To construct C C_ Range( / )  satisfying (*) begin with some closed unbounded 

C, C_ x of ordertype A such that C, _<-~X (by the nonhyperregularity of X). But 

then for some c.u.b. Z C A, {y I Y is the A 'th element of C~, y '  E Z} = 6"2 must 

satisfy (*). For otherwise Fodor 's  Theorem implies that for some fixed y0 < K, 

)to < A, h~[~o • (3'0 U {p})] N K is unbounded in K. This contradicts the fact that r 

is regular with respect to/3-finite functions. Finally let C = C2 A Range(/) .  q 

COROLLARY 7. I[ X C K is nonhyperregular then X E Lo<x~. 

This immediately yields: 

TrmoaEM 8. Suppose K is singular o[ uncountable cofinality in La. Then 
a = a (X)  [orsome X C_ i< if and only i[a = ~+ where L~ ~ cardinality(/3) = K. 

NO'rE. Here we use/3 § to denote the least admissible >/3. If K is singular in 

L~ then L~-cofinality(K) = cofinality(K). 

PROOF. Choose Y C K, Y E L~ so that Y is nonhyperregular. If a = a ( X )  

then Corollary 7 implies that X v Y E L~. Thus a =/3 § where X v Y E Lo. Also 

L~l=card( /3)=K as otherwise X v Y E L g c ~  and a ( X ) < g c a  (where 

gc a = the greatest a-cardinal). 

Also note that if a =/3+, L~ ~ card(/3) = K then a = a(X)  where X E L~ is a 

well-ordering of K of ordertype /3. -~ 

Finally it remains to consider the case where K is singular of uncountable 

cofinality yet Lo ~ K is regular. First note by Corollary 7 that if X _C K is 

nonhyperregular then a ( X ) > a  (as otherwise X E L ,  contradicting the 

regularity of K in La). This fact is key to proving the "only if" direction of the 

following: 
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THEOREM 9. Suppose r is a singular cardinal of uncountable cofinality and 

L~ ~ r is regular. Then a = a ( X )  for some X C_ K if and only if: 

(a) there is a tame injection L~ --> LK and 

(b) either there is no largest a-cardinal or if A = largest a-cardinal then 

L~-cof (A) > r. 

PROOF. We first prove that conditions (a), (b) are necessary. The key fact to 

establish is: p,, p', have cofinality = cofinality(K) for each i. This will imply both 

the < cof(r)-closure of L~ and the existence of a tame injection L~ --> LK. 

Let A = cofinality (r) .  Suppose cof(p,) = A ' #  A. There is a well-ordering W of 

p~ of ordertype a s.t. W A S ~ E S o ,  for each y < p ,  Choose f:  A'--*p, to be 

cofinal. If L~ [X] ~ K is the largest cardinal then there is g: Sp, --~ x, g E L~ [X]. 

So since A' ~ A, g[{W n Sr~8~[ 8 E Z}] is bounded in K for some unbounded 

Z C A'. But then {W n Sf~ [ 8 ~ Z )  and hence W belongs to L~ IX] so L~ IX] is 

inadmissible. Thus a #  a ( X )  for any X, contrary to hypothesis. 

Now suppose cof(p',) = Z ' #  A. Recall that p', = ~., , projectum (/3,). Choose a 

'--~ ' ~(9/ , )  well-ordering W of p~ of ordertype a, where cofinal f :  A p ,  There is a 
~1, =(S~I,A,)  (A, a E .... master code for /3,). Either p'~=p,_~ or p,_, is a 

p'~-cardinal. In either case there is an unbounded Z C_ A' and /3 < a such that 

W ~ = amount of W enumerated by stage f(8)  (in some ~t(9/,) enumeration of 

W) belongs to S~ for all 8 E Z. But then as before if L~ [X] ~ K is the largest 

cardinal, then (W ~ [ 8 ~ Z ' ) E L ~ [ X ]  for some unbounded Z ' C Z .  So 

W E L~ [X] and L~ [X] is inadmissible, contrary to hypothesis. 

We now argue as in the proof of Theorem 13 in Uncountable admissibles I that 

L~ is < A-closed. Recall that a _-> p~ > p2 > �9 �9 �9 > pk = K. Also define p0 = a. We 

show by induction on k - i that for h' < A, f:  h' --> p, implies f E S~. This is clear 

if k - i = O .  Given A ' < A  and f:  h'-->p~ let g: a---~p,+~ be E,(9~+~). Then 

g of: A'--* p~+~ and hence g of  E Sp,+, by induction. But then f = g-~ o(g of) is 
! t ! ~(~+~)  and since cof(p~+~)= A > A', f ~  Sg,.,. But either p~+l = p~ or p~ is a 

p'§ In the former case we are done; in the latter case f ~ S~, as f is 

bounded in/~.  

We use the < A-closure of L~ to define a tame injection L~ --> L,. Note that S~, 

is also < A-closed for each i as p~ is an a-cardinal and cof (p~) = A. 

LEMMA 10. Suppose (S~,A)  is amenable and p < y are ~3-cardinals, S~ <A-  

closed. I f  there is a EI(S~, A )  injection of) ,  into p and % p, [3 have cofinality A then 

there is a tame injection of L~ into Lp. 

PRooF. Much like the proof of Lemma 4. Choose (/3~, [ A' < A), (p^,[ A' < A) 
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and (3 ' , , ]A'<A) converging to /3, p, y respectively and let f :  y ~ p  be a 

E~(S~, A)  injection. For each A' let f~' be the/3-finite part of f enumerated by 

stage/3~, in a E~(S~, A)  enumeration of graph(f). Then define g: L~ ~ Lp by: 

g ( x )  = ( f ( x ) ,  p~,)  where A' = least A" s.t. x E L~., x E Dom(fA"). 

For each y E L~, g-~[y] E L~ using the fact that y is a /3-cardinal and L~ is 

< A-closed. -I 

Now let (S~, A ) =  (So,, A,), p = p~, y = t~-,. Notice that Lemma 10 also holds 

even if y =/3. Thus there is a tame injection f~ from Lp,, into Lp,. So 

f~ ofk_ , o. �9 �9 of, is a tame injection of L~ into L.. From this it is easy to get a tame 

injection of L~ into L.. 

Thus we have demonstrated the necessity of condition (a). For condition (b) 

suppose that there is a largest a-cardinal A. Note that if y = L~-cofinality of A 

then there is a E~(L.) function from [L~] ~ n L~ onto a cofinal subset of a :  

Namely, if x E[L~] ~ AL~ then send x to the least/3 s.t. U x  ES~. As A is the 

largest a-cardinal there are subsets of A constructed cofinally in a. As 

L~-cofinality(A) = 3' each of these sets is of the form U x  for some x E [L~] ~ O 

Lo. 
We have the hypothesis a = a (X) for some X _C K. By Corollary 7, L~ [X] ~ K 

is regular as otherwise for some Y E L~ [X] O 2 ", Y is nonhyperregular and thus 

X v Y E L ~ ( •  But a ( X  v Y )  = a ( X )  = a, contradicting the fact that K is 

regular in L~. Also L~ [X] ~ K is the largest cardinal, so choose a bijection 

f E L~ [X] between L~ and K. But then f induces a bijection between [K] ~ n L~ 

& [L~] �9 n L, & if y < K then [K] ~ n L~ E L~ [X] since L~ [X] I = K is regular. So 

3' --> K as otherwise L~ [X] contains a 2, function from [K] ~ O L~ ~ L. [X] onto a 

cofinal subset of a. This completes the proof of the necessity of (a), (b). 

Now under the hypothesis of (a), (b) we show that the forcing construction of 

Uncountable admissibles I, section one can be carried out to yield X C K such 

that a ( X )  = a. The difficulty is that Lo is not < r-closed (as K is not regular). So 

there might be a problem in proving the existence of generic sets. However we 

show that L,  has enough < K-closure to enable the construction of sufficiently 

generic sets. The degree of genericity required is captured by the next definition. 

DEFINITION. A sentence (k is HoE if it is of the form 'r E y ::lz~0 where ~ is 

Ao. 

There are three steps to the forcing argument in section one of Uncountable 

admissibles I. In each case one has an admissible structure (L~ [ Y], Y) and a 

generic set is required for a notion of forcing such that the forcing relation is E~ 
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when restricted to E, sentences (over (L~ [ Y], Y)). Moreover  the proofs in that 

paper that admissibility is preserved really show that for any Ao~: 

(*) p ,-Vx ~ y 3z~,(x, z)---,3wp U-Vx ~ y 3z E w~(x, z). 

Thus forcing for H0~ sentences is actually E,. Moreover  genericity with respect 

to HoE suffices to demonstrate that admissibility is preserved (by (*) and the 

Truth Lemma). So we have only to establish the existence of H0Y.-generic sets for 

the three forcing notions in question. Note that the hypothesis that K is a regular 

a-cardinal implies that each of these forcings is < K-closed with respect to 

sequences in L~ [ Y]. The unbounded L6vy collapse forcing requires in addition 

that L~ be admissible relative to the function x ~ Ix] <" N L~. This function maps 

L~ to Lo by virture of property (b). Moreover  this function is a-recursive if there 

is a largest a-cardinal. The admissibility of L~ relative to this function when 

there is no largest a-cardinal is established just as in Lemma 2. 

Finally we use the existence of a tame injection L.--~ L. to establish the 

existence of HoE-generic sets over (L~[Y], Y) whenever this structure is 
admissible and the forcing partial ordering ~ satisfies: 

(i) if (0r [ Y < 3',,) E L, [ Y], To < x and y < y'--* p~ ~ p~, then for some p, p < 

Pr for all y < 7o, 
(if) the relation p U- ~b for HIoE~,b, p E ~ is ~,(L~ [ Y], Y). 

The idea is to build a sequence (P~lY < x) of conditions in ~ such that 

3' < 3''--~ P~' -< 0r and Or decides the 3"th IIo~ sentence of (L=[Y], Y) in some 

tame listing of the l-loE sentences of length x. Thus for each 3' < x the sequence 

(~b~, [ y '  < 3,) of the first 3' HoE sentences is a-finite; now define: 

= ] leas t  p =< Pr such that p U- ~b~, if p exists, 
p~+t [ Pr, otherwise, 

p~ = least p -_ p~ for all 7 < X (A limit). 

Then for each y < x  the sequence (Or, l y ' < 7 )  is a member  of L=[Y] as 
y={y'<ylp~,+l=pr,}EL~ (and ( p ~ , 1 7 ' < 7 ) i s  ~I(La[Y],Y) using y as a 
parameter, by (if) above). Thus by (i) p, is well-defined for all y < K. Also 

G = {17 I P ---- Or for some y < K} is generic for IIo~ sentences as for any 1, either 
pr+]ll-d)r or Vp<-_p~+~(-pU-dp~,); thus either p~+ll-d)~ or p ~ + I F ~ .  This 
completes the proof of Theorem 9. 
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w Y~. admissibility; n ~> 1 

Let K be a cardinal and assume V = L. For X _C r and n > 1 we let a ,  (X)  

denote  the least ordinal a > K such that L~ [X] is E.  admissible. As was 

remarked in section three of Uncountable admissibles I, if K is regular then a is 

of the form a .  (X)  for some X _C r if and only if K < a < K +, a has cofinality r 

and L~ is both closed under and E.  admissible relative to the function y ~ [y]<K. 

The purpose of this section is to characterize ordinals of the form a ,  (X)  when K 

is singular. 

If K has uncountable cofinality then the methods of w generalize in a 

straightforward way. However  when cof ina l i ty (x)=  to the compactness techni- 

ques of w do not apply; the key reason is that the standard part  of a model of E.  

admissibility need not be E.  admissible when n > I. Instead we establish an 

effective version of Jensen 's  Covering Lemma  (Devl in-Jensen [3]) and use it to 

show: If X C_K is nonhyperregular  then X E L ~ . ( X ) .  Thus the countable 

cofinality case becomes like the (singular of) uncountable cofinality case when 

n > l .  

THEOREM 11. (Effective Covering Lemma)  Suppose K is a cardinal, X C_ r 

and  L ,  [X] is ~,_ admissible. I f  L~ [X] ~ r is singular then X E L~. 

COROLLARY 12. Suppose K is a singular cardinal, a is ~,. admissible, n > 1. 

Then a = a.  ( X )  for some X C_ K iff there is a tame  injection L~ --* K and in 

addition if  A = greatest a -card ina l  (should it exist): 

K regular in L~ --* L~-cofinality(A) _-> K, 

K singular in L ,  ~ A = K and a is a successor E .  admissible. 

PROOF OF COROLLARY FROM THEOREM. If K is singular in L,  then the Theorem 

implies that X • L~ whenever a = a .  (X). Thus in this case a = a .  (X)  implies 

that a is a successor E.  admissible and ,~ = K. The converse is easy. If K is 

regular in L, and a -- a ,  (X)  then K is still regular in L~ [X] by the Theorem.  

Then just as in the proof of Theorem 9 we see that L~-cofinality(A)_->K: 

Otherwise if f E L ~ [ X ]  maps La 1-1 onto r then y ~ Uf -~ [y ]  defines a 

E~(L~ [X]) function from LK onto a set containing 2 ~ N L~. This contradicts the 

admissibility of L~ [X]. 

It remains to show that if a is E,  admissible, there is a tame injection L~ --* K, 

r regular in L~, there is a greatest  a-cardinal  A implies L~-cofinality(A)_- > K, 

then a = a .  (X)  for some X C_ r. This is proved much as was the " i f"  direction of 

Theorem 9. In this case one seeks to build sets which are generic with respect to 
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HoE. sentences for a forcing relation which is E. when restricted to E. sentences 

(a HoE. sentence is one of the form Vx E y r  where r is E.).  As in (*) of the 

proof of Theorem 9 forcing for HoE. sentences is actually E.. Thus we can use 

the tame injection L~ --* r to decide each of the x-many IIoE. sentences by a 

K-sequence po---> p~ > " "  of conditions; all that is needed is the closure of the 

partial-ordering relative to < r-sequences inside the ground model. The un- 

bounded L6vy collapse forcing requires in addition that L~ is E. admissible 

relative to g: y ~-, [y]<" N L~. The assumption on A = greatest a-cardinal implies 

that L~ is closed under this function. The proof of Lemma 2 shows that 

(L~+, g I L,+) is a E1 elementary substructure of (L~, g) whenever/~ is a regular 

a-cardinal > r. Thus if g '  = the complete E~ set for (L~, g) then g' has the same 

a-degree  as 0', as {/~ I/~ is a regular a-cardinal} is a-recursive in 0'. So for n > 1, 
E. relative to g = E. and the E. admissibility of L~ implies that of (L~, g).  q 

Theorem 11 is obtained by examining Silver's proof via machines of Jensen's 

covering lemma and verifying that it can be carried out inside a model of E2 

admissibility. Notice that we can assume that X has cardinality < r as r is 

singular in L~ [X]. To prove X E L~ it suffices to obtain Y _D X, c a r d ( Y ) <  r 

where Y ~ L~. (This is why we refer to Theorem 11 as a "covering lemma".) 

We assume some familiarity with machines and with Silver's proof of Jensen's 

covering lemma (Silver [9]). Let M be an L-machine. We first recall some 

definitions concerning direct limit systems. A neat triple is one of the 
form ( & a , P )  where a=<~, P ~ [ ~ ] < ~  and ~ = M S ( a U P ) .  A neat map 

~r: (g, & P)--*(& a, P)  between neat triples is actually a medium M-map 

~r: g--*~ so that 7rrti =identi ty,  ~ ' [ g - t i ] C _ 8 - a  and ~r[/5]C_P. Then a 

r-direct system is a collection of neat triples and maps II = {(8~, a,,/'~), 7r, j I i -< i 

in I} where I is a directed class such that 

(a) each 8~ < r and {a~ I i E I} is cofinal in r, 
(b) if i =< j =< k then 1r~k = ~rjk o 7r~j, 

(C) Range ~r~j is not cofinal in 8s. 

We can describe how r-direct  systems arise as follows: Suppose rl is a limit 

ordinal and for each a < r, finite Q c_ ~, M"(a U Q) has ordertype less than r. 

Then , can be realized as the limit of a r-direct  limit system. For, let 

{(~,, a~, Q~)[ i E I} enumerate all triples (~/', a ' ,  Q')  such that 7/ '<  ~/, a '  < r 

and Q'C_-O' is finite. Define i = < j ~ r / , < r / s  , a,<-as, Q~C_Qj and 

"0~ E Q,. Let X~ = M ~, (a~ O Q~) and let tr~ : 6~ --* X~ be the 

ascending enumeration. By hypothesis 8~ < K. If P~ = tr~-l[Q~] then (~, a,, P~) is a 

neat triple. If i _-<j then define zr~ = tr;~ o cry. Then {(try, a~, P~), ~r~ [i _-_j in I} is a 
r-direct  limit system with direct limit r/. 
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Given this notion of a K-direct limit system we can now outline the proof of 

Jensen's covering lemma. As X C_ r has cardinality less than r we can obtain an 

elementary embedding j :  L~ --~ L. where ff < K and X C_ Range(j) .  Now if ff is 

an L-cardinal then Mn(a t.J Q) has ordertype < ff for all rl, a < E, finite O C_ lq. 

Thus OR  is the limit of a K-direct limit system H = {(8, aj, Pj), ,r~j [ i _-< j in I}. 

Now j(II)  = {(j(&-), j(a~), j[P~]), j o mj o j - '  [ i _-<j in I} is a K-direct limit system. 

If j(II)  is well-founded (with direct limit OR) then j can be extended to an 

elementary embedding L--~ L. Thus 0 ~' exists. 

Suppose that i is not an L-cardinal and therefore M ' ( a  t_JQ) has 

ordertype _-> r for some r/, a < i ,  finite O C_ r/. Assume that 7/ is least; we can 

then also assume that a 9 = M~(a t3 O). As before we can write 7/ as the direct 

limit of some if-direct limit system H. If j (H) has a well-founded direct limit/~ 

then j [ E  can be extended to a medium M-map j*: ~7---~/x. Then we have 

X C_Range(j*)C_M~(j(a)Oj*[Q]) = Y. Y has c a r d i n a l i t y = c a r d ( j ( a ) ) < r  

and Y E L. 
Now assuming that j :  L~--*LK can be chosen so that j(IJ) is a well-founded 

K-direct limit system whenever II is a well-founded g-direct limit system, the 

above argument easily takes place inside any E2 admissible set. In fact all one 

needs is ~1 admissibility to construct an L-machine and to compute the ordinal 

limit of a (truly) well-founded direct limit system. Now consider the argument in 

L~ [X]. In the first case we get L,  [X] ~ 0 '~ exists, which is a contradiction as 

a > tot and therefore L~ [X] would then produce the true 0 #. This conflicts with 

our hypothesis V - - L .  Therefore  the second case must hold and we get 

X C _ Y E L ~ ,  c a r d ( Y ) <  r.  But then X E L ~  as 2 ~K AL~[X]C_L,. 
It remains only to justify the assumption on j :  L ~ - ~ L ,  that j(II)  is a 

well-founded K-direct limit system if II is a well-founded ~-direct limit system. 

This is where ~2 admissibility is needed. (Note that well-founded ,~, embeddable 

into OR  follows from ~2 admissibility.) 

If H = {(~5,, a,, P~), r i ] i ~ j in I} is a direct limit system then we write zr C_ Y if 

each (~,a,,P~), mj ~ Y. A descending code for II is a sequence {/3. I n E to} so 

that for some io< i~ < �9 �9 �9 in I, 7r~.~.~,(/3,) >/3,.~. Thus FI is ill-founded iff II has a 

descending code. 1J C_ Y is Y-well-founded if I1 has no descending code 

{ft. I n ~ to} C_ Y. To justify our assumption on j it suffices to get X C_ Z < LK so 

that ca rd (Z)  < r and whenever II C_ Z is a Z-well-founded x-direct limit system 

then H is really well-founded. For then let j:  L~--~ L. be the inverse to the 

transitive collapse of Z. 

To get Z it suffices to prove that there is a X~ function Y ~ Y so that if Y C_ L., 

c a r d ( Y ) <  K then Y C )7 < LK, card(Y)  = to, LI card(Y)  and any ill-founded 
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I1 C_ Y is Y'-ill-founded. For then by starting with X and iterating this function 

to~ times we get Z _D X, Z < L,, card (Z) < r so that any countable ill-founded 

II C_ Z is Z-ill-founded. But any ill-founded direct limit system contains a 

countable ill-founded direct limit system. Note that the X2 admissibility of L~ [X] 

allows one to perform the above iteration inside L~ [X]. 

Finally we must describe the ~2 function Y ~ Y'. We can assume that Y < L. ; 

let k: L~ --> LK be the inverse to the transitive collapse of Y. Let a be the least 

ordinal so that there is a K-direct limit system II with direct limit a, yet k [H] is 

not well-founded. Let 17o be one such II and {/3, [ n E to} a descending code for 

k[Ho]. Define Y ' < L .  to be the L~[X]-least Y'_D YO{fl ,  In ~to}, card(Y') = 

to~ U card(Y). 

This is certainly a X2 definition. We must show that any ill-founded r-direct 

limit system H C_ Y is Y-ill-founded. Let fl  be the pullback of II via k (so 

k (fI) = H). If II is ~'-well-founded then II is well-founded, say with direct limit 

/3. Now a _-< fl by defnit ion of a. It is not difficult to construct a r-direct limit 

system F such that II0, lrI are both subsystems of F and fl is cofinal in F. Suppose 

io < i, < . . -  belong to the index set for Ho and k(m.i.+,)(/3,) >/3,+~. Then choose 

jo < j~ < ' "  �9 from the index set for l~I so that i, < j. for each n. The sequence 

k(Tr~o)(flo), k(m,.j,)(fll),"" is a descending code for 17 and shows that II is not 

~'-well-founded. This completes the proof of Theorem 11. 

w Further results and open questions 

(1) The argument at the end of the proof of Corollary 12 shows: If a is Y-, 

admissible of cardinality r and either there is no greatest a-cardinal or the 

greatest a-cardinal has L,-cofinality > r, then a is X. admissible relative to the 

function y H, [y]<" A L~. Thus if in addition there is a tame injection L~---~ L,  

then a = a .  ( X )  for some X _C r. For many admissible a this function also gives 

a natural solution to Post's Problem in a-recursion theory (see Friedman [5]). 

(2) Suppose a = a (X) for some X C_ r and K has cofinality to. Then is there 

X C_ r such that a = a (X) and for all Y E 2" tq L~ [X] either a (Y) < a or 

X U L~ [Y]? (In other words: Is there a "minimal" solution to a = a ( X ) ? )  

(3) Suppose L~ [X] is admissible, La [X] ~ r = greatest cardinal is singular of 

uncountable cofinality, X C_ r. Then does the Jensen covering lemma hold in 

L~ [X]? If x is a cardinal in L, X E L then this is established much as was the 

Effective Covering Lemma. This fact can be used to give an alternative proof of 
Theorem 8. 
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