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EXISTENCE A N D  NON-EXISTENCE 
OF GLOBAL SOLUTIONS FOR 

A SEMILINEAR HEAT EQUATION 

BY 

FRED B. WEISSLER* 

ABSTRACT 

The existence and non-existence of global solutions and the L p blow-up of 
non-global solutions to the initial value problem u'(t)= Au(t)+ u(t) TM on R ° 
are studied. We consider only y > 1. In the case n(y - 1)/2 = 1, we present a 
simple proof that there are no non-trivial global non-negative solutions. If 
n (3' - 1)/2 =< 1, we show under mild technical restrictions that non-negative L ~ 
solutions always blow-up in L p norm in finite time. In the case n(3' - 1)/2 > 1, 
we give new sut~cient conditions on the initial data which guarantee the 
existence of global solutions. 

I. Introduction 

In this paper  we study whether  or not  there exist solut ions to the initial  value 

p rob lem 

(1.1) u ' ( t )  = 2 i u ( t ) +  u ( t )  ~, u(O) = oh, 

which are global  in t ime, i.e. exist for all t = 0. The  solut ion is to be a curve in 

LP(R"), some p => 1, which assumes only non-nega t ive  values. We take 3' to be 

bigger than 1. 

Fuj i ta ,  [2] and  [3], has s tudied this ques t ion for classical solut ions to (1.1). His 

results are as follows: If n ( 3 ' -  1)/2 < 1, then no  non-nega t ive  global solut ion 

exists for any non- t r iv ia l  initial  data. If n(3' - 1)/2 > 1, then global solut ions do 

exist for any non-nega t ive  initial  data domina t ed  by a sufficiently small Gauss ian .  

The  case n ( 3 ' -  1 ) /2=  1 was decided by Hayakawa  [5] for n = 1,2 and by 

Kobayashi ,  Sirao and T a n a k a  [6] for genera l  n. The  result is that if n (3' - 1)/2 = 

1, then no  non-nega t ive  global solut ion exists for any non- t r iv ia l  initial data.  The  
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proof of this result is very complicated, and even the more recent proof given by 

Aronson and Weinberger in the appendix to [1] is quite technical. 

In this paper we present a considerably simplified proof for the case 

n (y - 1)/2 = 1. Also, under mild technical restrictions, we show that if n (3' - 1)/2 

<_-1, the non-negative solutions to (1.1) must blow-up in L p norm in finite 

time. Finally, we give some new sufficient conditions for global existence in the 

case n ( y  - 1)/2 > 1. 

2. Statement of results 

We study (1.1) via the corresponding integral equation 

fo (2.1) u( t )  = e " 4 ,  + et ' - '~a(u(s) ')ds.  

Recall that 

/ .  

e " 4 , ( x )  JRn G,(x  - y)4,(y)dy, where G,(x )  = (41rt)-"/2e -I'J2/4'. 

For future reference we collect some well known facts about the semigroup e " .  

PROPOSmON 1. (a) II G, II, = 1 for all t > O. 

(b) I f  6 >- O, then e "4 ,  >- 0 and H e'a4, II1 = II 4, II1. 

(c) I f  1 <= p <= oo, then II e " 6  I1~ <-- II 4, lie for all t > O. 
(d) I f  1 <= p < q <= ~ and r -1 = p-1 _ q-l ,  then II e"4 ,  Ilq --< (4~rt) -"'zr il 4, II~ for all 

t > 0 .  

PROOF. Statement (a) is just the standard Gaussian integral. Statement (b) 

follows from Fubini's theorem and part (a). Statement (c) is just IIG, * 4, lip <= 

II G, Ill fl 4, lip = II 4, fl~. Finally, (d) follows by interpolating between the case p = q, 
which is part (c), and the case p = 1, q = oo, which is immediate. 

Usually a solution to (2.1) in L P ( R  n) will be a continuous curve 

u : [0, T)--~ L " ( R  n). However,  we do not wish to exclude the possibility that it be 

only strongly measurable, in which case the integral equation might just hold for 

almost all t in the interval. There is some question as to how to interpret the 

integral expression. Ideally, we would like it to be a Bochner integral in L p. 

Indeed, in many situations where solutions to this and similar integral equations 
are shown to exist (e.g. [8] and [9]), the integral turns out to be a Bochner 

integral. However,  in deriving necessary conditions on 4, for a solution to (2.1) to 

exist, we do not want to make such a restrictive interpretation of the integral. 
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For example, if p -> 3' and u :[0, T)---~ L p is continuous, then u(s)  ~ ~ L p/~ and, 

because of the smoothing properties of e '~ (Proposition 1 (d)), the integrand is a 

continuous curve into L e on [0, t - e] for e > 0  and t < T. Thus, we might have 

to interpret the integral as an " improper"  Bochner integral, i.e. 

fo 
r - e 

L p - lim e('-s~A(u(s)')ds. 
e l ,  O 

More generally, we might wish to interpret the integral as a weak integral or as a 

Bochner integral in L q with q ¢  p. As will be seen, the proof of the following 

theorem allows any reasonable interpretation of the integral. 

THEOREM 1. Suppose n (y  - 1)/2 = 1 and that 0 >= 0 in LP(R ") is not identi- 

cally zero. Then there is no non-negative global solution u :[O, oo)--~L p to the 

integral equation (2.1) with initial value c~. 

We remark that Fujita's result for n (3' - 1)/2 < 1 has been shown to hold in 

the L p setting. (See the remarks after corollary 5.1 in [9].) Also, these results on 

non-existence of global solutions depend on the fact that the underlying space is 

R". If R"  is replaced by a bounded domain with smooth boundary,  then global 

solutions abound. (See [8], theorem 4.) The proof of Theorem 1 below is a 

simplification of my original proof which was suggested to me by T. Kato. I 

would like to thank Professor Kato for his remarks. As mentioned earlier, the 

first proofs of Theorem 1, in the classical setting, appeared in [5] and [6]. 

Let us turn now to L p blow-up of solutions of the integral equation (2.1). For 

the moment  we do not require that the solutions be non-negative, and so we 

replace the non-linear term u(s)  ~ by l u(s)l~-~u(s). Theorems 1 and 4 in [8] and 

theorems 2 and 3 in [9] tell us that if p > n (y - 1)/2 and 1 =< p < 0% then for every 

4~ ~ L P ( R " )  there is a maximal continuous solution to (2.1) with initial value 4~, 

u :[0, T,)---~LP(R").  If th is non-negative, then so is u(t).  T ,  is the existence 

time of the trajectory; and if T,~ <0% the theorems say that Ilu(t)llp---,~ as 

t ~ T,. Furthermore,  if p _>- 3' then the solution curve is unique in the class of 

strongly measurable and locally essentially bounded curves v :[0, T,)--* L p (R "); 

and if 1 = p  <3,  it is unique in the class of strongly measurable curves 

v :(0, T,)---~ LP*(R ") such that tn(*-wzp~]lv(t)lle, is locally essentially bounded, 

including near 0. (Theorem 4 in [8] and theorem 3 in [9] are stated in the context 

of a bounded domain in R", but are easily adapted to LP(R") .  Also, in theorem 

4 of [8] p > y is required, while we wish to allow p => y. This can be done since 

we are using the semigroup e'4, and may therefore substitute Proposition 1 (d) 

above for lemma 4.1 in [8]. Indeed, in the proof of Theorem 2 below we will need 
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to sketch part of the proof of theorems 1 and 4 of [8] in the case p = 3  ̀; and this 

point will be made clear.) 

If n ( 3 ` -  1) /2< 1, then p > n ( 3 ` -  1)/2 for all p E [1,oo). Since there are no 

non-trivial global non-negative solutions to (2.1) in this case, any non-negative 

solution in L p meeting the technical requirements described above must 

blow-up in L"  norm in finite time. The same holds if n(3` - 1)/2 = 1 < p < oo. The 

only case not covered by the existing theorems is p = n(3` - 1)/2 = 1. Indeed, it is 

not even clear in this case that for a given q5 E LZ(R ") there exists a local 

solution to (2.1) with initial value 4). However,  if ~b E L '  N L q for some q > I, 

there is certainly a local solution to (2.1) with initial value ~b ; and by theorem 4 in 

[9], the solution remains in L ~ at least for some time. The following theorem 

gives a condition which guarantees that L ~ solutions blow-up in L ~ norm in finite 

time. As will be seen from the proof, the technical requirement in the hypothesis 

of the theorem is fairly natural. 

THEOREM 2. Suppose n(3` - 1)/2 = 1 and that u :[0, T)--~ L ~(R ") is a strongly 

measurable non - negative solution of  the integral equation (2.1) with non - negative, 

non-trivial initial value ch ~ L ~(R ~). It follows that u (t) ~ L ~(R ~) for almost all 

t E (0, T).  Suppose further that u :(0, T)--~ L ~ ( R  ") is locally essentially bounded. 

Then u ( t )  can be continued to a max ima l  solution of  (2.1) in L L This solution 

remains in L ~ throughout its trajectory and II u (t)ll~ ~ oo as t ~ T~, where T ,  is the 

existence time o f  the trajectory. 

We also prove the following theorem, giving sufficient conditions for global 

solutions of (2.1) to exist. 

THEOREM 3. (a) Let cb >= 0 be in L p ( R ' ) ,  1 <= p < oo. Suppose 

(3` - 1)foil e'aq5 [1~ -~ ds <= 1. Then there exists a non-negative continuous curve 

u : [0, oo) --~ L p which is a global solution to (2.1) with initial value ~b. Furthermore 

(2.2) e ' ~  
u( t )  <= [1 - (3' - 1)J'~ ]le~4' j]~-i ds] l ,~ - ,  

for all t >-_ O. 

(b) Suppose n(3` - 1)/2 > 1. I f  qb >-_ 0 and 114,11   -,,2 is sufficiently small, then 

there exists a non-negative continuous curve u : [0, oo)---~ L n~-w2 which is a global 

solution to (2.1) with initial value qS. 

It is a pleasure to thank Professor A. Browder  for a helpful conversation 

concerning this work. 
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3. Proof of Theorem 1 

We begin by recalling the essential elements of Fujita's proof in the case 

n(7 - 1)/2 < 1. The crucial estimate is that if u( t )  is a non-negative solution to 

(2.1) on [0, T), then 

(3.1) tl/(r-1)e'a 49 <= C 

for all t E [0, T), where C is a fixed constant depending on y but independent of 

~b and T. (See [3] p. 108 or [9] theorem 5.) Furthermore, if 4~ => 0 we clearly have 

(3.2) !in2= (47rt) "/2e'44' = II ~b Ill 

pointwise on R". (The limit is of course infinite if ~b is not in L ' . )  If 

n (y  - 1)/2 < 1, then (3.1) cannot possibly hold for large values of t because of 

(3.2). Thus, no non-negative global solutions exists. 

Now suppose n(y  - 1)/2 = 1 and that u:[0,  ~ ) ~  L p is a global non-negative 

solution of (2.1) with initial value 4~. Then (3.1) becomes 

(3.3) t"'~e'~c~ <= C 

for all t -  > O. Combining this with (3.2), we see that II~ ]1, -< C'  for some fixed 

constant C'. Since u (t) for (almost) any t can be regarded as the initial value, we 

must have 

(3.4) II u(t)lll ~ C'  

for (almost) all t > 0. 

Next, assume that the initial value ~b dominates some Gaussian function, i.e. 
¢k > k G ,  for some k > 0 and a > 0. (We will later see that this assumption is 

unnecessary for the final result.) From the integral equation (2.1) it follows that 

and so 

u ( t ) >  4, > = e,a ,a = e  kG, ,  

I[u(t)Hle Ile"-" u(s)  [I,ds 

Io >- [le"-~)~(eS~kGo)" Illds 

fO 
t 
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By the definition of the Gaussians G, and their composition property unde~ 

convolution, we get that 

(e'~G.)" = (G,+.)" 

= [4r  (s + a)]-"('-w23'-"/2G~,+-~/, 

= [4~'(s + a)]-'r-"/2G~,+o~/,. 

Therefore, for almost all t, 

II u (t)ll,->- k v'),-"/2(47r)-' Y0' (s + 5)-'il G,.+o,,JI, ds 

= k'3,-"/2(4~) -' (s + a)-'ds, 

which gets arbitrarily large as t -* oo. This contradicts (3.4) and proves Theorem 1 

in the case where the initial data q~ dominates some Gaussian. 

To prove the result in general, given a non-negative solution u(t) to (2.1) with 

non-trivial initial value 4~, we consider v(t) = u(t + e) for some e > 0. Then v(t) 
is a solution to (2.1) with initial value ~ = u(e).  It suffices to show that v(t) can 

not be a global solution, i.e. that q~ dominates some Gaussian function. But 

= u (e) => e "a4, = G, * 4~, and 

(G~ * ~b)(x) = (47re )-"/2 yR. e-I'-yF/4"~b(y)dy 

= (4¢re)-./2 e-lXl=/2" f.. e I,+yl=/4, e-tYro/2" qb (y)dy 

__> (4=e)--'~e-~'~='2"f.° e-lYl~/2"d~(y)dy. 

This concludes the proof of Theorem 1. 

4. Proof of Theorem 2 

Recall that u (t) might only satisfy the integral equation (2.1) for almost every 

t ~ [0, T). Now (2.1), Fubini's theorem, and Proposition 1 together imply 

(4.1) Ilu(t)ll,--I1~ II, + fo' II.(s)ll~ds 

for almost every t E [0, T). Thus, u(t)E L" for almost every t ~ [0, T); and 
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using Pettis' theorem [10, p. 131] one can show that u :(0, T)--> L ~ is strongly 

measurable. Moreover,  since J'~ II ,  (s)ll~ds < ~o f o r  almost all t E [0, T), it must be 

true for all t E [0, T). Thus the right hand side of (2.1) is in L~(R ") for all 

t E [0, T). It follows that we can modify u(t )  for t in some set of measure 0 so 

that u (t) satisfies the integral equation for all t ~ [0, T). In particular, (4.1) holds 

for all t E [0, T). 

Choose tl ~ (0, T) such that u(tl) E L ~. Then since u :[q, T)--~ L ~ is locally 

essentially bounded, the uniqueness parts of theorems 1 and 4 in [8] guarantee 

that u(t )  = v( t  - tl) for t E [q, T), where v( t )  is the continuous solution in L * to 

the integral equation (2.1) with initial value u (q). (As noted before the statement 

of Theorem 2, we may use theorem 4 in [8] with p = 7.) Therefore,  we may 

extend u(t )  by letting it equal v(t  - q), the maximal  continuous solution in L * 

with initial value u (q). By (4.1), u (t) E L ~ throughout this extended trajectory. 

Replacing 4, by u(q),  we may assume from now on that ~b E L 1 n L • and that 

u ' [ 0 ,  T,)--~ L ~ is the maximal solution to (2.1) in L ~ with initial value ~b. T,  is 

the existence time of the trajectory and we know I[u(t)l[, --~oo as t --~ T,. We will 

see that Ilu(t)ll ,--,oo as t---> T,. 

The proof of the existence of local L"  solutions to (2.1) is based on a 

contraction mapping argument. Since we will need an explicit estimate which 

comes from this argument, we recall its essential features. (The first two 

estimates below show why theorem 4 in [8] is valid for p = 3, if the semigroup is 

e'a.) Let w :[0, T ] - - > L ' ( R " )  be a curve with IIw(t)ll, <= [3 for all t E [0, r ] .  We 

define 

fo' .~w(t)  = e'ach + et'-s~a(w(s)')ds. 

The goal is to prove that ~- is a strict contraction on the (non-negative part of 

the) closed ball of radius [3 in L=([0, T]; L~). The resulting fixed point of ~: will 

turn out to be a continuous curve in L ~. Using Proposition 1 (d) with p = 1 and 

q = 7, keeping in mind that n (y  - 1)/2 = 1, we can easily derive the following 
estimates: 

Io II.~w(t)ll ,  ----II 4, II, + [ 4 r r ( t -  s)]-"* IIw(s)'ll, ds 

<= 116 II~ + ( 4 ~ r ) - " v ( r  - 1 ) - ' t " - " [ 3  ~ 

and 

II-~w,(t)-  ~w=(t)ll~i_-__ ( 4 ~ ) - " ' 7 ( 7  - 1) 't '~ '"'713 ~-' sup fl w, ( s )  - w2(s)ll~. 
IO,0 
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Thus, there is a constant C such that if I[ 4' [l:̀  + CT~:`-w"/3 :̀  =</3, then ~ is a strict 

contraction on the (non-negative part of the) closed ball of radius /3 in 

L=([0, T]; L:`). The resulting fixed point of ,~ will be the first part of the maximal 

solution to the integral equation (2.1) with the initial value 4'. Consequently, if 

114"11:, + Ct ' : ` - '"*f l  :` <=/3, then ilu(t)ll:` --</3. Applying this to any point in the 
trajectory, we see that if 0 =< s < t and 

(t  - s )  ':`-1~/:`< /3 -I lu(s) l l~ ,  

then Ilu(t)ll:` --</3. 
This estimate enables us to get some control over the asymptotic behavior of 

u. Observe that if 0 <= s < T, and Ilu(s)ll:` </3, then 

(4.2) (7", -- S)(:`-I)/:` > ~ --IlU(S)ll3' 
c/3:` 

Indeed, otherwise for some /3 > Ilu(s)ll:` and all t ~ (s, 7",) we would have 

(t - s)':`-'":`<= ~ -II u (s)ll:` 
C/3:` ' 

which implies Ilu(t)[l:` --</3 for all t ~ (s, 7",) by the previous paragraph. This is 

impossible since II u (t)ll:` -- '  oo as t --~ 7",. Next, letting/3 = 211 u (s)ll:` (for example )  
in (4.2), we see that for 0 < s < 7", 

(7", - s) ' :`-"/:`> C ' l l u ( s ) l l~ : `  

o r  

(4.3) II u(s)ll:` > C"(T,  - s)- '% 

where C "  is some new fixed constant. This is the desired asymptotic estimate. 

There are similar estimates for the L p norms, 3'-<P <°% and without the 

restriction that n(3, - 1)/2 = 1. (See Remark (2) in the last section of this paper.) 

The proof of Theorem 2 is completed by substituting (4.3) into (4.1): 

fO t Ilu(t) l l ,>-11611,+(c") :̀  ( r o - s ) - ' d s ,  

and so ] l u ( t ) l l , ~  oo as t ~  T,. 

5. Proof of Theorem 3 

We first prove part (a). Let 
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C(t)= [ 1 - ( , / - 1 )  fo' lle'acbll;-t ds] -'/~-'~ 

Then C(0) = 1 and C'(t) = Ile'~ck II~-' C(t) ~. Consequently 

fo (5.1) C(t) = 1 + Ile~4~ It:-' C(s)'ds. 

Now let u:[0,~)---~L p be a continuous curve such 

C(t)e'~4~ for all t -> 0, and let 

fo ~u(t) = e'acb + e('-~(u(s) ')ds.  

Then 

fO 
t 

~u(t) <= e'~ck + e"-~(e'%k)*C(s)~ds 

fo' <= e'~ck + e('-~'~(e~%~)[[ e~ck II~-' C(s)~ds 

=e'ac~[l+ fo' [[e~c~[[~-lC(s)~ds ] . 

that e'~b <= u(t) < 

Therefore,  by (5.1), we have e'~qb <= ~u(t)<= C(t)e'%b for all t _-> 0. 

Now let Uo(t) = e'acb, u~(t) = ~Uo(t), and in general u,,.~(t) = ~u,,(t). We will 

show that the u.,(t) converge to the desired solution. Observe first that 

urn(t) <= um.l(t) for all t => 0. This follows by induction since Uo(t)<= u~(t) for all 

t =>0, and u(t) <- v(t) for all t =>0 implies .~u(t)<= ,~v(t) for all t =>0. Thus, for 

each t >= 0 um(t) is a non-decreasing sequence of non-negative functions domi- 

nated in L"(R n) by C(t)e'ack. Hence, by the dominated convergence theorem 

the urn(t) converge in L~(R n) to a function which we call u(t). Clearly, 

u(t) <- C(t)e'%b since the same is true of each u,~(t). 
Furthermore,  the functions s ~ et'-s~a(um(s)*) are dominated by 

e'~lle~ll~-'f(s)~ in L~(O,t;LP(R")) and converge for each s ~ ( O , t ) t o  
et'-'~a(u(s) ~) monotonically in LP(R"). (The convergence is in L P for each 

s E (0, t) because the dominating function is in L p for each s E (0, t).) Conse- 

quently, by the dominated convergence theorem for LP-valued functions, we see 

that 

fo' fo' L p - lim e('-~'a(um(s)')ds = e('-"a(u(s)')ds. 
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There fore ,  if we let m - - - ~  in the formula  u, .+l( t )= ~u , , ( t ) ,  we get that 

u(t) = ~ u  (t); i.e. u(t) is a global solution of (2.1). Cont inui ty  of u(t) in L ~ easily 

follows by s tandard arguments.  This proves part (a) of T h e o r e m  3. 

We now turn to part  (b). We use the fact that local solutions to (2.1) are known 

to exist for  all initial data  4 ) ~  L"(~-1)/2. More  precisely, choose p such that 

1 _-<p < n ( y -  1)/2 < py. Then  theorem 3(b) and corollary 3.1 in [9] guarantee  

that for  every 4' _-> 0 in L "(~-1)/2 there  exists a non-negat ive  cont inuous  curve 

u :[0, T ) ~  L "(*-w2 which satisfies (2.1) with initial value 4). Fur the rmore ,  u (t) is 

cont inuous  into L p~ for t > 0  and tbllu(t)llp~ is bounded  near  0, where  

b = 1/(3, - 1 ) -  n/2py. In fact, the proof  shows that t b II u ( t ) IL  --' 0 as t ~ 0. (See 

near  the bo t tom of p. 89 in [9].) Finally, u(t) can be cont inued as a solution to 

(2.1) as long as Ifu(t)l{p~ remains  bounded.  (The proof  in [9] is for  a bounded  

domain  [1, but as ment ioned  earlier,  it is easily modified to include the case 

1~= R".) 
Thus,  to show that u(t) can be cont inued to a global solution, it suffices to 

show that llu(t)II,~ can never  blow-up. Let  a = n ( ' / - l ) / 2 p ~ / < 1 .  Then  by 

Proposi t ion I (d) we have that 

f/ t~llu(t)fl,, <= tblle'~4'{I,, + t b rleO-~,~(u(s)DII,,ds 

fo --< (47r) -b 114' 11.(,-1>/2 + t b [4rr (t - s)] -° II u (s)" {leas 

f0 --< (4rr) -b ll4)I1.(, w2+ (47r)-"t b (t - s)-°s-~'ds suplls"u(s)ll;, 
(o,,) 

f, = (4"n')-b II 4' 11,,(~,_1,/2 + (47r) -" (1-s)-"s-'dssuplls"u(s){]7,,. 
o (o,,) 

The last equality follows since b+l-a-b~'=O. Also, note that bT<l. 

Therefore, if we let f(T) = sup(o.r)lltbu(t)H., we see that f(T) is a continuous, 
non-decreasing function with f ( 0 ) =  0 which satisfies 

f (T)  <- (47r) -b 114' II.(,-,),~ + Cf(T):', 

where  C is a fixed constant .  Thus,  for  sufficiently small II 4' I1,(,-1),~, f ( r )  must 

remain bounded .  Indeed,  if C2"a ,-1 < 1 and (4rr) -b II 4' I1~(,-*,,~ -<- then f (T)  can 

never  equal  2a. If it did, we would have 2a  _-< a + C(2a) : '  or  a <= C(2a) ~', which 

is false. 

This proves that for  {14'}]-(,-,)a sufficiently small t " I Iu ( t ) IL  must remain 

bounded ,  and so proves T h e o r e m  3 part  (b). 
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6. Remarks 

(1) The hypothesis in Theorem 1 that the solutions to (2.1) be non-negative is 

crucial. If n(3' - 1)/2 =< 1, there are global classical solutions to (1.1) and (2.1) of 

mixed sign. Of course, the non-linear term u ~ is replaced by I u I~-'u for such 

solutions. See [4]. 

(2) The same arguments which led to the estimate (4.3) can be used to show 

the following. Suppose 3' --<P < ~  and p > n ( 3 ' -  1)/2. Let 4' G LP and let 

u :[0, T.~)---~ L p be the maximal solution to (2.1) with initial value ~, as shown to 

exist by theorems 1 and 4 of [8]. If T,~ < ~, then there is a constant C such that 

II . (s) l l ,  > C(T,  - s )  " 1) 

for 0 _-< s < 7",. This estimate is also correct on a bounded domain in R". 

(3) The proof of Theorem 3 part (a) is valid for any positivity preserving 

strongly continuous semigroup on any L p space. 

(4) In order that the hypothesis of Theorem 3 part (a) be met for some 4, _>- 0, it 

is necessary, because of (3.2), that n (y  - 1)/2 > 1. Thus, there is no conflict with 

Theorem 1. 

(5) If all we know is that f~lle'acbll~ 'ds < ~  for some e > 0 ,  the proof of 

Theorem 3 part (a) shows that there exists a local solution to (2.1) which exists as 

long as ( 3 ' -  1)f'oJle'%k t]~-' ds < 1. This solution satisfies (2.2) for all such t. 

(6) There is an interesting relationship between the hypotheses of parts (a) and 

(b) of Theorem 3. Suppose n ( y -  1)/2 > 1 and n = 1 or 2. If 114' fl.(~-,,,2 is 

sufficiently small, then (y-1)fol]e'~4~llU'dt<=l. We prove this using the 

Marcinkiewicz interpolation theorem. (See [7] p. 272.) Consider the map H 

which takes a function 4, in LP(R ") into the curve u(t) = [le'~4, ll= on (0, ~). The 

map H is clearly subadditive, and by Proposition 1 (d) it is of weak-type (p, s) 

whenever 1 < p < o0 and s = 2p/n. (Since n _<- 2, we always have p =< s, which is 

necessary in order to apply the interpolation theorem.) Thus, by the Marcin- 

kiewicz theorem, H is of strong-type (p, s) whenever 1 < p < ~ and s = 2p/n, i.e. 

( fO ~ ) 1/s lie'S(all, at <= Cllc~l[p 

for some constant C independent of 4,. Letting p - - n ( y -  1)/2, we get the 

desired result. 
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