TWO NONISOMORPHIC K-AUTOMORPHISMS WITH ISOMORPHIC SQUARES*

BY

DANIEL J. RUDOLPH

ABSTRACT

By taking two different skew products of an initial transformation and a two point space, two measure preserving transformations with the same square **are** constructed. By direct arguments on the doubly infinite partition names of points in these processes, they are shown to be K -automorphisms and nonisomorphic.

1. Introduction

Through Ornstein's work on the isomorphism theory of Bernoulli-shifts [3], [4], [5], it is known that any square root of a Bernoulli-shift is Bernoulli. Hence any two such roots are isomorphic. Ornstein has also constructed a Kautomorphism which has no square roots [7], and J. Clark has extended this to a K-automorphism with no roots at all [2]. Our goal here is to construct two K-automorphisms which are nonisomorphic but have isomorphic squares. The square, thus, has two nonisomorphic square roots. These transformations are given as two skew products of a K -automorphism that is not Bernoulli with a two point space. We use the arguments developed by Ornstein and Shields [6] in their construction of uncountably many nonisomorphic K-automorphisms to show they are K-automorphisms and are nonisomorphic.

The thought behind this construction is the following trivial example of two transformations with isomorphic squares. Let Ω' be a two point space, T_1 the interchange map and T_2 the identity map. Obviously $T_1^2 = T_2^2$, as both are the identity map. The maps which we construct will be skew products with a K-automorphism which preserve this identity on the square.

Received October 28, 1975

^{*}This work is a part of the author's Ph.D. dissertation written at Stanford University under D. S. Ornstein.

2. Construction of T_1 and T_2

We will construct first an initial transformation W following the method used by Ornstein and Shields [6]. Hence, we will be sketchy in some of the details of the construction and refer the reader to this paper or Ornstein's text, *Ergodic Theory, Randomness and Dynamical Systems* (see [8]) for a more careful consideration of such constructions.

The map W will be defined as the shift transformation on doubly-infinite names from a partition (E, F, S_0, S) . The names are built up through a *block structure.* We will describe how to make the initial *O-blocks,* and state inductively how $(n - 1)$ -block names are strung together to form *n*-block names.

A 0-block name will consist of two F's followed by $2^{100} S_0$'s, followed by two E's. An *n*-block name will be made of $(n - 1)$ -block names as follows. Select independently a sequence of 2^{2n} (n - 1)-block names. Pick a value $f \in \{1 \cdots n + 1\}$ independent of the $(n - 1)$ -block names chosen, each with equal probability. For this value of f and this sequence of $(n - 1)$ -block names, Fig. 1 shows what the n-block name will look like.

This gives the various possible n -block names. Each is equally likely, and the number of F's at the beginning of the block and which $(n - 1)$ -blocks occur in the name are equidistributed over their possible values and independent of each other. If we let $f(n) = 2(n + 1)$, the variability of the F segment, $s(n) = 100n^3$, the increment size in the spacers, and $h(n)$ be the length of an *n*-block, then we have

$$
\sum_{i=0}^n f(i) < s(n) - 1 \quad \text{and} \quad 2^{10n}(s(n) - 1) < h(n-1).
$$

Further, if we let Ω_n be the set of all points in an n-block, then $\mu(\Omega_0) > \frac{1}{2}\mu(\Omega)$, where Ω is the entire space on which W is defined.

To construct T_1 take the direct product of Ω with the two point space, $\{0, 1\}$.

276 D.J. RUDOLPH Israel J. Math.

Call this space $\overline{\Omega}$. On $\overline{\Omega}$ let P be the partition $(E \times \{0, 1\}, F \times \{0, 1\}, S \times \{0, 1\},$ $S_0 \times 0$, $S_0 \times 1$ = (\overline{E} , \overline{F} , \overline{S} , r, b). We will often speak of a point in r or b as colored red or black. For a point of this product T_1 will be defined by stating how the color of a point changes as it moves along an n -block. That is to say, $T_1(w, *) = (W(w), S_w(*))$, where S_w is either the interchange or the identity map, and either fixes or switches the color. There are two colorings for 0-blocks given in Fig. 2.

Fig. 2

Suppose we have shown how to color the red and black $(n - 1)$ -blocks. Fig. 3 now shows how to color a red and a black n -block. By a red n -block we mean an n-block whose first 0-block is red.

This prescription tells us whether, at the end of an $(n - 1)$ -block in an n-block, S_w is the switch or the identity map. Thus a red *n*-block is a sequence of $(n - 1)$ -blocks, switching between red and black $(n - 1)$ -blocks in the order rbbrrbbr \cdots rbbr, and a black n-block is colored in just the opposite order, brrbbrrb \cdots brrb. This defines T_1 .

We can define the map T_2 as follows. Let T' be the interchange map on the second coordinate of $\Omega \times \{0, 1\}$. Now let $T_2(\bar{w})= T_1(T'(\bar{w}))$ for all $\bar{w} \in \bar{\Omega}$. As

 $T_1T' = T'T_1$, we get $T_2^n = T_1^nT''$. Looking at Fig. 3, whenever T_1 switches the $\{0, 1\}$ coordinate of \bar{w} , T_2 fixes it and vice versa. Hence to get a colored n-block T_2 name, we take an *n*-block T_1 name and interchange the colors in odd positions and fix those in even.

Thus there are two possible colored 0-block T_2 names, as in Fig. 4.

Red and black T_2 (n - 1)-blocks string together to form a red and a black T_2 n-block, but notice that as the F's always come in even blocks, and $ks(n)-1$ is odd, that the possible color sequences are, for a red T_2 n-block, rrbbrrbbrr \cdots bb, and for a black T_2 n-block, bbrrbbrrbb \cdots rr. It is this difference between T_1 and T_2 names which will force T_1 and T_2 to be nonisomorphic. The following fact is now trivial.

THEOREM 1.1. T_1^2 and T_2^2 are isomorphic.

PROOF. We have even more, that $T_2^2 = T_1^2 T_1^2 = T_1^2$.

3. T_1 and T_2 are K-automorphisms

As T_1^2 and T_2^2 are the same, and roots and powers of K-automorphisms are K-automorphisms, it will suffice to show T_1 is a K-automorphism.

Our argument will follow the format of the similar result in Ornstein and Shields [6], only with a minor variation to cope with the evenness of the F-sections and the different colorings. Let P be the partition $\{\overline{E}, \overline{F}, \overline{S}, r, b\}$. We will, as is usual, prove the following version of the K property.

THEOREM 1.2. *Given any* $\epsilon > 0$ *and integer k, there is an N such that for any* $m > 0$ and $n > N$,

$$
\bigvee_{-m}^{0} T_1^i(P) \perp^{\epsilon} \bigvee_{n-k}^{n+k} T_1^i(P).
$$

278 D. J. RUDOLPH Israel J. Math.

PROOF. First fix $\varepsilon > 0$ and the integer k. Choose N₀ so large that the set of all w in an N₀-block, more that k positions from either end, is at least $(1 - \varepsilon^2)$. Call this subset $\tilde{\Omega}$. Let L be so large that $f(L) > h(N_0 + 1)$, and let $N = h(L) + 1$. Now fix $n > N$ and let $\tilde{\Omega}^n = T^{-n}(\tilde{\Omega})$. As $\mu(\tilde{\Omega}) > 1 - \varepsilon^2$, it will suffice to show

$$
\bigvee_{-m}^{0} T_1^{i}(P)/\tilde{\Omega}^{n} \perp \bigvee_{n-k}^{n+k} T_1^{i}(P)/\tilde{\Omega}^{n}.
$$

Let A be an atom of $V_{-m}^0 T_1^i(P)$, i.e. a set with a fixed P-name from $-m$ to 0. We want to show that the distribution of T, P-names from $T_1^{n-k}(A)$ to $T_1^{n+k}(A)$ is the same as that on $T_1^{n-k}(\tilde{\Omega}^n)$ to $T_1^{n+k}(\tilde{\Omega}^n)$ i.e. on $T_1^{-k}(\tilde{\Omega})$ to $T_1^{k}(\tilde{\Omega})$.

Define the functions $L(w)$, $F(w)$ and $N_0(w)$ as follows. $L(w)$ is the largest positive integer less than *n* such that $T_1^{L(w)}(w)$ is the first point of an L-block. *F(w)* is the first integer larger than $L(w)$ such that $T_1^{F(w)}(w) \notin F$. $N_0(w)$ is the largest integer less than n not in an N_0 -block and in F. These are all functions of the name only and hence are measurable. Notice that the size of n makes all of these well defined on $\overline{\Omega}$. Fig. 5 indicates the situation diagramatically.

Partition A into sets A_i , which have a fixed P-name from $T_1^{m}(w) \cdots T_1^{L(w)}(w)$, and from $T_1^{F(w)}(w) \cdots T_1^{N_0(w)}(w)$ (these sections are dashed in the diagram).

Thus, in A_i , $T_1^*(w)$ must lie in an L-block with a fixed P-name from $F(w)$ to $N_0(w)$, hence always in an $(N_0 + 1)$ -block in the same position in the L-block and with a fixed number of F 's at its beginning. The F section at the beginning of the L-block, though, can take on any even value, subject only to the restriction that this value will allow $T_1^{n-k}(w) \cdots T_1^{n+k}(w)$ to be in an N₀-block in the proper $(N_0 + 1)$ -block. The length of this F section is independent of the N₀-block names in this $(N_0 + 1)$ -block, and as $f(L) > h(N_0 + 1)$, will put $T_1^*(w)$ in all the

 N_0 -blocks, at all allowed positions with equal probability, that is, always at even positions, or odd positions.

As half the N₀-blocks are at an odd distance into the $(N_0 + 1)$ -block and half even, the independence of the uncolored N_0 -block names from the size of this F section now implies that $V_{n-k}^{n+k}T_1(E, \bar{F}, \bar{S}_0, \bar{S})/A_k$ has the same distribution of names as $V_{n-k}^{n+k} T_1^k(\overline{E}, \overline{F}, \overline{S}_0, \overline{S})/\overline{\Omega}^n$. This will imply that T_1 on uncolored names is K. What about the colored names? Notice that exactly half the odd position N_0 -blocks and half the even position N_0 -blocks are red. As the uncolored P-name of $T_1^{n-k}(w) \cdots T_1^{n+k}(w)$ will lie in any even position N_0 -block with equal probability, it will be in a red or black even block with equal probability. The same holds for odd blocks. Hence a name in $V_{n-k}^{n+k} T^i_L(\overline{E}, \overline{F}, \overline{S}_0, \overline{S})/A_i$ is in a black N_0 -block half the time, and in a red N_0 -block half the time. Thus $V_{n-k}^{+k}T_1^i(P)/A_i$ has the same distribution of names as $V_{n-k}^{n+k} T_1^i(P)/\tilde{\Omega}^n$. The same, then, holds for A, the union of the A_{i} , and the result follows.

4. T_1 and T_2 are nonisomorphic

The thrust of this argument is to show that any isomorphism between T_1 and $T₂$ must preserve so much of the block structure of their P-names that the fact that the color orders of $(n - 1)$ -blocks in *n*-blocks are different in the two will give a contradiction. We begin by showing that in a T_1 , P-name, the only thing that looks like an n -block is an n -block. Notice that many of the arguments here are only slightly affected by the colorings.

Let x and y be any two points in Ω . Each has a T_1 (or T_2), P-name which we can write as $\{A_i\}_{i=-\infty}^{\infty}$ and $\{B_i\}_{i=-\infty}^{\infty}$. In these names will occur *n*-blocks, i.e. sequences $A_k \cdots A_{k+h(n)-1}$ and $B_{k'} \cdots B_{k'+h(n)-1}$ which are T_1 or T_2 , P-names across n-blocks. The following facts are in terms of such indexed names.

LEMMA 1.1. Let $A_k \cdots A_{k+h(n)-1}$ and $B_{k'} \cdots B_{k'+h(n)-1}$ be two $T_1(T_2)$, P-names *across* n -blocks $|k - k'| = h(n) - L$. If L is such that $h(n) - \sum_{i=0}^{n} f(i) > L$ $h(n)/2^{n+1}$, then $A_i \neq B_i$ for at least $\bar{\epsilon}L$ values $i \in {\text{sup}} (k, k') \cdots h(n) - \text{inf } (k, k')$, *where* $\bar{\epsilon}$ *is independent of n.*

PROOF. Let

inf inf ε_n = n -block names such L A and B **number of places** $A_i \neq B_i$ **.** L

It is clear $\varepsilon_0 \geq 1/h(0)$.

280 **D. J. RUDOLPH** Israel J. Math.

Now consider two *n*-blocks A and B overlapping in L places. As $2^{2n}s(n)$ < $h(n-1)/2^{8n}$, any $(n-1)$ -block in A and in the overlap, either overlaps a single $(n - 1)$ -block in B in at least

$$
\left(1-\frac{1}{2^n}\right)h(n-1)-2^{3n}s(n)\geq \left(1-\frac{1}{2^n}-\frac{1}{2^{8n}}\right)h(n-1)
$$

places, or it overlaps two consecutive $(n - 1)$ -blocks, each in at least $h(n - 1)/2ⁿ$ places, but a total overlap of at least $(1-(1/2^{8n}))h(n-1)$ places. If any $(n-1)$ -block in A overlaps an $(n-1)$ -block in B in more than $h(n-1)$ - $\sum_{i=0}^{n-1} f(i)$ places, then it is the unique such one as $s(n) > \sum_{i=0}^{n} f(n)$, $2^{2n}s(n)$ $h(n-1)$, and $L < h(n) - \sum_{i=0}^{n} f(i)$. Hence, except for possibly this one block, and the one block at the end of the overlap, all $(n - 1)$ -blocks in the overlap satisfy the condition for the definition of ε_{n-1} . Thus the number of $A_i \neq B_{i-(h(n)-L)}$ is

$$
\geq \left(L\left(\frac{\mu(\Omega^{n-1})}{\mu(\Omega_n)}\right) - 2h(n-1) \right) \varepsilon_{n-1} \left(1 - \frac{1}{2^n} - \frac{1}{2^{8n}}\right)
$$
\nnumber of blocks\n
$$
i \text{ in } (n-1)-
$$
\nwith bad\nblocks in overlap\noverlap\noverlap\n
$$
> \varepsilon_{n-1} L\left(\frac{\mu(\Omega_{n-1})}{\mu(\Omega_n)}\right) \left(1 - \frac{1}{2^n}\right) \left(1 - \frac{1}{2^n} - \frac{1}{2^{8n}}\right),
$$

as

$$
\frac{\mu(\Omega_{n-1})}{(\Omega_n)} > \frac{1}{2} \quad \text{and} \quad \frac{h(n-1)}{L} < \frac{1}{2^{2n}}.
$$

Taking the infimum over all such L, A and B, and recalling $\mu(\Omega_0)/\mu(\Omega_n) > \frac{1}{2}$.

$$
\varepsilon_n > \varepsilon_0 \tfrac{1}{2} \prod_{i=1}^n \left(1 - \frac{1}{2^n}\right) \left(1 - \frac{1}{2^n} - \frac{1}{2^{8n}}\right).
$$

This last sequence is bounded away from zero and we have the result.

COROLLARY 1.1. Let $A = A_k \cdots A_{k+h(n)-1}$ and $B = B_k \cdots B_{k+h(n)-1}$ be two *n*-block $T_1(T_2)$ *P*-names, $n > 4$, $|k - k'| = h(n) - L$. Suppose $L > h(n)/2^{n-4}$, and $L \ge K > h(n)/2^{n-4}$. If for some *j*, sup $(k, k') \le j \le h(n) + \inf (k, k') - K$, and those $i \in \{j, \dots, j+k\}$ we have $A_i \neq B_i$ on less than $\bar{\varepsilon}K/4$ values i, then $L >$ $h(n)-\sum_{i=0}^{n}f(i).$

PROOF. Suppose there is such a K and *j*. The block of K places in A on which there are fewer than $\bar{\varepsilon}K/4$ errors must be at least half in complete $(n - 1)$ -blocks. At least half of these must have fewer than $\bar{\epsilon}h (n-1)$ errors. By Lemma 1.1, such an $(n - 1)$ -block must lie within $\sum_{i=0}^{n-1} f(i)$ of an $(n - 1)$ -block in B. This collection of such $(n - 1)$ -blocks must constain at least two blocks.

The distances between pairs of $(n - 1)$ -blocks in an *n*-block come in values always at least $s(n)$ > $\sum_{i=0}^{n-1} f(i)$ apart. Hence these two blocks occupy the same position in B as they occupy in A . But then A and B must overlap in at least $h(n)-\sum_{i=0}^{n}f(i)$ places. When two *n*-block names $A_k \cdots A_{k+h(n)-1}$ and $B_k \cdots B_{k'+h(n)-1}$ have the property that $|k - k'| < \sum_{i=0}^n f(i)$, we will say the blocks are *close.*

Thus if two blocks match well, even on a small segment of a block, then the blocks must be close. The next result tells us that if two n-blocks match well across some fraction of their overlap, not only are the blocks close, but along this fraction the match between 0-blocks is nearly perfect.We will again consider an overlap of size L, i.e. in the n-blocks $A = A_k \cdots A_{k+h(n)-1}$ and $B =$ $B_{k'} \cdots B_{k'+h(n)-1}$, we will have $|k - k'| = h(n) - L$.

Let $(l, k)_{A}$ and $(l, k)_{B}$ be the kth *l*-blocks in A and B. Say (l, k) is close if the blocks $(l, k)_{A}$ and $(l, k)_{B}$ are close as *l*-blocks; that is to say, if A_{i} is the first point in the block $(l, k)_{A}$ and B_i is the first point in $(l, k)_{B}$, then $|j - i| < \sum_{i=0}^{l} f(i)$.

LEMMA 1.2. *Given* $\varepsilon > 0$, *if A and B are two* $T_1(T_2)$ *n-block names*, $n>3-\ln(\varepsilon)$, $h(n)-|k'-k|=L'$, $h(n)\geq L\geq h(n)-\sum_{i=0}^{n}f(i)$, $L\geq K\geq$ $h(n)/2^{n-4}$, and $A_i \neq B_i$ for at most $\varepsilon \in K$ values $i \in (j, \dots, j + k)$, where j is some *value* $\sup(k, k') \leq j \leq h(n) + \inf(k, k') - K$, then at least $(1 - 5\varepsilon)$ of the complete $(0, k)$ _A in $A_j \cdots A_{j+k}$ are close to $(0, k)_B$.

PROOF. By Corollary 1.1, $(n, 1)$ is close. Let $\mathcal{L} = \{(l, k) | (l, k)$ is not close, but the $(l + 1, k')$ containing (l, k) is}. As $(n, 1)$ is close, any (l, k) which is not close is contained in some $(l', k') \in \mathcal{L}$. Further, if (l, k) is close, then the $(l + 1, k')$ containing (l, k) is also. Hence $\mathcal L$ is precisely the maximal non-closed blocks, and any $(0, k)$ block in an $(l, k') \in \mathcal{L}$ is not close.

For $(l, k) \in \mathcal{L}$, as the $(l + 1, k')$ containing (l, k) is close, $(l, k)_{A}$ and $(l, k)_{B}$ must overlap in at least $h(l)-\sum_{i=0}^{l+1}f(i)>h(l)/2$ places. By Lemma 1.1 there are at least $\frac{1}{2}\bar{\epsilon}h(l)$ errors between the A and B names across $(l, k)_{A}$. Let $\mathcal{L}'=$ $\{(l, k) \in \mathcal{L} \text{ and } (l, k)_{A} \text{ lies in positions } j, \dots, j + K \text{ in } A \}.$

As the (l, k) in \mathcal{L}' are disjoint, we get at least $\frac{1}{2} \sum_{(l, k) \in \mathcal{L}} h(l)$ errors between A and B across $j, \dots, j + K$. Now noting that

$$
\sum_{(l,k)\in\mathscr{L}} h(l) \geq h(0) \times (\text{number of non-close }(0,k) \text{ in } j,\cdots,j+k)-h(n-1),
$$

we get

 $\epsilon \tilde{\epsilon} K \geq (h(0)/2) \times ($ number of non-close $(0, k)$ in $j, \dots, j + k$) - $h(n - 1)$.

The number of 0-blocks in $j, \dots, j + k$ is at least $K/2h(0)$. Hence the fraction of unaligned $(0, k)$ in $j, \dots, j + k$ is at most $4\varepsilon + (4Kh(0)/h(n-1)) \leq 4\varepsilon + 4/2^{n-1}$ 5ε by our choice of *n* and the result follows.

LEMMA 1.3. *There is an* ε *'* > 0 such that the following holds. For $n \ge 8$, let A *and B be* $T_1(T_2)$ *n-block names. Let* $L > h(n)/2^{n-4}$ *and* $L \ge K \ge h(n)/2^{n-4}$. If for *some j*, $\sup (k, k') < j \leq h(n) + \inf (k, k') - K$, and all $i \in \{j, \dots, j + K\}$ we have $A_i \neq B_i$ on at most ε' K values i, then $L > h(n) - \sum_{i=0}^{n} f(i)$, and A and B are both *red or both black n-block names.*

PROOF. If $\varepsilon' < \bar{\varepsilon}$ and $n \ge 5$, the first half of the result follows from Corollary 1.1. To get A and B with the same color let B' be an n-block name that has the same (\overline{E} , \overline{F} , \overline{S}_0 , \overline{S}) name and indices as B, and the same color sequence as A. By Lemma 1.1, if $\varepsilon' < \varepsilon/20$ as $n \ge 8$, at least 3/4 of the 0-blocks in A from j to $j + K$ are close to the corresponding ones in B' , as B and B' have the same uncolored names. The uncolored names of A and B' differ in at most ε 'K places across j to $j + K$. Whenever a 0-block in A and B' in the same position are close, they have the same color. Hence A and B' have different colored names in at most $\frac{1}{4}K$ places across j to $j + K$. Thus B and B' have different colored names in at most $(\frac{1}{4} + 2\varepsilon')K$ places. Make sure $2\varepsilon' < 1/8$. As B and B' have the same uncolored names, B and B' have different colors only when they have different colors in every colored space. Hence our choice implies B and B' have the same color. Hence A and B do. This completes the lemma.

Now suppose there is a measurable, measure preserving ϕ with $\phi T_1 \phi^{-1} = T_2$. As ϕ is measurable, $\phi^{-1}(P) \subset V^*_{-\infty}T^1(P)$. Thus given any ε there is an $N(\varepsilon)$ with $\phi^{-1}(P) \subset \varepsilon \vee_{-N(\varepsilon)}^{N(\varepsilon)} T_1^i(P)$ That is to say, there is a $\overline{P}(\varepsilon) \subset \vee_{-N(\varepsilon)}^{N(\varepsilon)} T_1^i(P)$, and $|\bar{P}(\varepsilon),\phi^{-1}(P)| < \varepsilon$. Hence, for almost every $w \in \bar{\Omega}$, the P-name of w from $-N(\varepsilon) + k$ to $N(\varepsilon) + k$ will determine what atom of $\overline{P}(\varepsilon)$, $T_1^k(w)$ is in, and this $\overline{P}(\varepsilon)$ name agrees with the P-name of $T_2^k(\phi(w))$ for all but a set of k's of density at most ε .

Let w be such a good point in $\overline{\Omega}$. As above, in the T_1 , P-name of w, let A, B, C etc. denote occurrences of an n -block P -name in the P -block of w , i.e. a set of points $T_1^k(w) \cdots T_1^{k+h(n)}(w)$ whose P-name is an n-block name. Further, let $\langle A \rangle_n$ or $(A - B)_n$ or $(A - B - C)_n$ denote the collection of all occurrences of the P-name of A in the P-name of w, or of $A - B$, or the triple $A - B - C$, without specifying the spacers between the blocks A and B and C , but with A and B and C all in the same $(n + 1)$ -block. A block A will $\bar{P}(\varepsilon)$ code α -well if the $\bar{P}(\varepsilon)$ name of $T_1^k(w) \cdots T_1^{k+h(n)}(w)$, and the *P*-name of $T_2^k(\phi(w)) \cdots T_2^{k+h(n)}(\phi(w))$ differ in at most $\alpha h(n)$ places. The following lemmas now show that such a ϕ must preserve much of the block structure. Notice that Lemmas 1.4, 1.5 and 1.6 do not depend critically on the coloring, but rather on the block structure.

LEMMA 1.4. *For all but at most* $\sqrt[3]{2\varepsilon}$ *of the classes* $\langle A \rangle_n$ *for all* $A \in \langle A \rangle_n$ *but a set of density at most* $\sqrt[3]{2\varepsilon}$ *, A* $\overline{P}(\varepsilon)$ *codes* $\sqrt[3]{2\varepsilon}$ *-well. Similarly for the classes* $\langle A - B \rangle_n$ and $\langle A - B - C \rangle_n$.

PROOF. If not, then the density of errors is at least $(\mu(\Omega_n)/\mu(\Omega))\sqrt[3]{2\varepsilon^3} > \varepsilon$, a conflict.

LEMMA 1.5. *Given* $\hat{\epsilon} > 0$, *there is an N*, *such that for n > N*, *for all but at most* $\hat{\epsilon}$ of the classes $\langle A \rangle_n$, $\langle A - B \rangle_n$ and $\langle A - B - C \rangle_n$, for all but a set of *n*-blocks A *in a class of density at most* $\hat{\epsilon}$ *, A maps by* ϕ *to the interior of an* $(n + 1)$ *-block.*

PROOF. This follows as $(h(n)/h(n+1))\to 0$ and $\mu(\Omega_n)\to \mu(\Omega)$. We now begin to demonstrate the rigidity of the block structure under isomorphisms.

LEMMA 1.6. *Given any* ε *" and i, if N is large enough, all but at most* ε *" of the classes* $\langle A \rangle_n$, for all but a set of $A \in \langle A \rangle_n$ of density ε ", $\phi(A)$ contains $(i - 1)/i$ of *an n-block in the* T_2 *name for* $n > N$.

PROOF. From Lemmas 1.4 and 1.5, for *n* large enough, all but $2\sqrt[3]{2\varepsilon} + \hat{\varepsilon}$ of the *n*-block pairs $(A - B)$ _n, $\phi(A - B)$ lie in the interior of an $(n + 1)$ -block with both A and B $\bar{P}(\varepsilon)$ coded $4\sqrt[3]{2\varepsilon}$ -well for all but $\sqrt[3]{2\varepsilon} + \hat{\varepsilon}$ of the pairs $A - B$. The pair $A - B$ can occur with any even (or odd) spacing in $s(n + 1) - 1$, $2s(n + 1) - 1$ $1, \dots, (2^{2(n+1)}-1)s(n+1)-1$, each with equal probability, which by ergodicity is equivalent to density in $\langle A - B \rangle_n$. Choose ε and $\hat{\varepsilon}$ so that for all n, $(\hat{\varepsilon} + 4\sqrt[3]{2\varepsilon} <$ $(2^{n+1}-2)/(2^{n+1}-1)$ and $(5/((1/2i)-(1/(2i)^8)))\sqrt[3]{4\varepsilon} < \varepsilon'$ of Corollary 1.1. Then there must be two occurences in $A - B$ which have both A and B $\bar{P}(\varepsilon)$ coded $4\sqrt[3]{2\varepsilon}$ well to the interior of an $(n + 1)$ -block, but where the spacings between A and B differ. Call these occurences $A - B$ and $A' - B'$ with spacings $ks(n + 1)$ and $k's(n + 1)$ respectively. Under these circumstances, suppose $\phi(A)$ contains less than $((2i - 1)/2i)h(n)$ of the n-block C it overlaps, as it codes into an $(n + 1)$ -block (see Fig. 6).

If *n* is large enough that $2i < 2^{n/10}$, then $\phi(B)$ contains at least

$$
\frac{h(n)}{2i} - \left(\frac{h(n)}{(2i)^8}\right) > \frac{h(n)}{2^n}
$$

of the block C. Let μ and η be the two sections of C that A and B overlap, and μ' and η' the corresponding sections in $\phi(A')$ and $\phi(B')$. As A, B, A' and B' all code $4\sqrt[3]{4\varepsilon}$ -well μ and μ' differ in at most

$$
2N(\varepsilon') + 4\sqrt[3]{4\varepsilon}h(n) < \varepsilon'\left(\frac{h(n)}{2i + (2i)^8}\right)
$$

if *n* is large enough that $N(\epsilon) < \sqrt{\epsilon}h(n)$. If *n* is large enough, as they lie inside an $(n + 1)$ -block, μ' and η' both intersect *n*-blocks in at least $h(n)/2^{n+1}$ places. The above inequality says μ' and η' must, by Corollary 1.1, lie in these n-blocks within $\sum_{i=0}^{n} f(i)$ of the way they lie in C. But as $h(n-1)/2^{10n} > s(n) > \sum_{i=0}^{n} f(i)$, no such blocks could exist. Hence $\phi(A)$ and likewise $\phi(B)$ must contain at least $((2i - 1)/2i)h(n)$ of an *n*-block. Hence, for *n* large enough of all the $\langle A \rangle_n$, at least $1 - (2\sqrt[3]{2\varepsilon} + \hat{\varepsilon})$ contain an A, coded $\sqrt[3]{2\varepsilon}$ well for which $\phi(A)$ overlaps an *n*-block in at least $((2i - 1)/2i)h(n)$ places. But if any other $A' \in \langle A \rangle$ codes $\sqrt[3]{2\varepsilon}$ well into the interior of an $(n + 1)$ -block, then as above it must also overlap an *n*-block within $\sum_{i=0}^{n} f(i)$ of the way A does, hence overlap in at least

$$
((2i-1)/2i)h(n)-\sum_{i=0}^n f(i) > ((i-1)/i)h(n)
$$

places. Thus with $\sqrt[3]{2\varepsilon} + \hat{\varepsilon} < \varepsilon$ " we get the result.

In fact, if C and C' are the *n*-blocks that A and A' overlap, and $A = T_1^k(A')$, then $T_2^{-k}(C)$ and C' agree in at least $1 - 2\sqrt[3]{2\varepsilon} - (1/i)$ places. Such A make up all but $2\sqrt[3]{2\varepsilon} + \hat{\varepsilon}$ of the classes. Hence, we also get the following fact.

LEMMA 1.7. If n is large enough, and A and $A' = T_A^k(A) \in \langle A \rangle_n$, both of *which* $\bar{P}(\varepsilon)$ code $\sqrt[3]{2\varepsilon}$ well and $\phi(A)$ and $\phi(A')$ overlap n-blocks C and C' *respectively, each in more than* $(3/4)h(n)$ places, then $T_2^k(C)$ overlaps C' in at *least* $(1-\sum_{i=0}^{n}f(i))h(n)$ *places, and C and C' have the same color.*

PROOF. This follows from the above comment and Lemma 1.2.

We will say a class $\langle A \rangle_n$ is coded α -very well if for all but α of the $A \in \langle A \rangle$, $\phi(A)$ overlaps an *n*-block C in $(3/4)h(n)$ places, and any two such overlapped blocks C and C' are overlapped in sections differing by at most $\Sigma_{i=0}^n f(i)$, and have the same color.

COROLLARY 1.2. *Given* $\alpha > 0$, *if n* is large enough, all but α of the *n*-block *classes* $\langle A \rangle_n$ *code* α *-very well.*

THEOREM 1.3. *The maps* T_1 and T_2 are nonisomorphic.

PROOF. We argue by contradiction. Suppose an isomorphism ϕ exists. Define the following map Φ on classes of *n*-block T_1 , *P*-names in the T_1 , *P*-name of w. In an *n*-block *P*-name take the $(n - 1)$ -block names in positions $4k + 2$ and $4k + 3$ and switch them, and fix the names in positions $4k + 1$ and $4k + 4$. Let $\Phi(A)$) be the class of occurrences of the name formed from A by this process. This map takes classes of *n*-block T_1 , *P*-names to each other (but notice not T_2 , P-names).

In an *n*-block name define a quadruple of $(n - 1)$ -block names as those occupying positions $4k + 1$, $4k + 2$, $4k + 3$ and $4k + 4$. Let $\alpha = 1/2^{12}$ and choose N by Corollary 1.2 so that $(*)$ the density in the T, P-name of w of n-block quadruples, all four of which code $1/2^{12}$ -well into the same $(n + 1)$ -block is at least

$$
\mu(\Omega_n)\left(1-\frac{8}{2^{12}}\right) \qquad - \qquad \mu(\Omega_n)\left(\frac{2}{2^{12}}\right) \qquad - \qquad \left(\frac{1}{4}-\frac{1}{4^{n-2}}\right)
$$

density of quadruples density of $(n + 1)$ all coded $1/2^{12}$ very well blocks not coding

to an overlap of length at least $(3/4)h(n + 1)$

v density of those quadruples in $(n + 1)$ blocks which overlap in $(3/4)h(n + 1)$ places, but not in this overlap

J

 \geq 5/8 for $n \geq N$.

Now consider A, B, C, D, a quadruple in $\overline{A} \in \langle \overline{A} \rangle$, and A', B', C', D', the image quadruple in some $\overline{A}' \in \Phi((\overline{A}))$. Suppose A, B, C, D, A', B', C', D', all code $1/2^{12}$ -well and into the same $(n + 1)$ -blocks respectively (see Fig. 7).

Let $E, F, G, H, E', F', G', H'$, be the *n*-blocks indicated in the diagram in the image of \overline{A} and \overline{A}' . E lies below A within $\sum_{i=0}^{n} f(i)$ of how E' lies below A', similarly F below B and F' below B', G below C and G' below C', H below D and H' below D'. As $s(n + 1) > \sum_{i=0}^{n} f(i)$, this forces E to lie in \overline{C} in the same *n*-block position as A in \overline{A} , similarly E' lies in \overline{C} ' as the same *n*-block as A' in \overline{A} '. Then E, F, G, H must have colors rrbb or bbrr. Further, E', F', G', H', have the same colors as E, F, G, H . But then in \overline{C}' the colors have order rbrb or brbr, neither of which ever occur. Thus both quadruples A, B, C, D and A', B', C', D' could not be coded $1/2^{12}$ -very well into the same $(n + 1)$ -blocks. Thus the density of such quadruples is at most 1/2, conflicting with (*). Hence no isomorphism could exist.

This example also provides a counterexample to a conjecture of K. Berg [1]. Suppose we can write a transformation in two ways as 0-entropy $\times K$, i.e. as $T \times K_1$ and $T \times K_2$ where T is the zero entropy part and K_1 and K_2 are K-automorphisms. Is K_1 then isomorphic to K_2 ? The answer is yes if either K_1 or K_2 is known to be Bernoulli, from the work of J. P. Thouvenot [10]. But let T be the switch map on a space $\{a, b\}$, and let $K_1 = T_1$ and $K_2 = T_2$. Define

$$
\phi: (a, b) \times \Omega \times (0, 1) \rightarrow (a, b) \times \Omega \times (0, 1) \text{ by}
$$
\n
$$
\phi(\{a, w, 0\}) = \{a, w, 0\}
$$
\n
$$
\phi(\{b, w, 1\}) = \{a, w, 1\}
$$
\n
$$
\phi(\{b, w, 0\}) = \{b, w, 1\}
$$
\n
$$
\phi(\{b, w, 1\}) = \{a, w, 0\}.
$$

Then by either looking at how ϕ affects names or computing it out, $\phi(T \times T_1) = T \times T_2(\phi)$, and ϕ is the identity map on the zero entropy factor $\{a, b\}$. Thus the transformation $T \times T_1$ can be written in two ways as zero **entropy cross a K-automorphism but the two K factors are not isomorphic. The Pinsker algebra in this case is terribly simple. It would be interesting to try to get such an example where the Pinsker algebra is mixing.**

REFERENCES

1. K. Berg, *Independence and additive entropy.*

2. J. Clark, *A Kotmogorov shift with no roots.*

3. D. S. Ornstein, *Bernoulli shifts with the same entropy are isomorphic,* Advances in Math. 4 (1970), 337-352.

4. D. S. Ornstein, *Imbedding Bernoulli Shi[ts in Flows,* Springer Lecture Notes No. 160, Springer-Verlag, 1970, pp. 178-218.

5. D. S. Ornstein, *The isomorphism theorem for Bernoulli flows,* Advances in Math. 10 (1973), 124-142.

6. D. S. Ornstein and P. Shields, *An uncountable family of K-automorphisms,* Advances in Math. 10 (1973), 63-68.

7. D. S. Ornstein, *A K-automorphism with no square root and Pinsker's conjecture,* Advances in Math. 10 (1973), 89-102.

8. D. S. Orstein, *Ergodic Theory, Randomness and Dynamical Systems,* Yale University Press, New Haven, 1974.

9. Jean-Paul, Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un *produit de deux systkmes dont I'un est un schema de Bernoulli,* Israel J. Math. 21 (1975), 177-207.

INSTITUTE FOR ADVANCED STUDIES

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL